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Abstract
Effects of vertebrate-associated microbiota on physiology and health are of significant inter-

est in current biological research. Most previous studies have focused on host-microbiota

interactions in captive-bred mammalian models. These interactions and their outcomes are

still relatively understudied, however, in wild populations and non-mammalian taxa. Using

deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living

barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM

was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla.
Bacteroidetes, which represent an important proportion of the digestive tract microbiome in

many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition

did not differ between males and females. A significant correlation of CM within breeding

pair members is consistent with the hypothesis that cloacal contact during within-pair copu-

lation may promote transfer of bacterial assemblages. This effect on CM composition had a

relatively low effect size, however, possibly due to the species’ high level of sexual

promiscuity.

Introduction
Vertebrate digestive tracts are inhabited by a taxonomically and functionally diverse commu-
nity of bacteria, usually dominated by obligatory anaerobes [1,2]. Indeed, the cell and active
gene count of this community may exceed that of the host genome by at least one order of mag-
nitude [3]. Hence, it is no surprise that gastrointestinal tract microbiota (GTM) interact with a
broad range of host physiological systems and provide ecosystem services of considerable
value. In particular, GTM affect metabolism efficiency [4,5], modulate the host’s immune sys-
tem [6], play a significant role in defence against pathogens [7,8] and enable synthesis of sub-
stances that cannot be synthesised by enzymes encoded by the host’s genome [9,10]. GTM
dysbiosis is often associated with metabolic [11,12], autoimmune [13] and neurological disor-
ders [10,14] and can also increase the risk of pathogen invasion [7,8].
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Recent advances in parallel high-throughput sequencing have enabled detailed insights into
the complex interplay between GTM and vertebrate physiological status [5,11]. To date, most
of this research has been focused on biomedical aspects of host/GTM interactions in humans
and captive-bred mammalian model species [3,4,11,15]. The effect of GTM on host physiology
also has relevance to ecological and evolutionary studies of wild populations. GTM composi-
tion has been shown to be associated with mate choice [16], for example, including propensity
for within- and extra-pair copulations [17,18]. There is also evidence that social contact medi-
ates horizontal transfer of GTM from parents to progeny [19–21], between sexual partners
[22,23] or between members of a social community [7,24]. This transfer can have a long-lasting
effect on fitness-related traits such as metabolism efficiency or pathogenesis susceptibility.
Despite its potential importance, the current low knowledge level on GTM composition in
free-living non-mammalian vertebrates and on factors shaping intra- and inter-specific varia-
tion, but see [21,25,26] precludes any general conclusions.

In this study, we focus on cloacal microbiome (CM) composition in a free-living population
of barn swallows (Hirundo rustica), an insectivorous long-distance migratory passerine bird.
The barn swallow is a traditional model species for research into reproductive biology and evo-
lutionary ecology, and especially for studies of sexual selection and sperm competition [27–29].
To date, there has been no attempt to extend this research by including information on GTM
composition, despite it having particular relevance in these fields.

Biogeographically, e.g. [1], CM is a subset of GTM colonising the distal part of the gut com-
municating directly with the urogenital tract and the external environment. Factors associated
with inter-individual CM variation in wild bird populations have already received some atten-
tion, particularly as regards to horizontal transfer of CM from parents to progeny [21] or
between sexual partners during copulation [25,30,31]. Many of these studies used cultivation
based methods that only capture a low proportion of total CM, e.g. [32]. A few studies have
used culture independent methods, such as Automated rRNA Intergenic Spacer Analysis
(ARISA), Denaturing Gradient Gel Electrophoresis (DGGE) or cloning and clone sequencing
of 16s rRNA amplicons [25,33] however, these approaches are also likely to suffer from com-
promised CM coverage and taxonomic resolution.

In order to analyse barn swallow CM composition, we applied 454 pyrosequencing of 16s
rRNA amplicons. The resulting data were used to assess whether sex, breeding pair identity or
colony identity influenced inter-individual variation in microbiota composition during the
breeding season.

Methods

Field sampling
We sampled CM from seven barn swallow breeding pairs (i.e. seven males and seven females)
from two colonies, each around 4.5 km from the village of Lužnice in the Czech Republic (49°
3'56.90"N, 14°45'20.38"E). Both colonies (ca. 40 breeding pairs at each locality, hereafter”-
Kotrbů” and “Šaloun”) were located in small livestock farms. The composition of livestock dif-
fered between these two localities. Cattle and pigs dominated in Kotrbů, whereas sheep and
goats were more common in Šaloun. CM sampling was performed during the nestling period
(second breeding attempt, late June). We assume that the last within-pair copulations occurred
approx. 2–3 weeks before the data collection—given that within-pair copulations occur mostly
during or before egg laying and the length of incubation period is 12–18 days in this species
[34]. The CM was collected using sterile DNA-free microbiological nylon swabs (minitip
FLOQSwabs, Copan, Italy) inserted ca. 10 mm inside the cloaca for approx. 20 seconds and
gently twisted by approx. 360 degrees. These samples were then stored in 2 ml DNA-free
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microcentrifuge tubes (Simport, Canada) at -80°C until sample processing, which was per-
formed within one month of sample collection. The samples were collected over three consecu-
tive days in order to minimize the probability that observed inter-individual variation was
biased by temporal fluctuations in CM composition.

All field procedures were approved by the Animal Care and Use Committees at the Czech
Academy of Sciences (041/2011), and Charles University in Prague (4789/2008-30). Owners of
farms, where we collected samples, gave us the permission to conduct this work.

Pyrosequencing
DNA was extracted in a sterile laminar flow cabinet using the Qiagen Stool kit (Qiagen, Ger-
many). Bacterial barcoding was performed using the universal primers MPRK341F
(CCTAYGGGRBGCASCAG) and MPRK806R (GGACTACNNGGGTATCTAAT) that
amplify the ~466 bp fragment, including the V3 and V4 regions of Escherichia coli 16S rDNA
[35]. Sequences of these primers were included in fusion primers used to perform polymerase
chain reactions (PCR). Forward fusion primers, represented by adaptor B sequence (Lib A),
the unique tag sequence from the Roche MID library and the MPRK341F primer sequence, dif-
fered between individuals sequenced. The reverse fusion primer consisted of the Titanium
adaptor A sequence (Lib A) and the MPRK806R primer sequence.

PCR was performed using a 30 μl solution consisting of 1x Qiagen Multiplex PCRMaster
Mix (Qiagen, Germany), forward and reverse fusion primers at final concentration 0.5 μM,
and 8 μl of DNA solution. PCR conditions were as follows: initial denaturation at 95°C for 15
min; followed by 35 cycles of 94°C (30 sec), 56°C (90 sec), 72°C (60 sec); and a final extension
at 72°C (20 min). PCR products were incubated at 70°C for three minutes and then stored on
ice. The samples were then run on 1% agarose gel and bands of appropriate size were excised
from the gel and purified using the QIAquick gel extraction kit (Qiagen, Germany) according
to the manufacturer’s instructions using 30 μl of buffer in the elution step. Concentration of
the purified PCR product was measured using a Qubit fluorometer (Invitrogen, USA) and nor-
malised. Pyrosequencing was performed via a single run on a GS Junior sequencer (ROCHE,
Switzerland) using Titanium chemistry according to the manufacturer’s instructions. Demulti-
plexed sff files have been deposited in the European Nucleotide Archive: http://www.ebi.ac.uk/
ena/data/view/PRJEB7057.

Analysis of 454 data
Sequences with low quality scores (average quality score< 0.25), that included more than
three ambiguously determined nucleotides, that were shorter than 200bp, or that did not per-
fectly match forward primer sequences or tags were excluded from further analysis. Mid- and
primer regions were trimmed using QIIME 1.8.0 [36] and the resulting fasta file was denoised
using the Acacia software [37], while chimeric sequences were identified and filtered out using
USEARCH [38]. As recommended by May et al. [39], the TBC algorithm [40] was used to clus-
ter the resulting high quality sequences into operational taxonomic units (OTUs) with a 97%
similarity threshold. TBC output was subsequently parsed using custom R [41] and UNIX
scripts to produce a QIIME formatted OTU table (presenting the sequence count for OTUs in
individual samples).

Taxonomy of representative sequence for OTUs was assigned using RDP classifier [42],
with a posterior confidence level of> 0.80. Representative sequences were aligned using
PyNast and Greengenes Core Set Alignment [43] and a minimum evolution phylogenetic tree
was constructed based on the procedure implemented in FastTree [44]. Hellinger distances
between samples were calculated based on OTU abundance data. In addition, the phylogenetic
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tree, together with data on OTU abundances, was used to calculate both unweighted and
weighted UniFrac distances [45] between samples. To avoid potential bias associated with
unequal sequencing depth, distances were calculated based on a random subsample corre-
sponding to 1600 reads (i.e. approximate minimum achieved sequencing depth) per individual.

The Chao1 index [46], phylogenetic diversity index (computed as total branch length), and
number of OTUs detected in individual samples were calculated to provide further information
on CM alpha diversity. In addition, total OTU richness for individual samples was estimated
based on best-fitting parametric model implemented in CatchAll [47]. Coverage of CM diver-
sity by our sequencing data was assessed based on rarefaction analysis and Goods coverage
index [48]. Paired t-tests were used to test whether alpha diversity differed between males and
females. Distances between samples were visualised using non-metric multidimensional scaling
(NMDS) and distance-based redundancy analysis (db-RDA), implemented in the vegan pack-
age [49], was used to test whether CM composition differed systematically between males and
females and between breeding colonies. The betadisper function (analogous to Levene’s test of
equality of variance), was used as a next step to assess whether inter-individual variation in
Hellinger and UniFrac distance differed between males and females. Finally, we applied the
Wilcoxon signed rank test to detect differences in proportional composition of individual bac-
terial phyla and families between males and females. The same approach was used to compare
the proportion of individual OTUs (i.e. number of reads for a given OTU in a given sample
divided by total number of reads for a given sample) that were represented by< 0.1% reads
(number of OTUs = 123, see S2 Table for more detail). The q-value method was applied to
account for false discoveries when using multiple comparisons [50] (q-value threshold was set
to 0.05). In addition, corrected moment estimates of k parameter of the negative binomial dis-
tribution was calculated for these OTUs. This index is widely used in parasitology to quantify
the level of parasite aggregation among hosts. Low values of this index imply highly aggregated
distribution, whereas high values (k> 20) indicate near-Poisson distribution of infection
intensities [51].

Two analytical approaches were applied to test whether individuals from the same breeding
pair exhibited a higher level of similarity than expected by chance. First, we compared the
observed mean of within-pair distances (Hellinger and both weighted and unweighted Uni-
Frac) with the null distribution of mean distances for randomly paired males and females
(n = 1000 randomly generated pairs). This individual-centred approach is highly conservative
due to the relatively low sample size of our study. Second, an OTU-centred resampling
approach was used to assess whether relative abundances of individual OTUs were non-ran-
domly correlated between males and females within individual breeding pairs. This analysis
was run on a subset of 153 OTUs occurring in� 4 individuals and including 77% of the origi-
nal high quality reads. Within-pair correlation of each OTU proportion was assessed using
Spearman’s correlation coefficient (Spearman’s r); the Fisher’s z-transformed mean being used
as the within-pair similarity index. In the next step, randomized matrices (n = 1000) were con-
structed by reshuffling the individual identity in the original matrix of OTU proportions for
individual samples which at the same time accounted for sex identity (i.e. randomly selected
males was paired with randomly selected females). Mean Fisher’s z-transformed Spearman’s r
was computed for each randomised matrix, as described above, and the resulting null distribu-
tion was used to assess statistical significance of within-pair community correlation. The out-
come of these analyses were also expressed as community-specific standardised effect sizes
(SES) using the formula (CORor–mean CORsim)/sdCORsim [52], where CORor is the mean of
Fisher’s z transformed correlations within actual pairs, mean CORsim is the mean Fisher’s z
transformed Spearman’s r for randomised matrices, and sdCORsim is its standard deviation.
We tested this approach using different OTU filtering criteria, Pearson correlations and raw
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instead of Fisher’s z-transformation correlation coefficients, and found that the results of these
analyses remained unchanged.

All statistical analyses were performed in R 3.1.0 [53], the statistical significance for all tests
being two-tailed. The ‘phyloseq’ package in R [41] was used for filtering and manipulating com-
munity data.

Results
We analysed 71,100 sequences that passed quality filtering and were not chimeric, with the
number of high quality sequences ranging between 1,656 and 8,110 (mean = 5,078) per sample.
Sequences were clustered in 981 OTUs (754 non-singleton; details in S1 Table). The Goods
coverage index ranged between 0.975 and 0.998 (mean = 0.992). This, along with the results of
rarefaction analysis (presented in S1 Fig), suggest that the sequencing depth in our study was
sufficient to capture the majority of CM alpha diversity. Based on taxonomic assignation, bac-
teria from the phyla Proteobacteria, Firmucutes and Actinobacteria dominated the CM. We
further recorded members of 17 other bacterial phyla and two archaebacterial phyla (Crenarch-
aeota in one OTU and Euryarchaeota in two OTUs) at low frequencies (Fig 1; see S2 Fig for
more details on taxonomic classification). The level of inter-individual variation in CM compo-
sition was pronounced as just four OTUs were detected in all samples and only 52 OTUs in
more than 50% of individuals.

The mean OTU number per sample, as predicted using the Chao1 index, was 179
(range = 107–424). CatchAll predictions of OTU richness were comparable with Chao1 esti-
mates (range = 112–570 OTUs per sample, see S1 Table). The number of observed OTUs
showed no variation between males vs. females (Paired t-test: t(d.f. = 6) = 0.375, p = 0.721). Non-
significant difference between males and females was revealed also based on other alpha-

Fig 1. Taxonomic composition of barn swallow cloacal microbiome. Bar heights correspond to the
proportion of sequences assigned to individual bacterial phyla. Numbers above the bars indicate number of
97% TBCOTUs corresponding to a given phylum.

doi:10.1371/journal.pone.0137401.g001
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diversity indexes (p> 0.2 in all cases). Db-RDA suggested no difference in CM composition
between males and females (Hellinger distances: F(d.f. = 1,12) = 0.769, R2 = 0.055, p = 0.906, weighted
UniFrac: F(d.f. = 1,12) = 0.671, R2 =< 0.01, p = 0.672 and unweighted UniFrac: F(d.f. = 1,12) = 0.977,
R2< 0.01, p = 0.520; Fig 2). Similarly, betadisper provided no support for differences in inter-indi-
vidual CM variation between males and females (Hellinger: F(d.f. = 1,12) = 0.017, p = 0.8977,

Fig 2. Betadiversity of barn swallow cloacal microbiome. Non-metric multidimensional scaling, based on
Hellinger, unweighted and weighted UniFrac distances for barn swallow cloacal microbiota. Green and brown
symbols indicate males and females, respectively. Circles and triangles correspond to the two localities
sampled (Kotrbů and Šaloun, respectively). Individuals belonging to the same breeding pair are indicated by
the same plotting character and connected by a dashed line.

doi:10.1371/journal.pone.0137401.g002

Cloacal Microbiome in Barn Swallow

PLOSONE | DOI:10.1371/journal.pone.0137401 September 11, 2015 6 / 14



weighted UniFrac: F(d.f. = 1,12) = 0.176, p = 0.682 and unweighted UNIFRAC: F(d.f. = 1,12) =
0.219, p = 0.648, respectively). We found no difference in proportion of individual bacterial
phyla and families between males and females (Wilcoxon signed rank test: p> 0.1 and q> 0.1
in all cases). Furthermore, out of 123 OTUs with at least 0.1% high quality reads (see S2 Table),
none showed any variation in relative abundance between males and females (Wilcoxon signed
rank p> 0.03 and q> 0.05 in all cases). These OTUs exhibited highly aggregated distribution
among sampled individuals (median value of k parameter = 0.172, inter-quartile
range = 0.057–0.337, S2 Table). Db-RDAs models, based on unweighted UniFrac and Hellinger
distances, suggested that individuals from different breeding colonies tended to be colonised by
different bacterial OTUs (F(d.f. = 1,12) = 1.357, R2 = 0.102, p = 0.010 and F(d.f. = 1,12) = 1.618, R2 =
0.131, p = 0.019, respectively); however, this was largely influenced by individuals from a single
breeding pair. When performing the same analysis using weighted UniFrac distances, between
colony differences were not significant (F(d.f. = 1,12) = 1.009, R2 = 0.080, p = 0.380; Fig 2).

Sample-centred permutations did not suggest a higher within-pair correlation than that
expected by chance (Hellinger distances: p = 0.108, weighted UniFrac distances: p = 838 and
unweighted UniFrac p = 0.220). An OTU-centred permutation model, however, indicated
higher relative OTU abundance correlations between individuals in the same breeding pair
than expected by chance (p = 0.002; Fig 3; standardised effect size = 2.910; untransformed
mean Spearman’s r = 0.101). The result remained significant after exclusion of Cyanobacteria
OTUs and OTUs most likely corresponding with arthropod-associated bacteria (see Discus-
sion); i.e. not an integral part of Barn Swallow microbiota (p = 0.004, SES = 2.490, untrans-
formed mean Spearman’s r = 0.089).

Fig 3. Correlation of OTU abundance betweenmales and females within individual breeding pairs.
Histogram showing the distribution of simulated means of Fisher’s z transformed Spearman’s correlation
coefficient computed based on the correlation of relative abundance of individual OTUs between males and
females belonging to the same breeding pair. The grey area indicates the 95% confidence interval for the
simulated means. The black arrow corresponds to the mean Fisher’s z transformed Spearman’s correlation
coefficient calculated based on the original community table. Permutation-based significance is indicated
above the arrow.

doi:10.1371/journal.pone.0137401.g003
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Discussion
Barn swallow CM was dominated by species of the phyla Proteobacteria, Firmucutes and Acti-
nobacteria, with a further 17 bacterial and two archaebacterial phyla recorded at low relative
abundances (< 5% of high quality reads). Despite such high CM phylogenetic diversity, the
community exhibited only moderate diversity at the OTU level. We detected less than 1,000
OTUs (754 non-singleton), with the number of OTUs per individual predicted using the
Chao1 index ranging between 107 and 424.

To date, most research on animal-associated microbiomes has been dedicated to bacteria
colonising mammalian hosts [3–5,11,15,54]. Compared to the typical GTM of most mamma-
lian species studied thus far, barn swallow CM taxonomic composition appears to be rather
distinct. The phylum Bacteriodetes (along with Firmicutes), for example, usually dominates the
GTM of most mammalian species [2,11,15,55,56], but was represented by less than 5% of high
quality reads in the barn swallow. On the other hand, the Phyla Proteobacteria and Actinobac-
teria, which were abundant in barn swallow CM, are usually under-represented in the GTM of
mammalian species [55], but see [54]. Differences between mammalian GTM and barn swal-
low CM could conceivably be due, at least in part, to the distal position of the cloaca in the
digestive tract and its intermittent connection with the urogenital tract and the external envi-
ronment. Our recent data, however, have shown no pronounced difference between CM and
GTM community structure in passerine birds (Kropackova, unpublished results). Furthermore,
a number of recent high-throughput sequencing studies have also shown bird GTM to be dom-
inated by Proteobacteria, Actinobacteria and Firmicutes [57–61].

At a lower taxonomic level, many genera dominating in CM, such as Enterobacter, Strepto-
coccus, Enterococcus, Clostridium, Lactobacillus, Lactococcus, Turicibacter and members of the
Ruminococcaceae family, are facultative symbionts or commensals inhabiting the digestive
tracts of many vertebrate species [2,56,62]. We also detected several OTUs, such as Staphylo-
coccus, Janthinobacterium, Corynebacterium, Aerococcus and Brevibacterium, that commonly
colonise the skin’s surface [63] and OTUs associated with other parts of the animal’s body,
such as Rothia, Porphyromonas Enhydrobacter and Actinobacillus, see for example [64].
Finally, barn swallow CM composition may also partly reflect the bird’s diet, which is com-
posed of flying insects and other arthropods present in aerial plankton. Several abundant
OTUs, including Hamiltonella, Rickettsiella andWohlfahrtiimonas, correspond to symbiotic or
pathogenic bacteria of arthropods [65–67]. Their widespread presence in barn swallow CM,
therefore, is most probably a consequence of its foraging specialisation.

High inter-individual variation appears to be a general feature of the core mammalian GTM
microbiome [12,19,68,69], but see [70]. This also appears to be true for barn swallow CM, with
most OTUs detected in a single individual only and a relatively low proportion detected in
more than 50% of individuals. Rarefaction analysis suggests this level of inter-individual het-
erogeneity is unlikely to be an artefact caused by insufficient sequencing depth. High interindi-
vidual variation in OTU presence vs. absence was further underscored by low values of k
parameter, indicating highly aggregated OTU distribution among sampled hosts. This is com-
parable with the aggregation pattern observed in vertebrate macroparasites [51].The barn swal-
low is a trans-Saharan migrant spending more than half-a-year outside its breeding locality
[71]; hence we speculate that high inter-individual CM variation may be shaped, to some
extent, by the heterogeneity of biotic and abiotic factors over the migration and wintering peri-
ods. If tso, the CM could be viewed as a 'carry-over' effect that might contribute to variation in
reproductive output over the breeding season [72]. Interestingly, NMDS and db-RDA indi-
cated no pronounced difference in CM in individuals from different breeding colonies.
Although a larger sample size would be desirable for a more robust conclusion, this result
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suggests that variation in environmental conditions operating at small spatial scales during the
breeding season has a limited effect on CM composition.

It has previously been shown that animal-associated microbiome composition is correlated
with physiological stress [73], hormonal status [74], reproduction [75] and metabolic rate [4].
In barn swallows, there is a pronounced sexual difference in parental care investment [76],
along with overall physiological and hormonal status [77,78], over the breeding season. Never-
theless, our data suggest that these aspects are not associated with systematic differences in CM
between males and females, with neither dominant OTU abundance nor CM taxonomic com-
position exhibiting any apparent sex-dependent variation. Furthermore, both CM alpha (i.e.
OTU richness) and beta diversity (i.e. level of inter-individual variation) were comparable
between males and females, which is consistent with recent work on NewWorld vultures [79]

Previous experimental and correlative studies have demonstrated cloacal contact during
within-pair copulation to be an important factor shaping CM composition and contributing to
CM similarity between individuals of the same breeding pair [25,30,31]. At the same time, CM
composition has been suggested to have an important influence on within- and extra-pair mate
choice and propensity to copulation in general, as both beneficial and potentially pathogenic
bacteria may be transmitted during copulation [17,18,22,23,31]. Indeed, permutation-based
analysis of barn swallow CM suggests that OTU abundance is correlated between individuals
of the same breeding pair. The effect-size of this pattern is rather small, however, which is con-
sistent with NMDS ordination and, more explicitly, with resampling tests based on between-
sample distances, which show that CM similarities within breeding pairs were not lower than
expected by chance. It is possible that within-pair similarities in CMmay be, at least partly,
jammed by CM transfer during extra-pair copulations, which occur frequently in the study
populations [29]. In addition, it is worth mentioning that samples were collected approx. 2–3
weeks after egg fetilization. Recent manipulative study of White et al. [25] showed that similar-
ity of CM community between social partners in kittiwakes (Rissa tridactyla) decrease rapidly
after experimental prevention of copulations. Consistent with this observation, our data indi-
cate that the potential for sexually transmitted bacteria to result in a major long-term CM shift
in barn swallow is rather low.

Supporting Information
S1 Fig. Rarefaction analysis. Rarefaction curves for the number of 97% OTUs detected in indi-
vidual samples according to sequencing depth. Calculations were based on 10 sub-sampled data-
sets for each sequencing depth (0–3000 randomly selected sequences). Colours correspond to
individual breeding pairs. Males and females are indicated by triangles and circles, respectively.
(JPG)

S2 Fig. Taxonomic classification of barn swallow cloacal microbiota. Barplots showing taxo-
nomic assignment (based on RDP classifier; 80% confidence threshold) of 454 sequences to A)
Phylum and B) Class level for sequences corresponding to the five most abundant phyla (repre-
sented by Proteobacteria, Firmicutes, Actinobacteria, Tenericutes and Bacteroidetes). This sub-
set accounts for ca. 87% of high quality sequences generated during this study. Facets (A-H)
correspond to individual breeding pairs. Samples within facets are sorted according to sexual
identity (F = females, M = males). Detailed taxonomic classification of the dominant OTUs is
provided in S2 Table.
(JPG)

S1 Table. Details on samples used in this study.
(XLS)
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S2 Table. List of dominant OTUs detected in the barn swallow cloacal microbiome. Shown
are OTUs represented by> 0.1% sequences and detected in at least two individuals. The
Table includes information on taxonomic classification to genus level, proportion of high qual-
ity reads represented by a given OTU (Prop. Seqs.), the proportion of individuals for which a
given OTU was detected (Prop. Individual) and the corrected moment estimate of k of the neg-
ative binomial distribution (k param.).
(XLS)
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