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As global controllers of gene expression, small RNAs represent powerful tools for
engineering complex phenotypes. However, a general challenge prevents the more
widespread use of sRNA engineering strategies: mechanistic analysis of these regulators
in bacteria lags far behind their high-throughput search and discovery. This makes it
difficult to understand how to efficiently identify useful sRNAs to engineer a phenotype
of interest. To help address this, we developed a forward systems approach to identify
naturally occurring sRNAs relevant to a desired phenotype: RNA-seq Examiner for
Phenotype-Informed Network Engineering (REFINE). This pipeline uses existing RNA-
seq datasets under different growth conditions. It filters the total transcriptome to
locate and rank regulatory-RNA-containing regions that can influence a metabolic
phenotype of interest, without the need for previous mechanistic characterization.
Application of this approach led to the uncovering of six novel sRNAs related to ethanol
tolerance in non-model ethanol-producing bacterium Zymomonas mobilis. Furthermore,
upon overexpressing multiple sRNA candidates predicted by REFINE, we demonstrate
improved ethanol tolerance reflected by up to an approximately twofold increase in
relative growth rate compared to controls not expressing these sRNAs in 7% ethanol
(v/v) RMG-supplemented media. In this way, the REFINE approach informs strain-
engineering strategies that we expect are applicable for general strain engineering.

Keywords: small RNA, regulatory RNA, strain engineering, bioinformatics, systems biology, RNA-seq,
transcriptome

INTRODUCTION

With rising demands of efficiency and sustainability, the use of microbes as chemical factories is
increasingly attractive. In bacteria, small RNAs (sRNAs) regulate cellular pathways, and metabolic
engineers increasingly exploit them for engineering purposes (Chappell et al., 2013; Vazquez-
Anderson and Contreras, 2013; Kang et al., 2014; Qi and Arkin, 2014; Haning et al., 2015; Leistra
et al., 2019). sRNAs regulate mRNA and protein expression, typically by binding mRNA and
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blocking translation or changing stability (Storz et al., 2011).
These sRNAs commonly have short imperfect base pairing with
their targets and some require auxiliary elements to perform
their regulatory role, such as Hfq in Gram-negative bacteria;
other sRNAs such as Escherichia coli CsrB regulate cellular
processes by binding or sequestering proteins (Storz et al.,
2011). Many natural sRNAs have been found to respond to
environmental signals and coordinate network responses in a
variety of microorganisms with potential use in the production
of biofuels including cyanobacteria (Georg et al., 2014; Song et al.,
2014). Their short length (50–300 nt), dynamic nature, and multi-
target impacts make them especially attractive for engineering
complex phenotypes.

Much work has been done to engineer the industrially
relevant ethanologenic organism Zymomonas mobilis to enhance
production of lignocellulosic bioproducts (Wang et al., 2018).
Traditional metabolic engineering methods have created strains
capable of producing alternative products such as sorbitol, levan,
glycerol, as well as lactic, gluconic, succinic, and acetic acids
(Rogers et al., 2007) and strains able to metabolize sugars such
as xylose and arabinose found abundantly in lignocellulosic
hydrolysates (Zhang et al., 1995; Deanda et al., 1996). However,
recent studies have begun to show the value of using sRNAs
in the engineering of phenotypes of interest in Z. mobilis
(Cho et al., 2014, 2017).

Current engineering efforts to use sRNAs focus primarily on
the design of synthetic transcripts to knock down expression
of specific mRNA targets, typically by blocking their ribosome
binding sites (RBS) (Haning et al., 2015). These targeted
knockdowns are useful for optimizing individual pathways
but are limited in addressing complex phenotypes like stress
tolerance, which involve large sets of genes (Wassarman, 2002).

While strategies for engineering natural sRNAs have been
successful, they have been mostly limited to well-characterized
pathways in model organisms. For example, the overexpression
of naturally occurring sRNAs RprA, ArcZ, and DsrA has been
shown to improve acid tolerance in E. coli (Gaida et al., 2013).
Similarly, overexpression of sRNA RyhB in E. coli increased
production of 5-aminolevulinic acid by 16% (Li et al., 2014).
Other phenotypes improved by natural sRNA engineering
strategies include succinate, fatty acid, amorphadiene, and
butanol production (Kang et al., 2012; McKee et al., 2012;
Jones et al., 2016). In these cases, the wealth of previous
sRNA characterization (known mRNA targets and mechanisms)
enabled engineers to foresee and achieve phenotype goals (Massé
et al., 2007; Battesti et al., 2011). The contribution of regulatory
RNAs in metabolic engineering has recently been reviewed
(Leistra et al., 2019).

A number of existing tools and techniques locate sRNAs
including QRNA, Intergenic Sequence Inspector, RNAz,
sRNApredict/SIPHT, sRNA scanner, and nocoRNAc, and deep
sequencing and identification of TSS (Pichon and Felden, 2003;
Livny et al., 2005; Washietl et al., 2005; Sridhar et al., 2010;
Herbig and Nieselt, 2011; Vockenhuber et al., 2011; Livny,
2012; Kaur and Balgir, 2018). But most rely on conservation
of sequence and/or structure and depend on the set of known
sRNAs and homology, which is often lacking in non-model

organisms. Additionally, most of these programs are not readily
available for current users. Recently, machine learning has been
applied to identify bona fide sRNAs in multiple bacterial species
based on intrinsic features in the genomic context of the sRNAs,
which is more highly conserved across species compared to
sRNA sequence (Eppenhof and Peña-Castillo, 2019). Still, the
sRNA candidates predicted by these tools require experimental
validation as they carry no evidence of actual transcript
expression in vivo. From a list of candidates, researchers typically
screen each by northern blot. Considering the low-throughput
nature of Northern blotting analysis, many sRNA candidates
from long lists may go untested. Upon identification of an sRNA
with detectable expression, follow-up experiments may include
knockout or overexpression to observe phenotype impacts
and gel shift assays to check binding with any mRNA targets
predicted by programs like IntaRNA or CopraRNA (Busch et al.,
2008; Wright et al., 2013). Ultimately, the process is slow and
lack direction toward metabolic engineering goals.

Expression-based approaches are more suitable to identify
stress-responsive or phenotype-relevant sRNAs (Barquist and
Vogel, 2015). For example, in the initial sRNA discovery
efforts in Z. mobilis (Cho et al., 2014), visual inspection of
transcriptome data yielded 95 sRNA candidates, and this led
to the detection of expression of 15 sRNAs by Northern
blotting. In this study, sequence-based approaches, WU-BLAST
(Gish, 2002) and SIPHT (Livny, 2012), contributed 20 and 4
sRNA candidates, respectively. Only 10 of the 95 candidates
identified by transcriptome data overlapped with the sequence
search method sets. Ultimately, the sequence-based tools only
contributed 2 of the 15 sRNAs verified by Northern blotting.
This suggests the sequence-based tools, particularly in non-
model organisms, leave many sRNAs undetected. Additionally,
sRNAs that could contribute to a phenotype unique to an
organism (like the high ethanol tolerance of Z. mobilis)
may not prove widely conserved since the phenotype lacks
conservation as well. sRNA candidates predicted by these
tools require experimental validation. Although transcriptomics
approaches do represent in vivo expression, noise from
non-specific read mapping casts some doubt, and specific
transcript ends prove difficult to discern without follow-
up experiments.

Advances in these sequence search algorithms and in high-
throughput sequencing have enabled discovery of hundreds
of sRNAs across bacteria (Gelderman and Contreras, 2013;
Tsai et al., 2015), but characterization lags far behind. The
vast majority of sRNAs remain without any known function.
Mechanistic characterization of these sRNAs requires low-
throughput knockout and overexpression studies, a particular
challenge in non-model organisms (Papenfort et al., 2008; Modi
et al., 2011; Mars et al., 2015). For metabolic engineers, it has been
impractical to consider the large (and growing) pool of sRNA
regulators for specific goals since most sRNAs lack foreseeable
roles in producing phenotypes of interest.

In this paper, we propose a bioinformatics pipeline, RNA-
seq Examiner for Phenotype-Informed Network Engineering
(REFINE) to identify sRNAs relevant to desired phenotypes
using existing “omics” datasets (Figure 1). This systematic
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FIGURE 1 | Continued

FIGURE 1 | REFINE approach identifies sRNAs relevant to phenotypes of
industrial interest. Existing computational tools were combined with new tools
(†) developed in this work. Raw RNA-seq data from two conditions related to
the phenotype of interest are analyzed for differentially expressed RNAs using
standard tools for alignment (BWA) and counting (HTSeq). The REFINE sRNA
prediction step identifies differentially expressed intergenic regions likely to
contain sRNAs based on their length and a minimum expression level. For
each sRNA candidate identified, IntaRNA predicts its most likely mRNA
targets based on binding energies. Differential expression of these predicted
mRNA targets between the two experimental conditions suggest possible
regulation by the sRNA. A score is assigned to each sRNA based on the
differential expression of its predicted targets and also the differential
expression of the sRNA transcript itself. In this scoring equation, predicted
mRNA targets with higher IntaRNA ranking contribute more heavily to the
score. The calculation of a total score for each sRNA produces a ranked list of
genomic regions most likely to contain sRNAs relevant to the phenotype.
These sRNA candidates can each be overexpressed on plasmids and tested
for their impact on the phenotype.

approach does not require previous sRNA characterization
or discovery. Instead, we take advantage of RNA-seq datasets
that accumulate in public databases and contain a wealth of
insight into regulatory networks not yet extracted (Vogel and
Marcotte, 2012). Importantly, we take advantages of potential
connections between growth conditions and phenotypes
documented in these studies that connect strain performance
with RNA and protein expression profiles. In this particular
work, we aim to exploit transcriptome data to predict regulatory
networks and then characterize phenotypic impacts of predicted
sRNA regulators. By prioritizing the list of sRNA candidates,
we save experimental time and cost. To demonstrate the
value of this new approach, we select industrially relevant
phenotypes with known sRNAs involved in their regulation
and RNA-seq data available. With this bioinformatics-
informed approach, we show a more efficient way to find
useful RNA regulators to construct a phenotype of interest,
prioritizing the most promising sRNA candidates for any
biochemical analysis.

MATERIALS AND METHODS

Calculating Intergenic Region Coverage
From Existing RNA-Seq Data
RNA-seq data from previous studies were analyzed as shown
in Figure 2A. Raw fastq files were downloaded from NCBI
SRA (Z. mobilis aerobic and anaerobic: SRR1291412-3). Note,
the compared conditions should be taken from a single
experiment and RNAseq analysis. Read quality was visualized
by FastQC (Andrews, 2016) and cutadapt (v1.3) trimmed
any low-quality read ends (Martin, 2011). Burrows–Wheeler
Aligner – maximal exact matches (BWA-mem) (v0.7.12-
r1039) mapped the reads to the appropriate reference genome
(Z. mobilis ZM4 ASM710v1) (Li, 2013). SAMtools sorted the
aligned reads by name (v0.1.19-44428cd) (Li et al., 2009) and
BEDTools (v2.25.0) calculated per-nucleotide genome coverages
for each strand (±) of each sample (Quinlan and Hall, 2010).
BEDTools also generated intergenic region coordinate lists
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FIGURE 2 | Computational workflow from raw RNA-seq data to phenoscores of each predicted sRNA candidate. (A) With raw RNA-seq data and a reference
genome, files with coverage of intergenic regions are made for each growth condition. (B) sRNAscout filters intergenic regions down to short peak regions of
minimum expression and differential expression between the two growth conditions. Neighboring peaks are combined into single regions that likely represent single
transcripts. (C) The phenotypic impact of each sRNA candidate is predicted by sRNAphenoscore. The phenoscore is composed of two components: the
sRNAscore and the mRNAscore. The sRNAscore is the absolute value of the log2 fold change of expression in the sRNA candidate region between the two growth
conditions represented in the RNA-seq data. The mRNAscore is calculated by predicting the top 50 mRNA targets of each sRNA candidate by IntaRNA. It is
calculated as the fold changes of each mRNA in the RNA-seq data between the two conditions scaled by its predicted energy from IntaRNA. The sRNAscore and
mRNAscores are normalized by the max of each across all sRNA candidates and summed to produce the final phenoscore for each sRNA candidate.

from each reference genome. An R script produced comma-
separated files describing the per-nucleotide read counts in
the intergenic regions on each strand. Biological replicates
(when available) were averaged to make a single file for each
growth condition.

sRNA Prediction With sRNAscout
sRNAscout was developed to predict sRNA-containing regions
from these intergenic region coverage files (Figure 2B). First,
it normalizes coverage files by read count. Then it filters
by minimum expression level (in at least one condition)
and differential expression level (between the two conditions).
sRNAscout extracts consecutive nucleotides of sufficient length
meeting these criteria as sRNA candidate peaks. Any peaks
<200 nt are expanded outward and combined with any
neighboring peaks to yield sRNA candidate regions. Appropriate
values for these criteria vary by dataset according to overall depth
of coverage, read quality, and rRNA depletion. We suggest 15 nt
length for minimum expression and differential expression. For
the levels of expression and differential expression, we suggest
the averages of each across the dataset. Table 1 shows the values
used in this study.

TABLE 1 | Filtering criteria used by sRNAscout to identify sRNA candidate peak
regions in each dataset.

Criteria Z. mobilis aerobic vs. anaerobic

Minimum expression level 34 counts

Consecutive nt with minimum expression 24 nt

Differential expression level 2.7-fold

Consecutive nt with differential expression 15 nt

Scoring sRNA Candidates for Phenotype
Effect With sRNAphenoscore
sRNAphenoscore (Figure 2C) identifies which sRNA candidate
regions most likely impact the phenotype of interest. BEDTools
added the predicted regions from sRNAscout to the reference
genome and HTSeq (v0.6.1p1) counted the reads mapped
(BWA) to each sRNA candidate region (Anders et al., 2015).
DESeq2 calculates an sRNAscore for each candidate region
from the absolute value of the log2 fold change between
the conditions (Love et al., 2014). For each sRNA candidate
region, IntaRNA (v2.2.0) predicts mRNA targets with most
favorable binding energies (kcal/mol) in the −200 to +100 nt
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regions (Busch et al., 2008). To save computational time,
we precomputed the accessibility data for each genome.
sRNAphenoscore calculated an mRNAscore for each sRNA
candidate region: the sum of the top 50 mRNA target
energies multiplied by their log2 fold changes by DESeq2.
The sRNAscores and mRNAscores for all sRNA candidate
regions were normalized by the max of each, yielding a value
between 0 and 1. sRNAphenoscore sums the sRNAscore and
mRNAscore for each sRNA candidate to produce the final
phenoscore for each.

sRNA Candidate Overexpression Strain
Development
To generate sRNA overexpression strains, GenScript synthesized
and cloned each sRNA into the pBBR1MCS2-Pgap plasmid (Zou
et al., 2012) between NheI and BamHI. Each were transformed
into E. coli DH5α and Z. mobilis 8b by electroporation. For the
multi-sRNA overexpression strains, each sRNA was preceded by
a Pgap promoter region in the pBB1MCS2 plasmid. Z. mobilis
8b grew in rich media supplemented with glucose (RMG) media
(glucose, 20.0 g/L; yeast extract, 10.0 g/L; KH2PO4, 2.0 g/L; pH
6.0) at 33◦C. E. coli DH5α (used for plasmid construction and
manipulation) grew in LB media at 37◦C. Strains containing the
plasmids were cultured with 50 µg/mL kanamycin for E. coli and
with 350 µg/mL for Z. mobilis. Transformants were screened by
colony PCR and sequence-verified by Sanger sequencing.

Evaluating Strain Performance
Biological triplicates of each strain were grown in 5 mL RMG
seed cultures with appropriate antibiotics at 33◦C for 48 h. Cells
were distributed in technical triplicates into Bioscreen C (Growth
Curves US, NJ, United States) plates with RMG (with and without
8% ethanol or 12 g/L sodium acetate) such that each well had a
total volume of 300 µL and initial OD600 of 0.05. The Bioscreen
C measured the turbidity with the wideband filter (420–580 nm)
every 15 min for 48 h. The cultures grew at 33◦C with 5 s of
low-speed shaking before each measurement. EZ Experiment
(Norden Logic Oy, Helsinki, Finland) operated the Bioscreen
C and a custom MATLAB script calculated exponential growth
rates (Crook et al., 2016). Additionally, in order to analyze growth
conditions in larger culture volumes, seed cultures were used
to inoculate 30 mL of RMG (with and without 7% ethanol)
such that each culture had a starting OD600 of 0.05. The
cultures were grown at 33◦C with no shaking, and turbidity
was measured every 3 h by adding 200 µL of culture into a
96-well plate and taking an OD600 measurement in a Cytation
3 (BioTek Winooski, VT, United States). Growth rates were
then determined from the slope of the semilogarithmic plot of
the OD600 readings versus time. Although Z. mobilis has been
reported to tolerate up to 16% ethanol, our experiments have
been performed at lower starting concentrations of ethanol to
allow us to acquire consistent growth data without inhibition.
The different assays performed in our experiments at 7 and
8% were performed in different conditions, growth in a flask
with a 30-mL culture volume versus growth in a Bioscreen C
plate with a 300-µL volume, respectively. We could not acquire

consistent data using 8% ethanol in the flasks as we could in
the Bioscreen C.

RESULTS

Development of REFINE Approach to
Identify sRNAs That Affect Phenotypes
of Interest
We developed a bioinformatics pipeline to identify sRNA
candidates most likely to impact a phenotype of interest. In
this case study, we focus on ethanol tolerance (for Z. mobilis)
as a novel test case. As shown in Figure 1, the input to
the bioinformatics process is RNA-seq data from two growth
conditions, based on the phenotype goal. For example, if the
engineering goal were to develop a strain tolerant to a high-
temperature industrial process, RNA would be collected and
sequenced at a high temperature (stressed condition) and at
its optimal growth temperature (unstressed condition). The
comparison of these conditions allows observation of how the
transcriptome changes naturally as part of the cellular response
to the changing condition (or stress). As an underlying design
principle of this analysis, we expect that with maximal stress the
transcriptome response exhibited is more robust (as long as the
imposed stress condition doesn’t hinder survival) and therefore
the variability in RNA levels becomes significant enough to
draw conclusions.

Public databases such as the Sequence Read Archive (SRA) of
NCBI contain an abundance of RNA-seq data (Leinonen et al.,
2011). RNA-seq data used with the REFINE pipeline should
not be depleted of small transcripts during RNA extraction and
library preparation (although rRNA depletion is appropriate). To
determine which direction sRNAs are encoded in the genome,
a strand-specific RNA-seq library prep is required (Wang et al.,
2009). Considering the noise that can occur in RNA-seq datasets,
biological replicates increase the reliability of the output. After
experimental data collection, BWA maps the transcriptome data
to a reference genome, yielding a landscape of transcript read
abundance across the genome (Figure 2A). Then, the calculation
of per-nucleotide coverage represents the number of reads
mapped to each genomic location. We normalize coverage by
each sample’s total read count to allow averaging of replicates and
comparison between conditions.

The sRNAscout program (Figure 2B), a new algorithm
developed in this work, uses the normalized per-nucleotide
coverage files from each condition to predict genomic regions
most likely to contain sRNAs that affect a particular phenotype
of interest – we call these sRNA candidate regions. The
sRNAscout program replaces the visual inspection and manual
scrolling through transcriptome as used in the past. The primary
advantage of this approach over other sequence-homology sRNA
prediction tools is the targeted nature of the search for sRNAs
that respond in vivo to changing environmental conditions
(as represented by the two sets of input transcriptome data).
Additionally, sRNAscout can identify more unique sRNAs that
lack homology to those found in model organisms.
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sRNAscout first filters the total transcriptome down to only
transcripts mapping to intergenic regions, where RNA- and
protein-encoding genes have not been annotated and where
regulatory sRNAs have been found abundant. This step depends
on a reference genome file including known mRNA, rRNA,
tRNA, and any other transcripts that should not be classified
as “intergenic” for the sake of sRNA prediction. The reference
genome used here must contain the direction of each known
transcript along with its genomic coordinates.

Next, sRNAscout searches intergenic regions for sRNA
candidate peaks, defined by a sufficient, minimum expression
level and differential expression. Previous sRNA identification
work defines these criteria as important hallmarks of true sRNAs
(Cho et al., 2014; Tsai et al., 2015). sRNAscout combines peak
regions within 50 nt of each other into a single sRNA candidate
region, since these likely constitute a single transcript. The
program expands any short peak regions to 200 nt with the
peak as the center.

From these potential sRNA-containing regions, we aim to
discern which most likely regulate genes associated with the
target phenotype. We hypothesize an sRNA linked to the
phenotype will exhibit two main features. First, we expect the
sRNA expression level to change between the two representative
growth conditions, in the presence and absence of the stress of
interest. The sRNAscore of the algorithm quantifies this feature
as the magnitude of the log2 fold change in expression level
between these conditions. Second, we expect the sRNA’s potential
mRNA targets to show differential expression between the two
conditions (in the presence and absence of the stress). The
mRNAscore quantifies this.

Specifically, to determine mRNA targets that are likely
regulated by the sRNA candidates, we employ an RNA–RNA
interaction prediction program (IntaRNA) to yield a list of
mRNAs in the organism with the most favorable binding
energies to the sRNA (Wright et al., 2014). Among the available
tools for sRNA target prediction, IntaRNA shows the highest
accuracy without requiring the input of homologous sRNAs in
other organisms (Pain et al., 2015). Benchmarking of IntaRNA
showed the median rank of experimentally verified targets was
10 (Pain et al., 2015). Here, we use the top 50 mRNA targets
predicted by IntaRNA for each sRNA candidate to quantify
the potential impact of the sRNA on the expression of these
mRNA predicted targets. We scale the magnitude of the log2
fold expression change of each predicted mRNA target between
the two growth conditions (with and without the stress) by
its predicted free energy of binding with the sRNA candidate.
The sum of these scaled values for the top 50 mRNA targets
represents the mRNAscore.

Finally, the program combines the sRNAscore and
mRNAscore into a total phenoscore for each sRNA candidate
(Figure 2C), in which a higher score indicates a region more
likely to contain an sRNA that affects the phenotype of interest.
As a result, the bioinformatics pipeline produces a list of sRNA
candidate regions ranked by their phenoscore.

To experimentally verify the most promising candidates, we
generated a library of overexpression strains, each containing an
sRNA candidate region, and screened these strains for phenotype

impact. We concluded that sRNA overexpression strains with
significantly different performance compared to the wild type (or
to an empty plasmid control) reveal useful sRNA candidates that
can contribute toward engineering of a phenotype of interest.
In this way, we expect to inform strain engineering strategies in
which we overexpress sRNAs that enhance a particular phenotype
and knock down sRNAs that negatively impact the phenotype.

Identification of sRNAs in Z. mobilis That
Improve Ethanol Tolerance
We aimed to engineer ethanol tolerance in Zymomonas mobilis
by identifying novel sRNAs. Zymomonas mobilis tolerates up
to 16% (v/v), making it an especially interesting bacterium for
biofuel applications (Rogers et al., 2007; Yang et al., 2016a;
Wang et al., 2018). Over the last 20 years, metabolic engineering
and directed evolution developed a variety of Z. mobilis strains
(Zhang et al., 1995; Mohagheghi et al., 2014). Transcriptome data
are available for Z. mobilis under a variety of stresses including
ethanol, furfural, acetate, and oxygen (Yang et al., 2009; He
et al., 2012; Yang et al., 2013, 2014; Cho et al., 2014). Although
ethanol stress RNA-seq data is not available for Z. mobilis (only
microarray transcriptomes), anaerobic and aerobic data have
been collected. Anaerobic conditions facilitate higher levels of
ethanol production relative to aerobic conditions (Bringer et al.,
1984; Moreau et al., 1997) and therefore are routinely used to
represent conditions of lower and higher ethanol, respectively.

Recently, the discovery of 15 sRNAs in Z. mobilis included
four responsive in expression to oxygen or ethanol stresses,
representing potential regulators for engineering robustness
(Cho et al., 2014). However, the low-throughput process of
identifying these sRNAs included manual searches through
transcriptome data, followed by northern blotting. This
study demonstrates a systematic approach to identify sRNAs
specifically useful to enhance ethanol tolerance.

To identify ethanol-enhancing sRNAs in Z. mobilis in a high-
throughput manner, we processed the raw RNA-seq files and
used sRNAscout to predict sRNAs (Figure 3A). With the filtering
criteria (Table 1), sRNAscout predicted 679 sRNA candidate
regions (Supplementary Table S1). Rfam was used to predict
homology of these candidates to known RNAs, and any hits
were listed in Supplementary Table S1. We found that there
was little homology, and the majority of hits reside in the
tRNA family. However, homology is not always informative for
identifying sRNAs in non-model organisms such as Z. mobilis,
meaning there could be numerous real sRNAs in this predicted
list. This Z. mobilis data retain rRNA and therefore exhibit more
shallow sequencing depth for non-rRNA transcripts which led
us to use less stringent expression criteria. Of the previously
confirmed sRNAs in Z. mobilis, sRNAscout identified all as sRNA
candidates except Zms2 [as a note, Zms13 and Zms14 (ENA
ASM710v1) have now been annotated as tmRNA and CRISPR,
respectively]. Figure 3 shows the expression profiles of these
sRNAs and the specific regions predicted by sRNAscout. Note,
sRNAscout probably failed to detect Zms2 because it shows the
lowest expression and least differential expression among these
verified sRNAs. As shown in Figure 3, the sRNA candidate
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FIGURE 3 | sRNAscout identifies previously known Z. mobilis sRNAs responsive to oxygen stress. (A) In a previous study, Z. mobilis ZM4 was grown in aerobic and
anaerobic conditions and the RNA was extracted and sequenced (Cho et al., 2014). Original manual analysis of these data identified 13 sRNAs which were verified
by northern blot. In this study, these data were analyzed with the REFINE approach to find the sRNAs automatically. (B–K) The expression profile of each known
sRNA is shown for the aerobic and anaerobic conditions, as well as the predicted coordinates by sRNAscout compared to experimentally verified ends.

Frontiers in Microbiology | www.frontiersin.org 7 January 2020 | Volume 10 | Article 2987

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02987 December 24, 2019 Time: 15:47 # 8

Haning et al. REFINE Identifies sRNAs for Engineering

genomic coordinates predicted by sRNAscout generally correlate
with sRNA transcript ends experimentally verified by RACE
(Cho et al., 2014).

Using IntaRNA, we next predicted the targets for each
sRNA candidate region and the top 50 predictions (lowest
energy) were used to calculate the mRNAscore. As shown in
Table 2, the phenoscores of previously verified sRNAs showed
a range comparable to the overall range of all sRNA candidates
predicted by sRNAscout, suggesting a variety of potential
impacts on the ethanol tolerance phenotype. It is worth noting
that the contribution of the sRNAscore (SD = 0.153) seems
more indicative of the overall phenoscore for this subset of
verified sRNAs compared to the mRNAscore, which shows less
variability (SD = 0.045).

TABLE 2 | Phenoscores from aerobic vs. anaerobic data of previously discovered
Z. mobilis sRNAs.

sRNA mRNAscore sRNAscore Phenoscore Rank 5′-end 3′-end

Zms6 0.58 0.781 1.361 16 454669 454972

Zms8 0.67 0.535 1.205 53 157766 157687

Zms20 0.785 0.406 1.191 70 258449 258569

Zms18 0.751 0.351 1.101 133 1901203 1900964

Zms3 0.705 0.167 0.873 347 512975 513362

Zms24 0.639 0.226 0.864 360 1607606 1607830

Zms4 0.719 0.101 0.82 427 1351044 1350765

Zms16 0.661 0.142 0.802 465 868928 869052

Zms10 0.639 0.125 0.764 520 39274 39493

Zms15 0.688 0 0.688 617 1666899 1666996

These ranks correspond to the phenoscores across all 679 sRNA candidates
predicted by sRNAscout in these conditions.

Of the 50 sRNA candidates with highest phenoscores, 8 were
tested by northern blot in a previous study and only Zms6 was
detected (Cho et al., 2014). Thirty additional sRNAs were selected
and tested for expression by northern blot. Six were confirmed
to have detectable expression in stationary phase (Figure 4 and
Supplementary Data Sheet S1), representing novel transcripts
that are differentially expressed in response to ethanol stress.

To test the impact of these sRNAs on the ethanol-
tolerance phenotype, we next cloned sRNAs (sequences given
in Supplementary Table S2) into plasmids for overexpression
under the constitutive Pgap promoter (Zou et al., 2012) (native
to Z. mobilis, Figure 5A). Additionally, to observe the impacts
of sRNAs with a range of phenoscores, we cloned the previously
discovered sRNAs (ranging from 16 to 617 in the ranked
phenoscore list, Supplementary Table S1). The strains were
screened for their growth rates with and without 8% (v/v)
ethanol supplemented to the media (Figure 5B). As shown in
Figure 5C, the overexpression of Zms4 and Zms13 negatively
impact growth rate in ethanol compared with the pEmpty
control, harboring the same Pgap promoter plasmid in the
absence of any sRNA overexpression. In contrast, overexpression
strains of Zms8, Zms9, and Zms16 (Supplementary Table S2)
show higher relative growth rates relative to the same pEmpty
strain control. Among the set of sRNAs screened here, Zms8
has both the highest phenoscore as well as a significant positive
impact on growth in ethanol stress.

To discern if these sRNAs respond specifically to ethanol or
could be involved in other stress responses, these overexpression
strains were grown in acetate stress as well (Figure 5D). Along
with the desired sugar monomers, acetic acid is released during
the industrial pretreatment process of cellulose and is a strong
growth inhibitor (Mills et al., 2009). Only overexpression of

FIGURE 4 | Novel sRNAs in Z. mobilis discovered by sRNAscout and confirmed by northern blot (A–F). Z. mobilis sRNA candidates among the top 50 by
phenoscore in aerobic vs. anaerobic conditions were tested by northern blot to verify detectable expression. In each blot, the first lane includes 30 µg total RNA of
wild-type Z. mobilis 8b grown in anaerobic conditions and collected in stationary phase. The second lane includes 8X174 DNA/HinfI dephosphorylated markers.
Each confirmed sRNA is shown along with its expression profile according to the RNA-seq data. A dashed line marks the genomic region predicted as an sRNA
candidate by sRNAscout and a solid rectangle marks the location of the complementary probe designed for northern blotting.
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Zms4, Zms6, Zms8, and Zms9 increased growth rate up to∼30%
while overexpression of Zms10 significantly decreased growth
rate in acetate compared to the control strain. These results
suggest that Zms4, Zms8, and Zms9 (but not Zms16) may play
general stress response roles and be beneficial for a number of
strain engineering goals.

Lastly, following the analysis of the previously discovered and
experimentally confirmed sRNAs that were predicted by this
analysis to be relevant to the engineering of an enhanced ethanol
tolerance phenotype, the six newly discovered sRNAs confirmed
by Northern blotting analysis (Figure 4) were also screened
for their impact on growth rate. Importantly, we identified
that overexpression of one additional newly identified sRNA
(negsRNA302, Supplementary Table S2) increased growth rate
by 43% in 7% (v/v) ethanol supplemented RMG relative to the
control strain harboring the pEmpty plasmid.

Multi-sRNA overexpression plasmids were also constructed
(Figure 6A) to determine if a combinatorial effect could
be seen by overexpressing multiple sRNAs that positively
impacted growth alone. Zms16 was co-overexpressed with both
negsRNA302 and possRNA223, and Zms16, Zms8, and Zms9
were also overexpressed together. Zms16, 8, and 9 were chosen
for co-overexpression based upon their improvement in ethanol
tolerance (Figure 5). We also chose to include overexpression
of Zms6 with Zms16 as it was the known sRNA with the
highest predicted phenoscore (Table 2). The highest performing
of these sRNAs, Zms16, was paired with the two newly
discovered sRNAs that improved tolerance, negsRNA302 and
possRNA223. Importantly, we identified that co-overexpression
of negsRNA302 and Zms16 further increased growth rate
by approximately twofold in 7% (v/v) ethanol supplemented
RMG when compared to the pEmpty control. Interestingly,
the growth rate increase exhibited by the strain overexpressing
the negsRNA302/Zms16 combination is higher than strains
overexpressing negsRNA302 and Zms16 alone (Figure 6B).
This result indicates that there could be a super additive
effect on ethanol tolerance by over-expressing both sRNAs. It
is worth noting that only this specific combination positively
impacts growth rates under 7% (v/v) ethanol supplemented
RMG as other combinations of Zms16 overexpression with
other sRNAs did not results in a similar enhancement.
The overexpression of Zms16 with Zms6, which showed no
significant change in growth under ethanol stress (Figure 5),
together showed similar increase in growth when Zms16 is
expressed alone (Figure 6B).

DISCUSSION

The REFINE approach exploits transcriptome data and
computational sRNA prediction tools to inform the engineering
of complex phenotypes that exploit the tuning of intracellular
sRNA levels. A user guide for this pipeline has been included
in Supplementary Section 1.3. The bioinformatics process
includes a novel pipeline that we have established, sRNAscout,
for identifying sRNAs that impact the phenotype of interest
without the need for previous functional characterization. By

FIGURE 5 | Z. mobilis sRNAs identified by the REFINE process impact stress
tolerance. (A) Each previously identified Z. mobilis sRNA was cloned into a
plasmid under the constitutive Pgap promoter for overexpression.
(B) Z. mobilis strains each carrying an sRNA overexpression plasmid were
grown in 300 µL plate cultures in two conditions: media only and media with
added stress conditions (8% v/v ethanol or 12 g/L acetate). Cell density
(OD600) was measured every 15 min for 24 h by the BioscreenC and
maximum growth rates were calculated. (C,D) Growth rates of each strain
were normalized to their own growth rate in the no-stress condition (gray bars,
error bars = SD, n = 3). The relative growth rate of each overexpression strain
was compared by t-test to the pEmpty plasmid strain which lacks an sRNA
(∗p < 0.05). Multiple sRNAs show significant impact in 8% v/v ethanol stress
(C) and in 12 g/L sodium acetate stress (D).

applying this pipeline in this study, we identified six novel
sRNAs in Z. mobilis and we confirm their cellular expression via
Northern blotting analysis. Additionally, we introduce a new
pipeline, sRNAphenoscore, that assigns each sRNA candidate
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FIGURE 6 | Novel sRNAs identified through REFINE impact Z. mobilis ethanol stress tolerance. Newly identified sRNAs in Z. mobilis were cloned into plasmids under
the Pgap promoter for overexpression. Multi-overexpression plasmids were created with multiple sRNAs being expressed under separate Pgap promoters (A). Strains
were grown under stress in RMG supplemented with 7% ethanol. The relative growth rate of each overexpression strain was compared by t-test to the pEmpty
plasmid strain which lacks an sRNA (error bars = SD, n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001) (B).

predicted by sRNAscout a score representing its predicted impact
on the target phenotype. In this way, we demonstrate prioritizing
the list of predicted sRNAs for follow-up characterization to
those most likely useful for engineering strains with improved
ethanol tolerance.

It is worth noting that when comparing results obtained for
Z. mobilis from the sRNAscout algorithm to results obtained by
the existing SIPHT algorithm (Livny, 2012), which has been used
by several groups for the prediction of novel sRNA candidates
(Khoo et al., 2012; Cho et al., 2014; Tsai et al., 2015), SIPHT
predicted only four candidate regions, and only one of the two
experimentally validated SIPHT regions (Genomic coordinates:
1079429-1080003, Zms1) was also found by sRNAscout. This
comparison illustrates that sequence-based and transcriptome-
based approaches predict different kinds of sRNA candidates.
We also suspect that the sRNAscout tool offers a narrower
pool of potential sRNAs of interest, targeting the list of
identified transcripts to those that could most likely impact a
phenotype of interest.

As strain engineering increasingly moves to fully automated
systems, an approach like REFINE is attractive. With
transcriptome data from two or more growth conditions,
REFINE can computationally identify impactful genomic regions
that can be targeted for genetic manipulations. Mutant strains
can be cloned and screened in large libraries to find the most
impactful mutations and then explore which combinations
produce the fittest strain. Note that for high-throughput-
automated strain development, an expression-based approach
like sRNAscout, which finds any/all impactful genomic regions

for mutation and screening, is preferable to a purely sequence-
based approach. This is because it can identify any intergenic
transcripts expressed differentially under the stress conditions,
including undiscovered transcripts that may not be sRNAs,
whereas a sequence-based approach would exclude these other
non-sRNA discoveries.

A challenge we foresee for full automation is the identification
of transcript ends for cloning. As shown in Figure 3, sRNAscout
ends do not fully align with ends discerned by RACE in previous
studies. sRNAscout identifies peaks of expression and, if <200 nt,
the program expands the sRNA candidate region to 200 nt. For
the transcripts to be functional as regulators, they must include
the binding sites of their targets and exhibit sufficiently similar
folding with the native transcripts. To identify the ends of sRNA
candidates, the user may employ a computational approach like
DeepBound (Shao et al., 2017) or a traditional experimental
approach like 5′- and 3′-RACE. In some cases, it may be feasible
to clone and test the entire intergenic region or to split it into
multiple short fragments for testing. This will depend on the
volume of cloning and screening that can be done and on the
depth of sRNA characterization desired (and already existing for
that organism). Of the two most impactful sRNAs predicted by
REFINE, that have also been previously characterized, Zms16 and
Zms8, the transcript lengths predicted by sRNAscout were longer
and did not contain one end of Zms8. If the ends of negsRNA302
were to be more stringently characterized, overexpression could
yield a larger positive impact on growth under ethanol stress
assuming the native sRNA sequence was not fully captured by
sRNAscout. Additionally, we predict that if the impactful sRNAs
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were to be encoded for overexpression in the genome, without use
of plasmids, the fitness of the strains could be further advanced.

It is important to note that the sRNAs discovered by
REFINE may or may not be direct regulators of the phenotype
of interest. The native regulatory landscape is very complex;
as such, some sRNAs may regulate multiple stresses while
others play a very specific role. This bioinformatics approach
is designed to predict the direct impacts because it scores
sRNA candidates based on the direct binding of sRNA–mRNA
pairs predicted by IntaRNA. But the differential expression of
these mRNA targets could arise from direct sRNA regulation,
indirect regulation, or no real regulation at all. It is impossible
to decouple these things without more data; however, what
this analysis validates if that this level of mechanistic detail
is ultimately not necessary to screen and identify sRNAs
that can be manipulated to affect a specific phenotype of
interest. We hypothesize the two newly discovered sRNAs
identified in this study that impacted ethanol tolerance,
negsRNA302 and possRNA223, play regulatory roles in pathways
relevant to ethanol tolerance, and could have implications
in the genetic engineering for improvement of ethanologenic
strains in the future. In the case of the Z. mobilis sRNA
overexpression strains constructed and screened here using
previously discovered sRNAs, we found that overexpression
of Zms16 showed impact specific to ethanol stress whereas
overexpression of Zms8 and Zms9 had a positive impact on
growth rate under both ethanol and acetate stress. Interestingly,
overexpression of Zms4 from this promoter only significantly
positively impacted growth rates under acetate stress and
indeed negatively impacted growth rate under ethanol stress.
Additionally, sRNAs may work together with other sRNAs
or regulators to coordinate the complex phenotype, this was
seen through the beneficial increase in growth rates under
ethanol stress observed from the co-overexpression of both
Zms16 and negsRNA302.

Depending on the organism and available genomic
manipulation methods, sRNA candidate overexpression on a
plasmid may be altered using a new promoter or replaced
by genomic overexpression, deletion, or knockdown. It is
important to note that overexpression on a plasmid removes
the transcript from its native regulatory context and may not
give the full picture of an sRNA candidate’s phenotypic impact.
The overexpression of some of these sRNAs under the inducible
Ptet promoter in the pEZ plasmid (Yang et al., 2016b) has also
been studied. An unpublished work in progress (Han et al., under
review) found that overexpressing combinations of Zms4/Zms6,
Zms4/Zms16, and Zms4/Zms6/Zms16 in this plasmid can
positively impact growth of Z. mobilis in 6% ethanol, indicating
that Zms4 could be co-overexpressed with other sRNAs to
have a positive impact on growth. However, Zms16/Zms6
overexpression did not show a positive effect as it has in this
study using the pBB1MCS2 plasmid. However, the focus of this
work is a new method of high-throughput strain engineering,
and thus investigating the impact of multiple plasmids and
promoters on the desired phenotype does not contribute to the
overarching goal. Considering the desired application of strain
engineering (rather than sRNA characterization), transcripts that

can be successfully manipulated to achieve a new phenotype
carry the most value, so those very sensitive to additional layers
of regulation for their activity may not be as desirable.

Overall, we expect that the REFINE method presented in
this work can be widely applicable for strain engineering as
increasing availability of RNA-seq data and accessibility of
high-performance computing resources continue to increase for
organisms of biotechnological interest.
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