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Abstract

Scum is formed by the adsorption of long-chain fatty acids (LCFAs) onto biomass surface in

anaerobic digestion of oily substrates. Since scum is a recalcitrant substrate to be digested,

it is disposed via landfilling or incineration, which results in biomass washout and a decrease

in methane yield. The microbes contributing to scum degradation are unclear. This study

aimed to investigate the cardinal microorganisms in anaerobic scum digestion. We pre-incu-

bated a sludge with scum to enrich scum-degrading microbes. Using this sludge, a 1.3-

times higher methane conversion rate (73%) and a faster LCFA degradation compared with

control sludge were attained. Then, we analyzed the cardinal scum-degrading microbes in

this pre-incubated sludge by changing the initial scum-loading rates. Increased 16S rRNA

copy numbers for the syntrophic fatty-acid degrader Syntrophomonas and hydrogeno-

trophic methanogens were observed in scum high-loaded samples. 16S rRNA amplicon

sequencing indicated that Syntrophomonas was the most abundant genus in all the sam-

ples. The amino-acid degrader Aminobacterium and hydrolytic genera such as Defluviitoga

and Sporanaerobacter became more dominant as the scum-loading rate increased. More-

over, phylogenic analysis on Syntrophomonas revealed that Syntrophomonas palmitatica,

which is capable of degrading LCFAs, related species became more dominant as the scum-

loading rate increased. These results indicate that a variety of microorganisms that degrade

LCFAs, proteins, and sugars are involved in effective scum degradation.

Introduction

Anaerobic digestion can produce biomethane as an energy resource from a variety of organic

wastes. Wastewater from food processing, edible oil producers, and slaughterhouses contains

high concentrations of lipids [1]. Lipids have higher theoretical methane yields (1.01 m3 kg-1

VS) than that of carbohydrates (e.g., 0.37 m3 kg-1 VS for glucose) and proteins (0.74 m3 kg-1

VS) [2]. However, there are several challenges in the anaerobic digestion of lipidic waste. Scum
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formation is one of the most severe problems. Scum is formed by the adsorption of floating

substrates such as long-chain fatty acids (LCFAs) to the surface of biomass [1, 3]. Scum is a

recalcitrant substrate to be digested and inhibits the liquidity in the reactor. Accumulated

scum must be periodically removed and disposed via landfills or incineration, which leads to

the washout of organic waste. Scum formation and following biomass washout disturb bio-

methane production by reducing substrate utilization rates. The main cause of scum formation

is LCFAs, which are produced by the hydrolysis of lipids. LCFAs are degraded to volatile fatty

acids (VFAs). This is the rate-limiting step of the anaerobic digestion process, as the reaction

proceeds only under very low H2 pressure [4]. Moreover, LCFAs have been considered to

adsorb onto the microbial surface and inhibit the activities of anaerobic microorganisms [5].

Previous reports showed that 0.5 mmol L-1 oleic acid (C18:1) or 2–4 mmol L-1 palmitic acid

(C16:0) reduced methane generation by more than 50% [6]. Despite these troublesome charac-

teristics of LCFAs, it has been reported that scum formation leading to biomass washout con-

tributed more to the failure of anaerobic digestion than the toxicity of LCFAs themselves [1].

Biomass washout severely impairs the high methane convertibility of lipids.

To reuse the collected scum as energy resources, several studies have employed scum as a

co-digestion substrate with sewage sludge [7], thickened activated sludge, and primary sludge

[3, 8]. The development of efficient scum digestion methods enables reduction of the cost of

disposal and increase in biomethane yield. If anaerobic scum digestion can be promoted, the

application range of anaerobic digestion can be expanded to include more oily substrates.

However, the key microbes that play an important role in anaerobic scum digestion are

unclear.

It has been reported that pre-incubation with lipidic substrates is an effective strategy for

improving methane yield. A previous study reported that pre-incubation with soybean oil-

based wastewater increased the relative abundance of Synergistales, which was highly corre-

lated with the methane production rate [9]. Ziels et al., (2016) showed that acclimation with

waste restaurant oil increased the relative abundance of the genus Syntrophomonas, which has

the capability of degrading various fatty acids [10]. The substrate-loading rate also affects the

microbial community. Ziels et al., (2016) showed that an increase in the loading rates of lipidic

substrates positively affected the abundance of Syntrophomonas 16S rRNA genes [10]. It is

assumed that a higher loading rate of the substrate increases the core microbial population

that plays an important role in substrate degradation.

Our microbiological findings on anaerobic scum digestion will enable new approaches to

solve the problems caused by scum. In this study, we aimed to reveal the microbes contributing

to effective scum degradation. We pre-incubated a collected sludge with scum to enrich scum-

degrading microbes. Additionally, to investigate the core scum-degrading microbes in this

pre-incubated sludge, we evaluated the changes in microbial communities according to vari-

ous loading rates.

Materials and methods

Preparation of sludges

Seed sludge was collected from a mesophilic food waste treatment plant at Tohoku University

(Osaki, Japan). Before incubation with scum, this sludge was incubated with olive oil (1 mL L-

1) at 35˚C in a 2-L screwcap bottle (1,800 L working volume). The consumption of the sub-

strate was confirmed by the cessation of biogas generation [11]. When biogas production

ceased, 2/3 of the culture was exchanged with fresh medium and seed sludge (1:1 v/v). The

medium consisted of 0.14 g L-1 of KH2PO4, 0.54 g L-1 of NH4Cl, 0.20 g L-1 of MgCl2�6H2O,

0.15 g L-1 of CaCl2�2H2O, 2.5 g L-1 of NaHCO3, and 0.20 g L-1 of yeast extract (Difco, Detroit,
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MI, USA). Trace element and vitamin solutions were also used; details are provided in NBRC

No. 398 (NITE Biological Resource Center, Chiba, Japan). After approximately 2 years of incu-

bation, the olive oil was replaced with scum, which was collected from the oil separation tank

before treatment of the food wastewater. The chemical oxygen demand (COD) of the scum

was 280 g kg-1. Granular activated carbon was then added to promote methane production

[12], and the sludge was incubated at 35˚C for approximately 6 months (Sludge I). Another

sludge was collected from a mesophilic biogas plant at Tohoku University (Osaki, Japan) and

incubated with 2 g L-1 glucose at 35˚C until use to avoid starvation. After cessation of biogas

production was observed, this sludge was used in Experiment 1 (Sludge II).

Experiment 1: Assessment of the digestibility of scum

The scum used for the batch experiments was collected from a mesophilic food waste treat-

ment plant (Tokyo, Japan) and stored at 4˚C. The characteristics of scum and sludge are

shown in Table 1. A total of 40 mL of Sludge I or Sludge II, 3.0 g of granular activated carbon,

and 40 mL of NBRC No. 398 medium mentioned above were placed into a 100-mL vial. Scum

was then added to adjust the concentration of 8.6 g COD L-1. The vials were purged with nitro-

gen gas to remove oxygen. The batch experiments were conducted in sextuplicate until day 8,

and three of these replicates were opened on day 8 for DNA extraction and LCFA analysis.

Then the batch experiments were continued using the remaining triplicates.

Experiment 2: Exploration of core scum-digesting microbes

Batch experiments were conducted in parallel under the same conditions as those employed in

Experiment 1. A total of 40 mL of Sludge I, 3.0 g of granular activated carbon, and 40 mL of

NBRC No. 398 medium mentioned above were placed into a 100-mL vial. The initial scum

loading concentrations were as follows: 8.6 g COD L-1, 12.6 g COD L-1, and 17.3 g COD L-1.

The batch experiments were conducted in sextuplicate until day 8, and three of these replicates

were opened on day 8 for DNA extraction and LCFA analysis. Then, the batch experiments

were continued using the remaining triplicates. A schematic representation of this study is

given in Fig 1.

Chemical analysis

COD was evaluated by the colorimetric method using HACH Digestion Solution for COD

with a range of 0–1500 ppm (HACH, Loveland, USA). VFA concentrations were measured

using high-performance liquid chromatography (HPLC) (Jasco, Tokyo, Japan), with an ion-

exchange column (RSpak KC-811; Shodex, Tokyo, Japan) and an ultraviolet detector

(870-UV; Jasco). The column temperature was 60˚C, the eluent consisted of 90% (v/v) 3 mM

perchloric acid and 10% (v/v) acetonitrile, and the flow rate was 1.0 mL min-1 [13]. Ester-

type and free-type LCFA (oleate, stearate, and palmitate) concentrations were measured by

HPLC using a labeling reagent obtained from YMC Co. (Kyoto, Japan) according to the

Table 1. Characteristics of sludges and scum.

Sludge I (g L-1) Sludge II (g L-1) Scum (g kg-1)

Total solids (TS) 2.0 ± 0.0 3.1 ± 0.0 115.0 ± 3.0

Volatile solids (VS) 1.3 ± 0.0 1.8 ± 0.1 100.0 ± 2.5

Total COD 0.187 ± 0.0 0.442 ± 0.0 223 ± 0.0

Values represent the standard deviation of the mean (n = 3 for TS and VS, n = 2 for COD).

https://doi.org/10.1371/journal.pone.0257651.t001
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manufacturer’s protocol. Methyl oleate, methyl stearate, and methyl palmitate were used as the

standard mixtures, and the extraction efficiency was confirmed (R2 >0.99). The TS and VS of

the sludge scum were measured by heating the samples at 100˚C and 600˚C overnight, respec-

tively. The biogas volume was measured using a syringe, and the methane concentration was

determined by gas chromatography (GC-8A; Shimadzu, Kyoto, Japan). The injection and

detection temperatures were set to 100˚C and 120˚C, respectively. A packed column (Shincar-

bon-ST; Restek, Bellefonte, PA, USA) was used, and a unit equipped with a thermal conductiv-

ity detector was connected to an integrator (C-R8A; Shimadzu). Argon was used as the carrier

gas. A modified Gompertz equation was applied to analyze methanogenesis performance

quantitatively [14].

MðtÞ ¼ Mmax� expf� exp½Rm� e=Mmax� ðl � tÞ þ 1�g ð1Þ

M(t) is the cumulative methane production at t (h), Mmax is the total amount of methane

produced in time t, Rm is the maximum methane production rate, λ is the lag phase, t is the

incubation time (d), and e is the exponential constant.

Fig 1. Schematic workflow for the exploration of scum-digesting microbes.

https://doi.org/10.1371/journal.pone.0257651.g001
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Real-time polymerase chain reaction (PCR)

DNA extraction was conducted using Power Soil DNA Isolation Kit (MO BIO Laboratory,

Carlsbad, CA, USA) according to the manufacturer’s instructions. Real-time PCR was

conducted using primer sets targeting two orders of hydrogenotrophic methanogens

(Methanobacteriales and Methanomicrobiales), two families of acetoclastic methanogens

(Methanosarcinaceae and Methanosaetaceae) [15], and genus Syntrophomonas (S1 Table)

[16]. Probe qPCR Mix (TaKaRa Bio) was used for PCR. The samples were assayed in triplicate

in a 25-μL reaction mixture, which consisted of 12.5 μL of Probe qPCR Mix, 0.25 μL of

20 μmol L-1 forward primer, reverse primer, and TaqMan probe, 2 μL of template, and 9.75 μL

of sterile water. The PCR conditions for Methanosaetaceae and Methanosarcinaceae were as

follows: 95˚C for 30 s, followed by 45 cycles at 95˚C for 10 s, and 60˚C for 30 s. The PCR condi-

tions for Methanomicrobiales were as follows: 95˚C for 30 s, followed by 40 cycles at 95˚C for

10 s, and 63˚C for 30 s. The PCR conditions for Methanobacteriales were as follows: 95˚C for

10 min, followed by 45 cycles at 95˚C for 10 s and 60˚C for 30 s. The PCR conditions for Syn-
trophomonas were as follows: 94˚C for 10 min, followed by 35 cycles at 94˚C 10 s and 51˚C for

5 s and 72˚C 10 s. All real-time PCR amplification and detection were performed using a Ther-

mal Cycler Dice real-time system (TaKaRa Bio).

Bacterial community analysis

DNA was extracted as described above. As for the extracted DNA on day 8, the bacterial com-

munity was analyzed using 16S rRNA gene amplicon sequencing using MiSeq technology

(Illumina, San Diego, USA). DNA concentrations were analyzed using Synergy H1 (Bio Tek,

Winooski, USA) and QuantiFluor dsDNA System (Promega, Madison, WI, USA). The 16S

rRNA gene fragments were amplified via two-step tailed PCR using bacterial V3-V4 primers

341 F (50-CCTACGGGNGGCWGCAG-30) and 805 R (50-GACTACHVGGGTATCTAATCC-30)
[17]. The reaction mixture consisted of 1 μL of Ex buffer, 0.8 μL of dNTPs, 0.5 μL of 10 μmol

L-1 forward primer and reverse primer, 2 μL of template DNA, 0.1 μL of Ex Taq HS (TaKaRa

Bio, Shiga, Japan), and 5.1 μL of sterile water. The first PCR conditions were as follows: 94˚C

for 2 min, followed by 30 cycles at 94˚C for 30 s, 55˚C for 30 s, 72˚C for 30 s, and 72˚C for 5

min. The second PCR conditions were as follows: 94˚C for 2 min, followed by 10 cycles at

94˚C for 30 s, 60˚C for 30 s, 72˚C for 30 s, and 72˚C for 5 min. The PCR products of the first

and second PCRs were purified using AMPureXP (Beckman Coulter, Brea, CA, USA). Library

quality was confirmed using a fragment analyzer and dsDNA 915 Reagent Kit (Advanced Ana-

lytical Technologies, Santa Clara, CA, USA). Subsequently, the products were pooled and

sequenced using 2×300 bp Illumina MiSeq. The key tags and primers were trimmed, and

sequences with quality scores less than 20 were removed using Pipeline Initial Process in Ribo-

somal Database Project (RDP) [18]. Sequences with lengths shorter than 150 or longer than

500 were excluded. Chimeric reads were excluded using RDP’s FunGene [19]. The non-chime-

ric reads were used for further analysis using the RDP pipeline for microbial classification at a

confidence cut-off of 80 [20]. The raw sequence data was submitted to the DDBJ Sequence

Read Achieve as BioProject PRJDB12309.

Principal coordinate analysis (PCoA) was conducted using R package vegan version 2.5–6

based on Bray-Curtis dissimilarity (R version 3.6.1) [21].

Phylogenetic analysis

The reads assigned to the Syntrophomonas genus were clustered into operational taxonomic

units (OTUs) at 97% similarity using Vsearch [22]. The representative sequences and reference

species in GenBank were aligned using the CLUSTAL X program (version 2.1) [23]. Gaps and
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indistinguishable nucleotides were deleted using Jalview (version 2.9.0b2) [24]. Maximum

likelihood (ML) analyses were performed using PhyML [25]. For the ML analysis, the best sub-

stitution model and optional parameters were evaluated using Kakusan4 (version 4.0) [26],

and the Tamura-Nei 1993 model (TN93) was applied as the best setting [27]. The constructed

ML tree was visualized using Figtree (version 1.4.4) [28].

Results and discussion

Experiment 1: Assessment of the digestibility of scum

The cumulative methane production of each sludge is shown in Fig 2A. Until day 7, the meth-

ane production of Sludge I was 30 ± 1 mL g-1 VS. Then it increased to 121 ± 1 mL g-1 VS on

day 11. In contrast, the methane production of Sludge II was only 19 ± 3 mL g-1 VS until day

11. The cumulative methane production on day 11 of Sludge I was 6-fold higher than that of

Sludge II. Finally, 582 ± 27 and 457 ± 5 mL g-1 VS methane were produced from Sludge I and

Sludge II, respectively. Methane conversion rates of Sludge I and Sludge II calculated from

COD were 73% ± 3% and 57% ± 1%, respectively. Sludge I showed relatively high methane

productivity from scum. The methane gasification process of scum was fitted with the modi-

fied Gompertz model in all samples (RMSE = 21 ± 6). The theoretical methane production of

Sludge I and Sludge II calculated by the modified Gompertz model was 630 ± 25 and 470 ± 6

mL g-1 VS, respectively. Fig 2B shows the transition of total VFA concentrations. On day 0,

total VFA concentrations were 60 ± 6 and 87 ± 4 mg L-1 in Sludge I and Sludge II, respectively.

In Sludge I, VFA concentration then decreased gradually and became undetectable on day 22.

In Sludge II, the VFA concentration gradually increased to 216 ± 13 mg L-1 on day 15. Among

them, acetate was the dominant VFA (202 ± 13 mg L-1). The concentration then decreased

gradually and became undetectable on day 30. Considering the low methane production in

Sludge II, it was inferred that acetate conversion to methane was inhibited until day 15. Metha-

nogens are more susceptible to LCFA toxicity than acetogens [29]. In particular, acetoclastic

Fig 2. Cumulative methane production (A) and VFA concentration (B). Error bars represent the standard deviation of the mean (n = 3).

https://doi.org/10.1371/journal.pone.0257651.g002
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methanogens have been reported to be more sensitive to LCFAs than hydrogenotrophic

methanogens [4, 30]. It was inferred that LCFAs degradation in Sludge I was faster than that in

Sludge II.

The concentrations of total LCFAs were compared at two time points: day 8, when methane

production was verified, and day 30, which was the end of our experimental fermentation (Fig

3). The total LCFA concentrations on day 8 in Sludge I and Sludge II were 1,142 ± 179 and

2,721 ± 198 mg L-1, respectively. The total LCFA concentration in Sludge I was only 42% of

that in Sludge II (T.TEST, p = 0.02). Finally, most LCFAs were degraded. On day 30, LCFA

concentrations were 4 ± 0 and 4 ± 1 mg L-1 in Sludge I and Sludge II, respectively. A previous

study showed that palmitate inhibited anaerobic microorganisms with IC 50 values of more

than 1,100 mg L-1 [5]. The high concentration of palmitic acid might be one of the causes of

the temporal VFA accumulation and the slower methane production in Sludge II (Fig 2).

Though LCFAs and VFAs were almost completely digested in both sludges after the 30-day

incubation, the methane conversion rate of Sludge I was 26% higher than that of Sludge II.

Other substrates than fatty acids may have remained undegraded in Sludge II. The VS decom-

position rate was higher in Sludge I (72.7% ± 0.9%) than in Sludge II (64.6% ± 0.4%) (T.TEST,

p<0.05) (S1A Fig). The dissolved COD concentrations in Sludge I and Sludge II on day 30

were 68 ± 6 and 62 ± 3 mg L-1, respectively, and there were no significant differences (T.TEST,

p>0.05) (S1B Fig). These results suggest that non-dissolved, complex substances, such as pro-

teins or polysaccharides, remained undigested in Sludge II. The rate of hydrolysis depends on

several parameters such as pH, particle size, and the diffusion barrier between an enzyme and

Fig 3. The LCFAs concentration in each reactor. Error bars represent the standard deviation of the mean (n = 3).

https://doi.org/10.1371/journal.pone.0257651.g003
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substrate [1]. LCFAs may have prevented hydrolytic enzymes from reacting with biomass. It

was inferred that the degradation efficiency of LCFAs affected the degradation efficiency of

other substrates.

Our results confirmed that Sludge I had a relatively high potential for methane gasification

of scum. It was assumed that scum-degrading microorganisms were enriched in Sludge I. To

reveal the core scum-digesting community, the differences in microbial communities were

evaluated according to the scum loading concentration.

Experiment 2: Exploration of core scum-digesting microbes

The effect of scum loading concentration on methane productivity. Cumulative meth-

ane production is shown in Fig 4A. During the 30-day incubation, 582 ± 27, 607 ± 8, and

563 ± 22 mL g-1 VS methane were produced from 8.6, 12.6, and 17.3 g COD L-1 scum-loaded

vials, respectively. The methane gasification process of scum was well fitted with the modified

Gompertz model in all samples (RMSE = 41 ± 13). The theoretical methane productions calcu-

lated by the modified Gompertz model were 643 ± 37, 667 ± 7.3, and 630 ± 25 in 8.6, 12.6, and

17.3 g COD L-1 scum-loaded vials, respectively. The methane conversion rates in 8.6, 12.6, and

17.3 g COD L-1 loaded vials were 73% ± 3%, 77% ± 1%, and 70% ± 3%, respectively. There

were no significant differences between these values (TukeyHSD, p>0.05). The total VFAs

gradually decreased in all the samples (Fig 4B). Temporal VFA accumulation was not

observed. The total LCFA concentrations in 8.6, 12.6, and 17.3 g COD L-1 loaded vials were

1,142 ± 179, 4,987 ± 222, and 6,869 ± 585 mg L-1, respectively (S2 Fig). Finally, most LCFAs

were degraded in all the samples. Total LCFAs on day 30 in 8.6, 12.6, and 17.3 g COD L-1

loaded vials were 3.3 ± 0.3, 5.7 ± 0.3, and 19.3 ± 8.0 mg L-1, respectively. Remarkably, the total

Fig 4. Cumulative methane production (A) and VFA concentration (B) at the different initial scum loading concentrations. Error bars represent the standard deviation of

the mean (n = 3).

https://doi.org/10.1371/journal.pone.0257651.g004
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LCFA concentrations in 12.6 and 17.3 g COD L-1 loaded vials were much higher than that in

Sludge II (Experiment I), in which VFA accumulation and lower methane productivity was

observed. Even though high concentrations of LCFAs were detected in scum high-loaded

vials, inhibitory effects on scum degradation and methane productivity were not observed in

comparison with 8.6 g COD L-1 loaded vials. VS decomposition rates were 73% ± 1%, 74% ±
1%, and 71% ± 2% in 8.6, 12.6, and 17.3 g COD L-1 loaded vials, respectively (S3A Fig)

(TukeyHSD, p>0.05). Dissolved COD in each vial gradually decreased. Finally, the dissolved

COD concentrations in 8.6, 12.6, and 17.3 g COD L-1 loaded vials were 68.3 ± 5.9, 94.7 ± 2.0,

and 95.3 ± 8.0 mg L-1, respectively (S3B Fig) (TukeyHSD, p >0.05). These results suggested

that the scum digestion process was not inhibited in high-loaded samples. The inhibition

caused by LCFAs has been reported as a reversible process [29]. In this study, LCFA-oxidizing

bacteria may have degraded the LCFAs adsorbed onto methanogens smoothly. Methanogens

and Syntrophomonas were quantified to assess the effect of various loading rates on these

microbes.

Quantitative dynamics of methanogens and Syntrophomonas by qPCR. 16S rRNA gene

copies for group-specific methanogens were quantified using real-time qPCR (Table 2).

Hydrogenotrophic methanogens reduce the partial pressure of hydrogen and enable syn-

trophic bacteria to proceed with fatty acid oxidation [1]. Methanomicrobiales and Methano-

bacteriales, which are hydrogenotrophic methanogens, gradually increased in all the samples.

At the beginning of the batch experiment, the copy numbers of the 16S rRNA genes belonging

to Methanomicrobiales were 7.75 ± 0.10 log copies mL-1. On day 8, the copy numbers in 8.6,

12.6, and 17.3 g COD L-1 scum loaded vials were 8.63 ± 0.05, 8.67 ± 0.14, and 8.72 ± 0.04 log

copies mL-1, respectively. On day 30, those in 8.6, 12.6, and 17.3 g COD L-1 scum-loaded vials

were 8.65 ± 0.06, 9.01 ± 0.05, and 9.06 ± 0.07 log copies mL-1, respectively. The 16S rRNA gene

concentration belonging to Methanomicrobiales was significantly higher in 12.6 and 17.3 g

COD L-1 scum-loaded vials than those in 8.6 g COD L-1 loaded vials (TukeyHSD, p<0.05).

On day 0, the 16S rRNA gene concentration belonging to Methanobacteriales was 5.47 ± 0.01

Table 2. The transition of 16S rRNA copies for acetoclastic and hydrogenotrophic methanogens (log copies mL-1).

8.6 g COD L-1 12.6 g COD L-1 17.3 g COD L-1

Methanomicrobiales
Day 0 (seed sludge) 7.75 ± 0.10

Day 8 8.63 ± 0.05 8.67 ± 0.14 8.72 ± 0.04

Day 30 8.65 ± 0.06a 9.01 ± 0.05b 9.06 ± 0.07b

Methanobacteriales
Day 0 (seed sludge) 5.47 ± 0.01

Day 8 5.88 ± 0.02a 6.10 ± 0.02b 6.09 ± 0.03b

Day 30 6.71 ± 0.09 6.70 ± 0.03 6.76 ± 0.05

Methanosarcinaceae
Day 0 (seed sludge) 5.64 ± 0.05

Day 8 6.38 ± 0.07 6.12 ± 0.03 6.13 ± 0.04

Day 30 9.20 ± 0.05 9.26 ± 0.03 9.37 ± 0.04

Methanosaetaceae
Day 0 (seed sludge) 7.89 ± 0.01

Day 8 7.06 ± 0.02a 7.38 ± 0.05b 7.21 ± 0.04ab

Day 30 9.92 ± 0.11 9.95 ± 0.03 10.08 ± 0.04

All values represent the mean of triplicate reactors ± standard deviation.

Different letters indicate significant differences on the same day (TukeyHSD, p <0.05).

https://doi.org/10.1371/journal.pone.0257651.t002
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log copies mL-1. On day 8, the copy numbers in 8.6, 12.6, and 17.3 g COD L-1 scum-loaded

vials were 5.88 ± 0.02, 6.10 ± 0.02, and 6.09 ± 0.03 log copies mL-1, respectively. The 16S rRNA

gene concentration belonging to Methanobacteriales in 12.6 and 17.3 g COD L-1 scum-loaded

vials was significantly higher than that in 8.6 g COD L-1 loaded vials (TukeyHSD, p<0.05).

On day 30, the concentrations in 8.6, 12.6, and 17.3 g COD L-1 scum-loaded vials were

6.71 ± 0.09, 6.70 ± 0.03, and 6.76 ± 0.05 log copies mL-1, respectively. In summary, the copy

numbers of the 16S rRNA genes for Methanomicrobiales or Methanobacteriales were signifi-

cantly higher in scum high-loaded samples on days 8 and 30. It was inferred that hydrogeno-

trophic methanogenesis was the key process during anaerobic scum degradation.

Methanosarcinaceae and Methanosaetaceae, which are acetoclastic methanogens, showed

different quantitative transitions. The copy number of the 16S rRNA genes belonging to Metha-

nosarcinaceae was 5.64 ± 0.05 log copies mL-1 on day 0. The copy numbers in 8.6, 12.6, and

17.3 g COD L-1 scum-loaded vials were 6.38 ± 0.07, 6.12 ± 0.03, and 6.13 ± 0.04 log copies mL-1

on day 8 and 9.20 ± 0.05, 9.26 ± 0.03, and 9.37 ± 0.04 log copies mL-1 on day 30, respectively.

The 16S rRNA gene copy numbers of Methanosarcinaceae increased gradually in all the sam-

ples, and there were no significant differences with respect to scum-loading rates (TukeyHSD, p

>0.05). Meanwhile, the copy number of the Methanosaetaceae 16S rRNA gene on day 0 was

7.89 ± 0.01 log copies mL-1. On day 8, the copy numbers in 8.6, 12.6, and 17.3 g COD L-1 scum-

loaded vials were 6.38 ± 0.07, 6.12 ± 0.03, and 6.13 ± 0.04 log copies mL-1, respectively. On day

30, those in 8.6, 12.6, and 17.3 g COD L-1 scum-loaded vials were 9.92 ± 0.11, 9.95 ± 0.03, and

10.08 ± 0.04, respectively. The 16S rRNA gene copy number of Methanosaetaceae decreased

from day 0 to day 8 in all the samples. Methanosaetaceae prefers low acetate concentration [31].

It was simulated that Methanosaetaceae would compete for acetate utilization with Methanosar-

cinaceae when the acetate concentration was lower than 522.9 mg L-1 [32]. Besides, Methano-

saeta has been reported to be more sensitive to environmental stress such as ammonia toxicity

and overcharging the loading rate than Methanosarcina [31]. Because the VFA concentration

detected in this study was kept low (S2A Fig), other stress seemed to inhibit the growth of

Methanosaetaceae in the early stage of scum digestion. Through the experiment, the effect of

the scum-loading rate on Methanosarcinaceae and Methanosaetaceae was not observed clearly.

The high-loaded scum may have restricted the growth of acetoclastic methanogens.

In anaerobic scum digestion, LCFA degradation seemed to be an important process that

affects the entire digestion speed and methane conversion rate. 16S rRNA gene copies for Syn-
trophomonas increased in all the samples during the 30-day incubation (Table 3). At the begin-

ning of the batch experiment, the copy number of the 16S rRNA genes for Syntrophomonas
was 5.56 ± 0.10 log copies mL-1. On day 8, the copy numbers in 8.6, 12.6, and 17.3 g COD L-1

scum-loaded vials were 6.71 ± 0.06, 6.80 ± 0.03, and 6.59 ± 0.04 log copies mL-1, respectively.

On day 30, 16S rRNA gene copy number for Syntrophomonas in 8.6, 12.6, and 17.3 g COD L-1

scum-loaded vials were 7.29 ± 0.04, 7.55 ± 0.03, and 7.77 ± 0.07 log copies mL-1, respectively.

Table 3. The transition of 16S rRNA copies for Syntrophomonas (log copies mL-1).

8.6 g COD L-1 12.6 g COD L-1 17.3 g COD L-1

Syntrophomonas
Day 0 (seed sludge) 5.56 ± 0.10

Day 8 6.71 ± 0.06 6.80 ± 0.03 6.59 ± 0.04

Day 30 7.29 ± 0.04a 7.55 ± 0.03ab 7.77 ± 0.07b

All values represent the mean of triplicate reactors ± standard deviation.

Different letters indicate significant differences on the same day (TukeyHSD, p <0.05).

https://doi.org/10.1371/journal.pone.0257651.t003
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On day 30, 16S rRNA gene copies for Syntrophomonas observed in 17.3 g COD L-1 loaded

vials were 3.15-times higher than those in 8.6 g COD L-1 loaded vials (TukeyHSD, p<0.05).

Similar to hydrogenotrophic methanogens, Syntrophomonas abundance increased as the

scum-loading rate increased. These results suggest that syntrophic fatty acid degradation by

Syntrophomonas and hydrogenotrophic methanogens was a key process in scum degradation.

It was reported that the abundance of Syntrophomonas was correlated with the specific miner-

alization rates of LCFA [10, 16]. Even in anaerobic scum digestion, the 16S rRNA concentra-

tion of Syntrophomonas may be used as an indicator of the scum-degrading potential. The

transition of Syntrophomonas 16S rRNA concentrations was analyzed expecting that LCFA

degradation was one of the key processes to determine the efficiency of methane production of

scum. The results of Experiment 1 suggested that other complex substances such as protein- or

polysaccharide-degrading kinetics, also affected the methane conversion rate. Next, the differ-

ences in bacterial communities were analyzed with respect to various scum-loading rates.

The effect of scum-loading concentration on bacterial community. The V3-V4 region

of the 16S rRNA gene was amplified and sequenced. A total of 48,529–52,393 non-chimeric

reads (average 49,957) were obtained from the raw MiSeq data. PCoA suggested that the bacte-

rial communities in 12.6 and 17.3 g COD L-1 loaded vials were relatively similar (S4 Fig). Fig 5A

shows the top 10 abundant phyla belonging to bacteria. In 8.6 g COD L-1 loaded vials, Firmi-

cutes (22.1%) were most abundant and followed by Proteobacteria (18.9%), Bacteroidetes

(15.2%), and Cloacimonetes (9.7%). In 12.6 g COD L-1 loaded vials, Firmicutes (31.4%) were

most abundant, followed by Bacteroidetes (19.3%), Cloacimonetes (9.8%), Proteobacteria

(9.5%), and Synergistetes (8.9%). In 17.3 g COD L-1 loaded vials, Firmicutes (30.2%) were most

abundant, followed by Bacteroidetes (20.7%), Proteobacteria (11.7%), Synergistetes (10.6%),

and Cloacimonetes (6.4%). Firmicutes, Bacteroidetes, and Synergistetes were more predomi-

nant in scum high-loaded vials. These phyla contain hydrolytic and fermentative bacteria [1]

and have been reported to play an important role in the co-digestion of fats, oil, and grease [1,

Fig 5. Relative abundance of bacterial groups based on 16S rRNA genes amplicon sequencing on day 8. The 10 most abundant phyla (A) and the 12 dominant genera

(B) are shown.

https://doi.org/10.1371/journal.pone.0257651.g005
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33]. Firmicutes include several syntrophic bacteria which degrade various substrates and pro-

duce VFAs [34]. Bacteroidetes include various microbial genera that secrete various hydrolytic

enzymes and disintegrate complex organic matter [35]. Synergistetes contain only Synergista-

ceae, which can ferment glucose and organic acids [36]. It was inferred that these phyla contrib-

uted to the hydrolysis of complex biomass and degrade the hydrolysate to VFAs.

The top 12 most abundant genera are shown in Fig 5B. In 8.6 g COD L-1 loaded vials, Syn-
trophomonas was the most abundant genus (8.3%) and followed by Macellibacteroides (4.5%),

Mesotoga (2.9%), and Aminobacterium (1.7%). Macelibacteroides use the hydrolysate of poly-

saccharides as a substrate to produce acetic acid [37]. Mesotoga is reported to degrade a wide

range of sugars [38]. In 12.6 g COD L-1 and 17.3 g COD L-1 loaded vials, Syntrophomonas was

the most abundant genus (12.7% and 10.5%) and followed by Aminobacterium (4.6% and

6.2%), Macellibacteroides (3.1% and 3.4%), and Mesotoga (3.0% and 2.4%). Among the top 12

abundant genera in 12.6 g COD L-1 and 17.3 g COD L-1 loaded vials, the relative abundance of

Aminobacterium, Defluviitoga, and Sporanaerobacter was more than twice as high as that in

8.6 g COD L-1 loaded vials (Fig 6). Aminobacterium utilizes several amino acids to produce

Fig 6. Comparison of the relative abundance among the 12 dominant genera between 8.6 g COD L-1 and 12.6 or 17.3 g COD L-1 scum-

loaded vials.

https://doi.org/10.1371/journal.pone.0257651.g006
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VFAs and ammonia [39]. Defluviitoga, which has often been detected in thermophilic biogas

plants as the key hydrolytic bacterium, can utilize a large diversity of monosaccharides, disac-

charides, and polysaccharides including cellulose and xylan [40]. Sporanaerobacter is reported

to play a key role in the hydrolysis of proteins and polysaccharides [41]. Other hydrolytic gen-

era also showed higher relative abundance in scum high-loaded samples. Proteiniclasticum,

which hydrolyze proteins [42], showed a 1.7- and 2.3-times higher abundance in 12.6 and 17.3

g COD L-1 loaded vials, respectively. A previous report indicated that Proteiniclasticum became

dominant by acclimation to fats, oil, and grease [34]. Bacteroides, which play a key role in the

initial hydrolysis of protein, fat, cellulose, and other polysaccharides [43], showed a 1.6- and

2.4-times higher abundance in 12.6 and 17.3 g COD L-1 loaded vials, respectively. These results

suggested that not only LCFA degradation but also the hydrolysis of complex organic matter

such as proteins and polysaccharides was an important process in anaerobic scum digestion.

Focusing on the abundance of Syntrophomonas may not be enough to promote methane gasifi-

cation of scum. It is also important to increase the abundance of genera shown in this study.

The predominance of Syntrophomonas indicated the importance of syntrophic LCFA oxi-

dation. It has been reported that five Syntrophomonas species can degrade LCFAs when they

Fig 7. Phylogenetic tree based on 16S rRNA gene representing the top 3 abundant sequences in the taxon classified as Syntrophomonas. The significance of each

branch is indicated at the nodes by bootstrap values (%) based on 100 replications. Only values greater than 50% are shown. The numbers following the scum loading

concentration indicate the size of OTUs.

https://doi.org/10.1371/journal.pone.0257651.g007
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are co-cultured with hydrogenotrophic methanogens [44]. Ziels et al (2017) showed that the

16S rRNA gene concentration of several OTUs classified as Syntrophomonas indicated a closer

relationship with oleate degradation kinetics than total Syntrophomonas [45]. Species-level

analysis would enable us to evaluate the capacity of LCFA degradation more precisely. The

sequences assigned to the genus Syntrophomonas were aligned into OTUs, and a phylogenetic

tree was constructed. Fig 7 shows the top three dominant OTUs of each sample. The dominant

OTUs in 8.6, 12.6, and 17.3 g COD L-1 scum-loaded vials were closest to S. palmitatica, which

can oxidize straight-chain saturated fatty acids with carbon chain lengths of C4-C18 [46].

Including uncultured bacteria, OTU1 and OTU9 in 8.6 g COD L-1, OTU12 and OTU67 in

12.6 g COD L-1, and OTU3 in 17.3 g COD L-1 were closest to the clone PM63 (DQ459214)

(Identity >97%), which was detected predominantly by DGGE analysis in the oleate and pal-

mitate enrichment cultures [47]. As shown in Table 4, it is noteworthy that the sum of the top

3 abundant OTUs, which were the most closely related to S. palmitatica, accounted for 67% of

the reads in 17.3 g COD L-1 loaded vials. These OTUs possibly played an important role in

LCFA degradation. Our results showed that the higher loading rates of scum induced a higher

abundance of syntrophically LCFA-oxidizing and complex substrate-hydrolyzing

microorganisms.

Conclusions

This study aimed to explore the microbial community that played a key role in anaerobic

scum digestion. The pre-incubated sludge with scum (Sludge I) showed a 73% ± 3% methane

conversion rate, which was 1.3-times higher than that of Sludge II, and temporal VFA accumu-

lation was not observed. The relatively high scum degradation potential of this sludge was

Table 4. Top 3 abundant taxa in each sample.

OTU ID Closest species of 16S rRNA gene Oxidizable fatty acids lengtha Accession no. Identity % of sequencesb

OTU5 Syntrophomonas C4-18 AB274040 462/466 26.3

8.6 g COD L-1 palmitatica (99%)

OTU1 Syntrophomonas C4-18 AB274040 443/466 15.8

8.6 g COD L-1 palmitatica (95%)

OTU9 Syntrophomonas C4-18 AB274040 439/466 5.6

8.6 g COD L-1 palmitatica (94%)

OTU3 Syntrophomonas C4-18 AB274040 462/466 30.9

12.6 g COD L-1 palmitatica (99%)

OTU12 Syntrophomonas C4-18 AB274040 442/466 7.1

12.6 g COD L-1 palmitatica (95%)

OTU67 Syntrophomonas C4-18 AB274040 439/466 7.0

12.6 g COD L-1 palmitatica (94%)

OTU1 Syntrophomonas C4-18 AB274040 464/466 38.9

17.3 g COD L-1 palmitatica (99%)

OTU3 Syntrophomonas C4-18 AB274040 446/466 12.3

17.3 g COD L-1 palmitatica (96%)

OTU24 Syntrophomonas C4-18 AB274040 460/466 6.1

17.3 g COD L-1 palmitatica (99%)

The best hits of the cultured microorganisms are given.
a The number of oxidizable carbon chain lengths of straight-chain saturated fatty acids when co-cultured with hydrogenotrophic methanogens.
b % of sequences assigned to the Syntrophomonas genus.

https://doi.org/10.1371/journal.pone.0257651.t004
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confirmed. It was suggested that the degradation efficiency of not only LCFAs but also of other

complex substrates such as proteins and polysaccharides affected the methane yield from

scum. As the scum-loading rate increased, the larger 16S rRNA copy numbers of Syntropho-
monas and hydrogenotrophic methanogens were detected. Aminobacterium, Defluviitoga, and

Sporanaerobacter, which degrade protein- or polysaccharide-related substrates, also became

more abundant as the scum loading amount increased. Phylogenetic analysis of the Syntropho-
monas genus revealed that the predominant OTUs were close to S. palmitatica, which can

degrade LCFAs. A higher abundance of S. palmitatica-related species in 17.3 g COD L-1 scum-

loaded vials was observed. These likely played an important role in LCFA degradation. Overall,

our results indicate that scum degradation is a complex process in which a variety of genera

are involved. To promote scum degradation, it should not only be focused on Syntrophomonas
but also on the hydrolytic genera suggested in this study.

Supporting information

S1 Fig. VS decomposition rate (A) and transition of dissolved COD concentration (B). Error

bars represent the standard deviation of the mean (n = 3).

(TIF)

S2 Fig. LCFA concentration at the different initial scum loading concentrations. Error bars

represent the standard deviation of the mean (n = 3).

(TIF)

S3 Fig. VS decomposition rate (A) and transition of dissolved COD concentration (B) at the

different initial scum loading concentrations. Error bars represent the standard deviation of

the mean (n = 3).

(TIF)

S4 Fig. Principal coordinate analysis of 16S rRNA gene amplicon sequences.

(TIF)

S1 Table. Characteristics of qPCR primers and TaqMan probes used in this study. a

F = forward primer; P = TaqMan probe; R = reverse primer. b Tm of each oligo was cited from

its reference article.

(TIF)
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