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The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we
used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural
population ofDrosophila melanogaster, to investigate whether this population harbors genetic variation for a set of stress resistance
and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance,
expression of a major heat shock protein, and egg-to-adult viability investigated at a benign and a higher stressful temperature.
This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based
on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool in
conservation genomics.

1. Introduction

Understanding the genetic architecture of quantitative com-
plex traits is a central topic in modern biology, with applica-
tions ranging within evolutionary genetics, animal and plant
breeding, conservation biology, and human health. Linkage
analyses and candidate gene studies have been used to
gather information about the genetic basis of many complex
phenotypes in a range of organisms, but usually with limited
power to identify the causal loci. Linkage analyses rely on
the joint inheritance of a small number of markers within
families with known kinship. Candidate gene studies rely on
a set of preselected genes; thus, many causal genes are likely

to be missed because of incomplete genetic knowledge of the
trait [1–3].With the availability of full genome sequence data,
genetic polymorphisms among individuals, or within pop-
ulations, can be investigated, and genome-wide association
studies (GWAS) have become increasingly popular as a tool
for finding causal loci [2].

Theprinciple ofGWAS is to associate the phenotypic vari-
ation with genetic polymorphism (single-nucleotide poly-
morphisms (SNPs) and/or other polymorphic molecular
variants) with the assumption that SNPs are in linkage
disequilibrium (LD) with nearby causal variants or that the
SNPs themselves are causal. For an increasing number of
species, the genome has been sequenced, and combined
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with advances in bioinformatics, GWAS can be performed
on model- as well as nonmodel organisms [4, 5]. How-
ever, studies using model organisms, including Drosophila
melanogaster, continue to play an important role in gain-
ing increased knowledge about the genetic architecture of
complex traits. Studies on this species have contributed
to elucidating the genetic architecture of complex traits,
including traits associated with stress resistance [6, 7]. The
D. melanogaster Genetic Reference Panel (DGRP) [6] has
often been used in such studies. DGRP is a genetic tool
which allows researchers to assay a large number of replicated
individuals with the same genotype from hundreds of inde-
pendent, inbred, genome-sequenced lines.

The outcome of GWAS is typically a list of the most sig-
nificant SNPs. This ignores much of the remaining variance
due to the conservative statistical nature of such analyses.
This is unfortunate because genetic variants with small effects
are likely to be missed, and even variants with large effect
may not be among the top hits [8, 9]. Although valuable,
the potential gain from GWAS is therefore currently not
utilized sufficiently, and alternative analytical approaches are
warranted to further exploit the potential use of full genome
sequence data. Approaches which utilize prior biological
knowledge to group SNPs (hereafter referred to as SNP-set)
have been proposed to alleviate the issue of type-I error rates
in analysis of large genome data sets [8–11].

Increasing evidence from studies relying on full genome
approaches indicates that most traits have very complex
genetic architectures and that they are influenced by often
hundreds of interacting genes, each with a small effect on the
phenotype and by genetic and environmental interactions [6–
8, 12–15]. Accordingly, associated variants are nonrandomly
distributed across the genome and are enriched within genes
that interact through pathways and biological networks [12].
Such associated variants would be captured easier if based
on a SNP-set based association approach where SNPs are
grouped according to their physical proximity to a gene
within a pathway. It can be argued that such an approach
will increase the probability of finding true associations.
In addition, by reducing the number of independent tests
performed from the total number of SNPs (often millions) to
the number of pathways (typically thousands), less restrictive
statistical corrections for type-1 errors are needed. Analyzing
the combined effect of many SNPs with small effect sizes
might therefore increase the probability of finding causal
variants [16].

In the present study we use a subset of the DGRP
(21–27 lines depending on the trait assessed) to investigate
five traits related to life history and environmental stress
resistance in D. melanogaster. We use a SNP-set approach in
which we aggregate SNPs based on knowledge of biological
processes (here gene ontologies (GOs)) and associate the
phenotypic variation with genomic variation. We investigate
whether these traits harbor genetic variation for five fitness-
related phenotypes: egg-to-adult viability under benign and
stressful temperatures, heat stress resistance, expression of a
major heat shock protein (Hsp70), and metabolic rate. The
capability of a genotype to produce an egg that successfully
develops into an adult fly and the ability to withstand

increasing stressful temperatures are key fitness traits of
major importance for the abundance and distribution of
insect species [17]. Metabolic rate is known to influence
functional traits such as longevity [18–20] and resistance to
desiccation and starvation [21, 22]. Knowledge of the genetic
variation and identification of possible pathways involved in
explaining phenotypic variation in these traits is therefore
of major importance for understanding species distribution
and local adaptation and genomic tools are predicted to have
important applications in conservation genetics in the future
[23].

2. Material and Methods

2.1. Drosophila Stocks. A subset of the Drosophila Genetic
Reference Panel (DGRP) [6] was obtained from Bloom-
ington Drosophila Stock Center (NIH P40OD018537) (see
Table S1 of the Supplementary Material available online at
http://dx.doi.org/10.1155/2016/2157494). The flies were main-
tained on a standard oatmeal-sugar-yeast-agar Drosophila
medium at 25∘C and a 12-hour light/dark cycle.

2.2. Phenotypic Assays

2.2.1. Egg-to-Adult Viability. The proportion of eggs which
successfully develop to adulthood was assessed at two devel-
opmental temperatures: a benign temperature (25∘C) and
a lightly stressful temperature (28∘C). For each line and
temperature 200 eggs were collected. At benign temperature,
forty eggs were placed in five vials per line, and at the
high temperature twenty eggs were placed in ten vials per
line. Emerging flies were counted daily until all flies had
emerged. To approximate Gaussian distribution data arcsine2
was transformed.At benign and stressful temperatures 27 and
26 lines were assayed, respectively.

2.2.2. Heat Stress Resistance. Approximately 24 females from
27 lines were placed into individual glass tubes (24 × 15mm)
with lids. Tubes were randomized and placed on a rack
that was submerged into a water bath heated to 37∘C. Flies
were constantly monitored after submersion, and heat stress
resistance was measured as the time from placement in
the water bath until the animal became comatose (i.e., not
moving any body parts).

2.2.3. Metabolic Rate. From the rate of CO
2
-production

(�̇�CO
2

), metabolic rate was estimated using repeated stop-
flow respirometry, as described in Jensen et al. [24]. Mea-
surements were conducted in 16 parallel metabolic chambers
(glass cylinder, 20 × 70mm) over a period of 24 hours.
Measurements were performed on groups of individuals with
approximately 18 five-day-old females per line per metabolic
chamber. On average, nine replicates per line were obtained.
Each day measurements were obtained for 13 lines (and
three empty controls chambers). To avoid dehydration flies
had access to a solution of 4% sugar and 2% agar (0.3mL
placed on a 15 × 15mm paper). The estimate of standard
metabolic rate was obtained using the average of the three
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lowest measurements of �̇�CO
2

over the 24-hour period at
25 ± 1

∘C (see Jensen et al. [24] for details and discussion).
The stop-flow respirometry system enabled analysis of

the cumulative CO
2
production for a given period as the

metabolic chambers were sequentially open (3 minutes for
measurement) and closed (45 minutes while CO

2
accumu-

lates). The system was controlled by two parallel 8-channel
multiplexers (RM Gas Flow Multiplexer, Sable Systems, Las
Vegas, Nevada, USA). Opening allowed airflow of CO

2
-

striped dry air (soda lime column removes CO
2
, MERCK

Millipore, Darmstadt, Germany) to flush the chambers at
a fixed rate of 200mLmin−1 controlled by a mass flow
controller (MFC 2-channel v. 1.0, Sable Systems, Las Vegas,
Nevada, USA) connected to a flow controller (Side-Trak�,
Sierra Instruments, Monterey, California, USA). Air leaving
the metabolic chambers passed through a calcium chloride
column (AppliChem, Darmstadt, Germany) before entering
the CO

2
analyzer (Li-6251 CO

2
Analyzer, LI-COR Envi-

ronmental, Lincoln, Nebraska, USA) to remove water. The
temperature inside one metabolic chamber was registered by
a data logger (iButton� Data Loggers, Maxim, Sunnyvale,
California, USA) and data were extracted by OneWireViewer
(Maxim, Sunnyvale, California, USA). All flies were stored
in a −80∘C freezer after measurements and the dry weight
(Sartorius Microbalance, type MC5, accuracy ± 1 𝜇g) was
obtained after drying for 24 hours at 60∘C such that �̇�CO

2

could be expressed as 𝜇L CO
2
produced per hour per mg dry

weight.

2.2.4. Expression of Heat Shock Protein 70 Following Heat
Stress. From each of 21 DGRP lines 10 five-day-old (±24 h)
adult females were transferred to plastic tubes with screw
cap and exposed to 35∘C for 1 hour (a temperature known
to induce a heat shock response; see [25]). Flies were subse-
quently allowed to recover at 25∘C for 1 hour before being
frozen at −80∘C. Hsp70 expression was quantified in three
replicates of approximately 10 flies for each line by ELISA,
using the monoclonal antibody 7.FB which specifically binds
Hsp70 inD.melanogaster [26], using the procedure described
in Sørensen et al. [27]. Prior to analysis the data were
corrected for plate effect by equalizing the mean (the same
mean on the three plates).

2.3. Quantitative Genomic Analyses

2.3.1. Genomic Data. SNP data, major inversions, and
Wolbachia status were obtained from http://dgrp2.gnets
.ncsu.edu/ [6, 28]. The complete set of DGRP lines har-
bors 1,496,037 polymorphic markers with a minor allele
frequency > 0.05. Because we used a subset of the DGRP
lines monomorphic markers were observed. These were
removed prior to analyses. The number of lines assayed
varied among traits; thus the number of SNPs analyzed
differed as well (metabolic rate: 1,179,43 SNPs, heat stress
resistance: 1,231,310 SNPs, Hsp70 expression: 1,115,889 SNPs,
egg-to-adult viability at benign condition; 1,231,310 SNPs, and
egg-to-adult viability at light stressful condition: 1,216,721
SNPs).

2.3.2. Quantitative Genetic Parameters. Variance compo-
nents and genomic effects were estimated using the REML
algorithm implemented in the Regress package [29] for R [30]
by fitting the linear mixed model y = Xb + Zg + 𝜀, where
y was a vector of phenotypic values, b was a vector of fixed
effects (i.e., Wolbachia status, five major polymorphic inver-
sions (In(2𝐿)𝑡, In(2𝑅)𝑁𝑆, In(3𝑅)𝑃, In(3𝑅)𝐾, and In(3𝑅)𝑀𝑜),
and experimental block effects), g was a vector of random
genomic effects, and 𝜀 was a vector of the residuals. X and Z
were design matrices linking fixed and genomic effects to the
observations. The genomic and residual effects were defined
as g ∼ 𝑁(0,G𝜎2g) and 𝜀 ∼ 𝑁(0, I𝜎2

𝜀
). The additive genomic

relationship matrix, G, was computed based on all genomic
markers as G = WW/𝑚, where 𝑚 was the total number of
markers and W was a centered and scaled genotype matrix
(i.e., mean(w

𝑖
) = 0 and var(w

𝑖
) = 1). Each column vector of

W was w
𝑖
= (𝑎
𝑖
− 2𝑝
𝑖
)/√2𝑝

𝑖
(1 − 𝑝

𝑖
), where 𝑝

𝑖
was the minor

allele frequency of the 𝑖th marker and 𝑎
𝑖
was the 𝑖th column

vector of the allele count matrix,A, containing the genotypes
encoded as 0, 1, or 2, counting the number of minor alleles
[31].

The genomic variance captured by common SNPs was
computed as ℎ2SNP = 𝜎

2

g/(𝜎
2

g + 𝜎
2

𝜀
), and genomic (and raw

phenotypic) correlations among the traits were computed
as Spearman’s rank correlation. The 95% confidence interval
(CI) for ℎ2SNP was obtained using a bootstrap procedure;
observations were sampled 10,000 times with replacement
obtaining the same number of observations as the true data.
In each round ℎ2SNP was estimated, and the 95% CI was then
obtained as the 2.5% and 97.5% quantiles of the bootstrap
samples.

2.3.3. Pathway Association. We used a pathway based
approach to identify sets of SNPs with association with the
traits. Firstly, SNPs were annotated to genes within a 5KB
region using variant annotation fromFlyBase (v.FB5.46) [32].
Secondly, based on the gene annotation, SNPs were grouped
into gene ontologies (GOs) using the annotation packages
GO.db [33] and org.Dm.eg.db [34] from Bioconductor [35].
Three types of GO classes were obtained: biological processes
(BP), molecular function (MF), and cellular components
(CC). Sets of SNPs were only included if they containedmore
than 10 genes, and the number of markers was >199. The
numbers of markers included in the pathway association for
BP, MF, and CC were 616.010, 562.938, and 549.372 SNPs,
respectively.

The pathway based approach tests whether a particular
SNP-set has a more extreme signal of association than a ran-
dom group of SNPs. A summary statistic (𝑇sum), measuring
the degree of association of one set of SNPs, was computed as
the sum of the 𝑛marker effects (�̂�

𝑖
) within the given pathway;

thus 𝑇sum = ∑
𝑛

𝑖=1

�̂�
𝑖
. The marker effects (ŝ) were computed

from the predicted genetic effect ĝ as ŝ = W(WW)−1ĝ.
Using a permutation approach the observed summary

statistic for a SNP-set was compared to an empirical distri-
bution of summary statistics for a random set of SNPs of the
same size. As a consequence of LD, nearby SNPs will likely
be correlated; this will affect the distribution of the summary
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Table 1: Diagonal elements (italicized numbers) are estimated SNP heritabilities and the 95% bootstrap confidence interval in parentheses.
Off-diagonal elements are genomic and raw phenotypic correlations. Below the diagonal are the Spearman rank correlations of genomic
values (ĝ) with associated 𝑝 values and above the diagonal are the Spearman rank correlations coefficients of line means with associated 𝑝
values. Numbers in bold are correlations with a 𝑝 < 0.05.

Metabolic rate Heat resistance Hsp70 Viability benign Viability stress
Metabolic rate 0.53 (0.38–0.60) 0.10 (0.66) 0.06 (0.29) 0.12 (0.59) 0.14 (0.50)
Heat resistance 0.30 (0.16) 0.41 (0.33–0.47) −0.19 (0.41) 0.16 (0.42) 0.14 (0.51)
Hsp70 0.19 (0.41) 0.09 (0.70) 0.38 (0.04–0.43) −0.25 (0.27) −0.16 (0.49)
Viability benign 0.24 (0.26) −0.19 (0.34) −0.49 (0.02) 0.73 (0.60–0.77) 0.70 (0.00)
Viability stress 0.21 (0.33) −0.03 (0.87) −0.44 (0.05) 0.72 (0.00) 0.76 (0.70–0.79)

statistics. To account for this correlation structure we used a
procedure where we let a vector of observed marker effects
be ordered according to the SNPs physical position in the
genome, which then were linked to GOs.The elements in this
vector were numbered 1, 2, . . . , 𝑁.The permutation consisted
of two steps. (1) Randomly pick an element (ŝ

𝑗
) from this

vector. Let this 𝑗th marker effect (ŝ
𝑗
) be the first element

in the permuted vector and the remaining elements ordered
ŝ
𝑗+1
, ŝ
𝑗+2
, . . . , ŝ

𝑚
, ŝ
1
, ŝ
2
, . . . , ŝ

𝑗−1
according to their original

numbering. Thus, all elements from the original vector were
shifted to a new position and starting with ŝ

𝑗
and ending with

ŝ
𝑗−1

.Themapping of GOswas kept fixed according to original
mapping. (2) A summary statistic was computed for each
SNP-set based on the original mapping of GOs. Hereby, the
link between SNPs and pathway was broken while retaining
the correlation structure among marker effects. Steps (1)
and (2) were repeated 10,000 times and from this empirical
distribution of summary test statistics a𝑝 value was obtained.
The empirical 𝑝 value corresponds to a one-tailed test of
the proportion of randomly sampled summary statistics
that were larger than the observed summary statistics. We
assigned individual pathways as significant if 𝑝 < 0.005.

2.3.4. Overlapping Pathways. A consequence of the small
number of lines investigated was limited statistical power to
detect causal variants. Therefore, we investigated whether we
observed shared patterns across traits in the rankings of the
pathways. For each class of pathways (i.e., BP,MF, and CC) an
incidence matrix with 𝑛 rows corresponding to the number
of SNP-sets and 𝑚 columns corresponding to the number of
traits (𝑚 = 5) was constructed. If the summary statistic for
a SNP-set was below the threshold level (here 𝑝 < 0.05) the
corresponding element in the incidence matrix was set to 1,
otherwise to 0. The observed overlap was then compared to
an empirical distribution of the overlap. For a total of 10,000
times the elements within each column were permutated and
the overlap among columns was recorded. The probability
of the overlap was estimated under the null hypothesis of
independent association among traits. We determined the
empirical 𝑝 value of a one-tailed test as the fraction of all
random permutations that was larger than or equal to the
observed overlap among traits at the 5% level.

2.3.5. Partitioning of Genetic Variance within Pathways. To
dissect the genetic contribution of the associated pathways,
the genetic variation within pathway was decomposed to

gene level. Pathway-specific genetic effects of the 𝑥
𝑗
genes

constituting the pathways (̂f
𝑓
) were computed as ̂f

𝑓,𝑥
𝑗

=

∑

𝑚
𝑥𝑗

𝑖=1

w
𝑓,𝑥
𝑗
,𝑖
ŝ
𝑖
, where ŝ

𝑖
was the genomic effect of the 𝑖th

marker computed and𝑚
𝑥
𝑗

was the number ofmarkers within
the gene𝑥

𝑗
.Thus, if aGOhas the genetic effect ĝ

𝑓

and consists
of 𝑥 genes, then ĝ

𝑓

= ∑
𝑥

𝑖=1

̂f
𝑓
. A measure of the genetic

variation for each feature per gene adjusted for the number
of SNPs within gene (Var𝐹) was computed as V̂ar𝐹

𝑥
𝑗

=

Var(̂f
𝑓,𝑥
𝑗

)/𝑚
𝑥
𝑗

.

3. Results and Discussion

In the present study we used a subset of the DGRP to
investigate whether genetic variation existed for five fitness-
related phenotypes, namely, the proportion of eggs that
develop to adulthood at two environmental conditions, a
benign and a mildly stressful temperature, resistance to acute
heat stress, induction of a major heat shock protein (Hsp70),
and metabolic rate estimated from CO

2
emission rate.

We found substantial phenotypic variation for all
five traits (Figure 1, Table S2). In addition, genotype-
by-environmental interaction (GxE) was observed for
egg-to-adult viability, as the DGRP lines were not affected
equally by the higher, stressful temperature (Figure 1(a)).
The phenotypic variation was decomposed into a genomic
(𝜎2g) and a residual effect (𝜎2

𝜀
) from which the proportion

of phenotypic variation captured by common SNPs was
computed, that is, ℎ2SNP. Metabolic rate, heat stress resistance,
and Hsp70 expression all showed intermediate heritability
estimates, whereas the two egg-to-adult viability traits
both had high estimates (Table 1). Despite the low number
of DGRP lines assayed the bootstrap CI supported the
magnitude of the heritability estimates, except for Hsp70
expression (Table 1). The very broad CI for Hsp70 expression
was probably a consequence of the few number of lines
assayed for this trait (Table S1).

Correlation of the raw phenotypic values showed a
significant correlation between the two egg-to-adult viability
traits (Table 1). By correlating individual genomic effects sig-
nificant negative correlations were found between expression
of Hsp70 and the two egg-to-adult viability traits (Table 1),
and a high positive correlation between the viability traits
at the two temperature conditions was found (Table 1).
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Figure 1: Distribution of DGRP phenotypes for the five assayed traits. Each panel shows the mean phenotypic value (error bars indicate
standard error) for each assayed DGRP line. Lines are ordered after increasing egg-to-adult viability at benign condition. (a) Egg-to-adult
viability expressed in percentage at benign condition (circles) and at lightly stressful condition (squares). Black dots indicate the difference
in viability between the two environments, genotype-by-environmental interaction (GxE); (b) time to heat knockdown (min); (c) Hsp70
expression; and (d) metabolic rate measured as CO

2

emission rate.

The discrepancy between the correlations based on the raw
phenotypic values and the genomic effects could be due to
accounting for random and fixed effects by the mixed model.
However, no strong signals were found when testing the
individual fixed effects (Table S3). Infection with Wolbachia
and the five major inversions are however known to affect
trait phenotypes [28]; thus, these were kept in the model.
Also, accounting for the fixed effects will take up additional
degrees of freedom. However, the pathway association is
not dependent on degrees of freedom; thus, this does not
influence the power of the pathway test.

Based on the trait-specific individual genomic effects the
trait-specific genomic marker effects were computed. Using
the pathway association approach we tried, despite the rather
low number of lines being assessed, to investigate whether
some pathways had a more extreme signal of association
than others. Pathways were divided into three categories:
biological processes (BP, 689 GOs), molecular functions (MF,
239 GOs), and cellular components (CC, 161 GOs). With an
arbitrary significance threshold of 𝑝 < 0.005 the expected
numbers of false-positives were three GOs in BP, one GO in
MF, and below one GO in CC. For metabolic rate nine BP,
two MF and four CC had a 𝑝 < 0.005 (Table S4), which were
more than expected by chance. Three MF and one BP were
associated with heat stress resistance, and three of each class
were associated with Hsp70 expression (Table S4). Two or

fewer GO within each class were associated with the egg-to-
adult viability traits (Table S4). With exception of metabolic
rate, the number of GOs below the threshold value was
near the expected number of false-positives. Because of the
apparent limited statistical power, we investigated whether
we could identify general patterns of “association” across
traits. Using a less conservative threshold level we computed
overlaps of GOs with a 𝑝 < 0.05 across traits (Tables 2, 3,
4, and S5). We found statistical evidence for overlapping GOs
betweenmetabolic rate andHsp70 expression (15 BP and four
MF in common, Tables 2 and 3) and between egg-to-adult
viability investigated at the two temperatures (11 BP, six MF,
and four CC in common) (Tables 2, 3, and 4).

Genetic variation is necessary for populations to adapt to
variable and at times stressful environments. Using a model
system, we found substantial phenotypic variation for the five
traits related to fitness and environmental stress resistance
(Figure 1). The DGRP lines were originally inbred to an
inbreeding coefficient of∼1 [6]; thus, the phenotypic variation
was a consequence of genomic difference among the lines.
The DGRP was established from a natural D. melanogaster
population [6]; thus our results illustrate natural genetic
variation, and therefore adaptive potential, formetabolic rate,
heat stress resistance, Hsp70 expression, and egg-to-adult
viability at benign and stress conditions (Table 2). Compared
to, for example, morphological traits, fitness components
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Table 2: Biological processes (a total of 689 GOs). Diagonal elements (italicized numbers) are the number of GOs with a 𝑝 < 0.05. The
off-diagonal elements show the number of elements shared between traits. Numbers in bold indicate a significant overlap. At a 𝑝 value of 0.05
one can expect 35 false-positive SNP-sets to be assigned as significant and two SNP-sets assigned as overlapping.

Metabolic rate Heat resistance Hsp70 Viability benign Viability stress
Metabolic rate 49
Heat resistance 2 23
Hsp70 15 1 39
Viability benign 4 0 3 24
Viability stress 4 1 4 11 30

Table 3: Molecular function (a total of 239 GOs). Diagonal elements (italicized numbers) are the number of GOs with a 𝑝 < 0.05. The off-
diagonal elements show the number of elements shared between traits. Numbers in bold indicate a significant overlap. At a 𝑝 value of 0.05
one can expect 12 false-positive SNP-sets to be assigned as significant and one SNP-set assigned as overlapping.

Metabolic rate Heat resistance Hsp70 Viability benign Viability stress
Metabolic rate 14
Heat resistance 2 12
Hsp70 4 1 17
Viability benign 1 1 0 16
Viability stress 2 2 0 6 13

Table 4: Cellular component (a total of 161 GOs). Diagonal elements (italicized numbers) are the number of GOs with a 𝑝 < 0.05. The off-
diagonal elements show the number of elements shared between traits. Numbers in bold indicate a significant overlap. At a 𝑝 value of 0.05
one can expect eight false-positive SNP-sets to be assigned as significant and one SNP-set assigned as overlapping.

Metabolic rate Heat resistance Hsp70 Viability benign Viability stress
Metabolic rate 11
Heat resistance 0 6
Hsp70 2 0 14
Viability benign 2 0 1 12
Viability stress 1 1 2 4 7

are generally believed to have low heritability due to, for
example, directional selection that removes additive genetic
variation [36]. However, here we report high heritability
estimates for the egg-to-adult viability traits assessed at
benign and stressful temperatures. Others have reported
substantial lower estimates for lifespan, fecundity, and egg-to-
adult viability [37, 38].These contradictions could result from
overestimation caused by limited sample size in our study.
However, the estimated heritability for Hsp70 expression
was in the range of what has previously been reported [39],
thereby supporting our estimates. With respect to metabolic
rate our estimate was higher than other reported vales for
Drosophila [40, 41] butwas consistentwith estimates obtained
from bird populations [42, 43]. Lastly, the estimate for resis-
tance to abrupt exposure to high temperatures was similar
to other estimates for Drosophila [44] and different species
of fish [45, 46]. Overall these results point to evolutionary
adaptive potential for the traits investigated. Recent studies
do however suggest that terrestrial ectotherms, endotherms,
and plant species have limited potential to change their upper
thermal limits [47, 48], which could be a consequence of
hard physiological boundaries [47]. Why do our results then
point to rather high evolutionary potentials in traits related

to coping with high temperatures? For such comparison to
be valid, the traits compared need to be similar, and it has
been shown that measuring response to heat stress using a
static approach (i.e., abrupt exposure to a high temperature)
and that using a ramping approach (i.e., a gradual increase in
temperature) are not two identical traits [49]. It has also been
shown that the more ecological relevant approach (ramping)
results in lower heritability estimates than the static approach
[49], which we used in this study.Thus for heat resistance the
results obtained in this studymay not be ecologically relevant.

We found strong, significant negative genomic corre-
lation between expression of a major heat shock protein
and the two egg-to-adult viability traits and high positive
genomic correlation between the two viability traits (Table 2).
Egg-to-adult viability at 28∘C was on average reduced by
21% compared to the viability at 25∘C (Figure 1); however,
the magnitude was not equal for all lines, indicative of
genotype-by-environmental interaction. Studies have shown
that resistance to one type of environmental stresses often has
fitness costs in terms of reduced longevity or other life history
traits [50–52].Therefore, it could be hypothesized that energy
spent on expression of stress response proteins, for example,
Hsp70, reduces the resources available for survival. Thus,
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Table 5: Genes within associated GOs that explain >20% of the genetic variation within GO.

Trait/gene ID Gene name Selected evidence from FlyBase [32]
Metabolic rate

Gr28b Gustatory receptor 28b Feeding behavior, immune response, and thermosensory behavior
fz Frizzled Wnt pathway, G-protein receptor activity, and Notch signaling
bru Brunelleschi Meiosis cytokinesis

dl Regulation of glucose metabolic processes, regulation of gene
expression, and immune response

Fife Regulation of neurotransmitter secretion
Heat resistance

CG8745 Arginine catabolic processes to glutamate
CG8888 Metabolic processes
Syt1 Synaptotagmin 1 Calcium ion binding and neurotransmitter secretion
Snap25 Synaptosomal-associated protein 25 kDa SNAP receptor activity and SNARE complex

Hsp70 expression
fz Frizzled Wnt pathway, G-protein receptor activity, and Notch signaling
CG2807 Precatalytic spliceosome
Irc Immune-regulated catalase Response to oxidative stress
CG16941 Mitotic nuclear cell division
Pxd Peroxidase Response to ethanol
app Approximated Zinc ion binding
bin3 Bicoid-interacting protein 3 Regulation of translation
SoYb Sister of Yb Yb body

Viability benign
Baldspot Fatty-acid biosynthesis
GstS1 Glutathione S transferase S1 Glutathione metabolic process
Sply Sphingosine-1-phosphate lyase Sphingolipid metabolism

Viability stress

Mkp3 Mitogen-activated protein kinase
phosphatase 3 Regulation of MAPK

Timeout DNA damage checkpoint
14-3-3𝜀 Determination of adult lifespan and regulation of growth

a similar correlation could be expected between metabolic
rate and egg-to-adult viability, but this was not observed.
However, we did observe a significant overlap in the top GOs
for metabolic rate and Hsp70 expression, which does suggest
genomic correlations at pathway level.

Biological interpretation from associated GOs is difficult,
especially with limited statistical power to detect pathways.
However, in our study, we have shown an efficient method
to compute individual markers’ effects and subsequently
a summary statistic for a set of markers. Despite limited
statistical power, which we admittedly have in this study,
some biological relevant pathways were identified. For exam-
ple, GO:0000149 is a group of genes related to the SNARE
complex, which was associated to heat stress resistance (Table
S4). Several members of the heat shock protein family are
implicated in the sustenance of synaptic function, and during
synaptic transmission of vesicular content, for example, neu-
rotransmitters, heat shock proteins bind to the SNARE com-
plex [53]. Another GO associated with heat stress was a group
of genes related to oxidoreductase activity (GO:0016614,

Table S4). In plants it has been shown that heat shock proteins
can protect oxidoreductase complexes [23]. With respect
to the GOs associated with metabolic rate several different
typeswere identified rangingwithin transportation of vesicles
(GO:0006891), cell division (GO:0008356), and regulation
of several pathways (e.g., GO:0048786, GO:0016791, and
GO:0010951). This might illustrate that metabolic rate is a
complex trait influenced by many genes and that the pheno-
typic variation in metabolic rate is a function of variation in
other biological functions within individuals.

Partitioning of genetic variation within the associated
pathway to genetic variation per gene (corrected for number
of genetic markers within gene) showed that most of the
GOs had the same overall pattern, namely, relative few genes
within each GO contributed to the overall genetic variation
(Figure 2 and Table S6). Moreover, a limited number of
genes explained more than 20% of the within GO genetic
variation (Tables 5 and S6). Only one gene, Frizzled, was in
common among traits, between metabolic rate and Hsp70
expression, in this reduced list of genes (Table 5). Frizzled
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Figure 2: Partitioning of genetic variance of associated GOs to the genes constituting each GO. Proportion of variance per gene (per SNP)
was standardized. Each square indicates one gene, and the size of the point indicates the relative proportion of variance explained by that
gene. Asterisks (∗) indicate a truncation of the gene list. The exact values and the gene IDs can be found in Supplementary Table S6.

is associated with the Wnt signaling pathway, which pro-
motes cell proliferation, alters key metabolic proteins, and
is involved in whole-body energy homeostasis [54]. One of
the genes that explained a large proportion of the genetic
variation, associated with egg-to-adult viability at stressful
conditions, wasMkp3, which is a gene in the MAPK cascade.
Heat shock activates heat shock proteins which are regulated
by the MAPK cascade [55]. Also, associated with heat stress
resistance was snp25, a gene in the SNARE complex. As
discussed in the previous paragraph, heat shock proteins bind
to the SNARE complex. Lastly, one of the genes capturing a
large fraction of the genetic variance within a GO for Hsp70
expression was Irc, which has been predicted to be associated

with oxidative stress [32], and Hsp70 expression is known to
be a biomarker for oxidative stress [56].

Despite the obvious statistical power limitations associ-
ated with the number of DGRP lines assessed in this study,
we found more GOs than expected by chance, some of
which seem to have important biological functions. More
importantly, we found substantial genetic variation, thus
evolutionary adaptive potential, for all five traits investigated
supported by the relative narrow bootstrap CI for four of the
traits.

With the advances in sequencing technologies genomic
approaches have been suggested as promising tools for
conservation genetics. Neutral markers have predominately
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been applied in population and conservation genetics to
describe loss of genetic variation, population structure, and
so forth.However, using neutralmarkers tomonitor the effect
of environmental changes in a population is limited because
the loss of variation will only decrease significantly if the
population size is greatly reduced [57]. Therefore, genomic
approaches, in which all polymorphic markers are used, may
increase the accuracy on estimates of genetic diversity [58].
Further, with genomic approaches, it is possible to assess
adaptive genes, which must harbor loci that contribute with
a substantial part of the genetic variation to the traits of
interest [57, 58]. Therefore, in a conservation perspective,
there is a need to identify genes influencing life history and
stress resistance traits. Obtaining genotypes and phenotypes
of individuals from wild populations is often challenging but
achievable. For organisms lacking reference sequences and
proper annotations, gene regions may be predicted using
traditional bioinformatic approaches. However, to achieve
reliable and accurate results, the sample size must be large
and therefore such approaches may not be feasible for natural
populations. Thus, using genomic knowledge of key traits
from model populations, such as the DGRP, to wild popu-
lations may be an alternative. Investigating and identifying
genes and gene complexes associated with key traits for
laboratory organismsmay be used as guides for identification
of variants with adaptive significance in wild populations.

4. Conclusions

In the work presented here, we used a subset of the DGRP to
investigate traits related to fitness and environmental stress
resistance. As the environment changes, populations need to
be able to adapt to these changes to survive. Using the DGRP
we found substantial genetic variation for metabolic rate,
heat stress resistance, expression of Hsp70, and egg-to-adult
viability at two environmental conditions. In addition, we
found evidence for genotype-by-environmental interaction
for viability. Using a genomic pathways association approach,
we attempted to locate pathways displaying association with
the traits investigated. This approach can be extended to
nonmodel organisms or provided as a genomic tool for
identification of adaptive genes in model organisms and thus
provide a potential use for conservation genomics.
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