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Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease
in the Western world, and it’s likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other
components of metabolic syndrome. However, optimal treatment for NAFLD has not been established yet.
Therefore, this study investigated the hepatoprotective effect of silymarin on fructose-induced nonalcoholic fatty
liver disease in rats.

Methods: Thirty male Wistar rats were randomly divided into five groups; normal control group that consumed tap
water, silymarin control group that consumed tap water and silymarin (400 mg/kg/day), fructose control group that
consumed 20% fructose solution, treatment group that consumed 20% fructose solution and silymarin (200 mg/kg/
day), and another treatment group that consumed 20% fructose solution and silymarin (400 mg/kg/day). Hepatic
triglyceride, serum lipid profile, lipid peroxidation, antioxidant level, morphological features, and histopathological
changes were investigated. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey
multiple comparison test. Statistical significance was determined at p < 0.05.

Results: This study showed that the fructose control group had a significantly high value in the stage of steatosis
grade, hepatic triglyceride, serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, alanine
aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde concentration as compared to the
normal control. However, significantly low values of reduced glutathione and plasma total antioxidant capacity
were found. The altered parameters due to fructose drastic effect were ameliorated by silymarin treatment.

Conclusions: The fructose control group developed dyslipidemia, oxidative stress, and mild steatosis that are the
characteristics features of NAFLD. However, silymarin-treated groups showed amelioration in oxidative stress,
dyslipidemia, and steatosis.

Keywords: Nonalcoholic fatty liver disease, Silymarin, Lipid peroxidation, Dyslipidemia, Total antioxidant status,
Reduced glutathione
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Background
Non-alcoholic fatty liver disease (NAFLD) is one of the
most common causes of chronic liver disease in the
Western world, and its prevalence is likely to parallel the
increasing prevalence of diabetes, obesity, and other
components of metabolic syndrome [1]. NAFLD has a
wide spectrum of liver damage which ranges from sim-
ple steatosis to inflammation and then to non-alcoholic
steatohepatitis (NASH), fibrosis, and cirrhosis [2]. NAFL
D is now thought of as the hepatic manifestation of
metabolic syndrome and is by now regarded as one of
the most common liver diseases worldwide. It is esti-
mated that about 20–30% of the general adult popula-
tion of most Westernized countries have hepatic
steatosis and that 2–3% of adults even suffer from
NASH [3, 4].
Fatty liver disease (FLD) is a growing public health

problem worldwide. The global prevalence of NAFLD
based on a meta-analysis study showed about 25.24% with
the highest prevalence in the Middle East and South
America and lowest in Africa. Metabolic comorbidities as-
sociated with NAFLD included obesity (51.34%), type 2
diabetes (22.51%), hyperlipidemia (69.16%), hypertension
(39.34%) and metabolic syndrome (42.54%) [5].
There is growing evidence in both animal models and

human studies suggesting that high dietary intake of
fructose is an important nutritional factor in the devel-
opment of the metabolic syndrome and its associated
complications. It was shown that fructose overconsump-
tion in humans’ leads to dyslipidemia and ectopic lipid
deposition; along with increased hepatic insulin resist-
ance (IR) [6, 7]. Calorically sweetened beverage intake
has been related to the risk of NAFLD. The increase in
plasma triglyceride concentrations by sugar-sweetened
beverages can be attributed to fructose rather than glu-
cose in sugar [8].
Silymarin is a natural compound that is present in spe-

cies derived from Silybum marianum, which is com-
monly known as milk thistle. Silymarin belongs to the
Aster family (Asteraceae or Compositae). The mature
plant has large brilliant purple flowers and abundant
thorns. The plant grows in places with sufficient sun ex-
posure [9]. Silymarin is a complex mixture of flavono-
lignan isomers, namely silybin, isosilybin, silydianin and
silychristin with an empirical formula C25H22O10. Its ac-
tive constituents are collectively known as silymarin
[10]. The plant contains at least seven flavolignans and
the flavonoid taxifolin. The most important flavolignans
present include silybin, silydianin, and silychristin. Sily-
bin represents between 50 and 70% of the extract from
silymarin. Silymarin has been used worldwide for many
years as a complementary alternative medicine because
of the beneficial effects associated with the treatment of
hepatic diseases [11].

A study was done to assess the effects of metformin,
pioglitazone, and silymarin on the treatment of NAFLD
showed that all drugs are beneficial in improving bio-
chemical indices in patients with NAFLD. However,
changes in aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) in silymarin group showed more
improvement than the other groups and the average dif-
ference between changes were significant between sily-
marin and metformin group [12]. A study done on an
open-label, prospective randomized study to compare
the therapeutic effects of silymarin and vitamin E in
NAFLD at the end of the 12-week treatment period
showed that there was a significant decrease in the
serum AST and ALT levels in both treatment groups.
The decrease in AST level in the Silybum marianum
group as compared to the vitamin E group was signifi-
cant. In general Silybum marianum and vitamin E treat-
ment appeared to be significantly effective in the
biochemical improvement and decreasing the ALT and
AST levels in patients with NAFLD [13, 14].
Furthermore, several groups of drugs have been sug-

gested according to the pathomechanisms of liver injury
in NASH; including antioxidants, carnitine, and insulin
sensitizers. However, while some agents showed modest
improvements in liver function tests (LFTs) and even
histologic parameters, the agents mentioned above are
generally used to modify risk factors than as primary
therapy for NASH [15]. Therefore in this study, we in-
vestigated the hepatoprotective effect of silymarin on
fructose-induced NAFLD.

Methods
The study area and period
The study was conducted at Black Lion Collage of
Health and Medical Sciences, School of Medicine, De-
partment of Biochemistry Master of Science laboratory,
Department of Pharmaceutics and Social study labora-
tory, and Department of Microbiology and Immunology
laboratory from November 2018 to June 2019.

Ethics statement
The experiment was performed after the protocol was
approved by Addis Ababa University, College of Health
and Medical Science, Department of Biochemistry Re-
search and Ethical Review Committee meeting number
DRERC: 06/18 with a protocol number of 9/18 following
the code of ethics of animal experiments which comply
with national and international scientific and ethical
guidelines.

Study animals
Thirty male Wistar Albino rats weighing (151–170 g)
were obtained from the animal experiment center of
the Ethiopian Public Health Institute. Animals were
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maintained at 23 ± 1 °C room temperature and 12/12 h
dark/light rhythm. The rats were acclimatized for two
weeks before the experiment started. Female rats were
excluded from the study because of their cyclic hor-
monal variations.

Treatment protocol and animal grouping
The experimental rats were randomly divided into five
groups consisting of 6 rats each group. The experimental
animals in different groups were as follows:

� Normal control group (NC) - a group that took
standard chow & water only.

� Fructose control group (FC) - a group that took 20%
fructose solution and standard chow.

� Silymarin control group (SC) - treatment control
group that took standard chow, water and 400 mg/
kg silymarin orally as a treatment.

� Fructose + Silymarin (200 mg/Kg) group (FTH) – a
group that took standard chow, 20% fructose
solution and 200 mg/kg silymarin orally as a
treatment.

� Fructose + Silymarin (400 mg/Kg) group (FFH) – a
group that took standard chow, 20% fructose
solution and 400 mg/kg silymarin orally as a
treatment.

Drugs/chemicals
Silymarin was purchased from micro labs (Karnataka,
India). Most of the reagents were purchased from the
Research Lab Fine Chem Industries (Mumbai, India).
The kits for total antioxidant capacity, reduced glutathi-
one, and lipid peroxidation parameters were purchased
from HiMedia (Mumbai, India). All the chemicals used
in the experiments were of analytical grade.

Preparation of fructose and silymarin
The fructose solution was prepared according to Mami-
kutty et al [16] by dissolving 20 g pure fructose crystal-
line purchased from Kibbutz Maanit (Maanit, Israel) in
100 ml of tap water (20% w/v). Silymarin was dissolved
in distilled water. The maximum amount of silymarin
solution given to the rats was decided by their weight
using 20ml/kg as a reference volume based on the
OECD’s (organization of economic corporation and de-
velopment’s) guidelines [17]. According to the guideline,
10 mg/ml and 20 mg/ml of silymarin were prepared for a
lower dose (200 mg/kg) and a higher dose (400 mg/kg)
respectively. The dose was established based on the le-
thal dose (LD-50) according to Radko and Cybulski [18].
Silymarin was administered orally for 8 weeks.

Biochemical studies
Tissue preparation
At the end of the experiment day (after eight weeks), the
rats were fasted overnight, anesthetized using light di-
ethyl ether, and the blood was collected through cardiac
puncture [19]. After that, the rats were sacrificed by cer-
vical dislocation, and the liver was isolated. The liver
was minced with sharp scissors in the proportion of 1:10
(w/v) ice-cold phosphate buffer saline (0.1 M; PH 7.4)
[20] and homogenized by using Bio-Gen PRO200
Homogenizer (USA). Then the homogenates were cen-
trifuged for 20 min at 4000 x g at 4 °C. Aliquots of ho-
mogenates were used for the determination of hepatic
malondialdehyde (H-MDA) and reduced glutathione (H-
GSH).

Measurement of lipid profiles
Serum lipid profiles were measured with conventional
laboratory methods using an auto-analyzer (Mindrey BS-
200 Full Chemistry Analyzer, China).

Extraction of total lipid and assay of liver triglyceride
To prepare lipid extracts from liver tissues, 0.5 g (wet
weight) each of rat liver tissues was homogenized with
10ml of the chloroform/methyl alcohol mixture (2/1 by
volume), and then centrifuged at 2000 rpm for 20 min
according to Folch et al [21]. Briefly, the crude extract
was mixed thoroughly with 0.2 its volume of normal sa-
line, and the mixture was allowed to separate into two
phases, without interfacial fluff by centrifugation at 2400
rpm for 20 min. Then as much of the upper phase as
possible was removed by siphoning, and removal of its
solutes was completed by rinsing the interface three
times with small amounts of pure solvents upper phase
in such a way as not to disturb the lower phase. Finally,
the lower phase and remaining rinsing fluid were made
into one phase by the addition of methanol, and the
resulting solution was diluted to any desired final vol-
ume by the addition of a 2:1 chloroform-methanol
mixture.
After total lipid extraction, simple enzymatic deter-

mination of tissue triglyceride was done according to
Danno et al [22]. Briefly, evaporate the extraction on a
centrifugal concentrator and then redissolved the residue
in a small amount of benzene. Transfer this new mixture
to a 15ml falcon tube and diluted to the mark with
more benzene. Thereafter, aliquots of the known work-
ing standards and the liver lipid extracts in benzene were
transferred into test tubes. Then the solvents were evap-
orated with a centrifugal concentrator and redissolved
the triglyceride standards and liver samples in 30 μL of
tert-butyl alcohol and 20 μL of the Triton X-100/methyl
alcohol mixture. These redissolved materials were mixed
carefully. To each test tube, 1.0 ml of enzymatic reagent
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was added and mixed carefully again. Then the stan-
dards, samples, and appropriate blanks were incubated
for 18 min at 37 °C and then measured the absorbance at
505 nm vs. a reagent blank on Solar CM 2203 Spectro-
fluorometer (Russia).

Determination of lipid peroxidation
Lipid peroxide content was estimated according to the
method of Ohkawa et al [23]. Briefly, acetic acid de-
taches the lipid and protein of the tissue. The protein in
the reaction mixture was dissolved by the addition of so-
dium dodecyl sulfate (SDS). 2-thiobarbituric acid (TBA)
reacts with lipid peroxide, hydroperoxide, and oxygen la-
bile double bond to form the color products with ab-
sorption maxima at 532 nm. In this assay, 0.2 ml of
tissue homogenate was mixed with 1.0 ml of 20% acetic
acid. Subsequently, 0.2 ml of 8% aqueous SDS was mixed
in the above reaction mixture, the pH of the mixture
was adjusted at 4.0 using concentrated NaOH solution.
After adjusting the pH of the reaction mixture, 1.5 ml of
0.8% TBA solution and a sufficient amount of distilled
water were added to a final volume of 4.0 ml. Then the
reaction mixture was incubated in a boiling water bath
at 37 °C for 1 h. After cooling, 1.0 ml of distilled water
and 5.0 ml of butanol/pyridine mixture (15:1 v/v) were
added and mixed. The reaction mixture was then centri-
fuged at 10,000 x g for 15 min. The organic phase ob-
tained after centrifugation was used for measuring the
absorbance at 532 nm in Solar CM 2203 Spectro-
fluorometer.

Measurement of plasma total antioxidant capacity
A direct measurement method for total antioxidant cap-
acity using a new generation, more stable 2,2′-Azino-
bis(3-ethylbenzothiazoline-6-sulphonic acid) diammo-
nium salt (ABTS) radical cation was used to determine
the total antioxidant capacity (TAC) as previously de-
scribed by another study [24]. In principle, the reduced
ABTS molecule is oxidized to ABTS+ using hydrogen
peroxide alone in an acidic medium (the acetate buffer
30Mm, pH 3.6). In the acetate buffer solution, the con-
centrate (deep green) ABTS+ molecules stay more stable
for a long time. While it is diluted with a more concen-
trated acetate buffer solution at high pH values (the
acetate buffer 0.4M, pH 5.8), the color is spontaneously
and slowly bleached. Antioxidants present in the sample
accelerate the bleaching rate to a degree proportional to
their concentrations. This reaction can be monitored
spectrophotometrically and the bleaching rate is in-
versely related to the TAC of the sample. The reaction
rate is calibrated with Ascorbic acid standard for TAC
measurement assays, and the assay results are expressed
in mmol ascorbic acid equivalent/L. This procedure was
done according to the modified microplate assay

(improved method of the total antioxidant assay) for
TAC as described before by Gupta et al [25].

Estimation of free sulfhydryl group
The free sulfhydryl group was estimated by the method
of Ellman [26] as modified by Sedlak et al [27]. Briefly,
5–5′-dithiobis-2-nitrobenzoic acid (DTNB) is reduced
by -SH groups of glutathione in alkaline medium to pro-
duce one mole of 2-nitro-5-mercaptobenzoic acid per
mole of -SH group. Since the anion (2-nitro-5-mercapto-
benzoic acid) has an intense yellow color, it can be used
to measure the –SH group at 412 nm.

Determination of LFTs
At the end of the experimental period, the rats were
anesthetized using diethyl ether and blood was drawn
from the heart by cardiac puncture and collected into
serum separator test tubes (Guangzhou, China) for
serum and ethylenediaminetetraacetic acid tubes (EDTA
tube) (Guangzhou, China) for plasma. Serum activities
of ALT and AST were measured with routine laboratory
methods using an auto-analyzer (Mindrey, BS-200 Full
chemistry Analyzer, China).

Histopathological studies
Liver tissues were cut and fixed with 4% paraformalde-
hyde. The tissue slices were embedded in paraffin. Tis-
sue sections of 5 μm were stained with hematoxylin and
eosin [28] and histology results were read by a single in-
dependent pathologist, blinded to experimental design
and treatment groups using light microscope Leica
DM750 (Morrisville, USA). Steatosis, fibrosis, and dis-
ease activity score were semi-quantitatively evaluated ac-
cording to the standard criteria of grading and staging
for NAFLD [29].

Statistical analysis
Data were analyzed using Statistical Package for Social
Science (SPSS) software (V-16.00). Data were compared
using one-way ANOVA followed by posthoc Tukey’s test
to determine significant difference between groups. Fre-
quency data (pathologic grading of the fatty liver) were
analyzed. A p-values < 0.05 were considered statistically
significant.

Results
Effect of silymarin on food and liquid intake
The fructose control group consumed less standard
chow (67.69 g/day) than the normal control group
(114.36 g/day) and the silymarin control group (108.05
g/day) (p < 0.001). Silymarin either 200 mg/kg (70.07 g/
day) or 400mg/kg (70.52 g/day) treated group showed a
slightly higher chow consumption as compared to the
fructose control group (Fig. 1). The fructose solution
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Fig. 1 Effect of silymarin on food intake. Food intake were measured and recorded during eight weeks of the experiment time. NC = normal
control, FC = fructose control, SC = silymarin control, FTH = fructose + 200mg/kg silymarin, FFH = fructose + 400mg/kg silymarin

Fig. 2 Effect of silymarin on liquid intake. Liquid intake were measured and recorded during eight weeks of the experiment time. NC = normal
control, FC = fructose control, SC = silymarin control, FTH = fructose + 200mg/kg silymarin, FFH = fructose + 400mg/kg silymarin
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and tap water intake did not show any significant differ-
ence among groups, unlike their food consumption. The
fructose control group had a higher fructose solution in-
take (179.04 ml//day) than the normal control group
(171.27 ml/day) (Fig. 2).

Effect of silymarin on liver weight, liver weight/body
weight, body mass index and body weight gain
The body weight gain and body mass index did not show
a significant difference. However, the liver weight was
significantly higher (p < 0.05) in the fructose control
group as compared to the normal control group
(Table 1).

Effect of silymarin on serum and liver lipid profile
The fructose control group showed significantly higher
serum total cholesterol (TC) and low-density
lipoprotein-cholesterol (LDL-C) as compared to the nor-
mal control group (P < 0.05). However, their high-
density lipoprotein-cholesterol (HDL-C) was lower and
not statistically significant. In silymarin-treated groups:
TC, LDL-C, and HDL-C levels showed improvement
(Table 2). The Hepatic triglyceride (H-TG) and serum
triglyceride (S-TG) of the fructose control group pre-
sented significantly higher values as compared to the
normal control group and the silymarin control group (p
< 0.001). Both silymarin-treated groups exhibited signifi-
cant improvement in H-TG and S-TG (p < 0.05) (Table
2).

Effect of silymarin on hepatic MDA, GSH and plasma TAC
The fructose control group showed a significantly higher
hepatic malondialdehyde (H-MDA) as compared to the
normal control group (p < 0.001). Both silymarin-treated
groups were significantly prevented from lipid peroxida-
tion (Table 3). The fructose control group had lower
hepatic reduced glutathione (H-GSH) as compared to
the normal control group (p < 0.01). The 400 mg/kg
silymarin-treated group showed a significantly higher H-
GSH as compared to the fructose control group (p <
0.01). However, the 200mg/kg silymarin-treated group

did not show a statistical difference (Table 3). The fruc-
tose control group had low values of plasma total anti-
oxidant capacity (P-TAC) as compared to the normal
control group (p < 0.01). Both silymarin-treated groups
displayed a significantly higher P-TAC (p < 0.05) (Table
3).

Effect of silymarin on LFTs
The fructose control group displayed significantly higher
values of serum ALT and AST as compared to the nor-
mal control group (p < 0.05). Both silymarin-treated
groups demonstrated lower values of ALT and AST as
compared to the fructose control group (Figs. 3 and 4).

Effects of silymarin on gross hepatic manifestations
The liver of the normal control group was of moderate
texture, with a smooth surface and red-brown color
(Fig. 5a). In contrast, the fructose control group showed
an enlarged, bright red-brown color, and relatively hard
texture (Fig. 5b). Liver conditions of both silymarin-
treated groups demonstrated an intermediate phenotype
between those of the above two groups with doomed
red-brown color and relatively smooth surface (Fig. 5d
and e).

Effect of silymarin on histopathological manifestations
The liver lobules of the normal control group were dis-
tinct, and the liver cell cords were arranged regularly
(Fig. 6a). However, the fructose control group showed
typical steatosis accompanied by a few infiltrating cells
(Fig. 6b). The degree of hepatic injury including steato-
sis, cytological ballooning was attenuated by silymarin
(Fig. 6d and e).

Effect of silymarin on NAFLD scores (NAS)
Based on the NAS showed in (Table 4) below, the fruc-
tose control group fulfilled the steatosis score of 1.84.
The predominant distribution pattern of the steatosis
observed in the fructose control group was in zone 3 (3
rats) as well as in zone 1(3 rats). The silymarin-treated

Table 1 Effect of silymarin on liver weight, liver weight/body weight ratio, body mass index, body weight gain

Group Weight measurement

Liver weight(g) Liver weight/body weight (g/g) Body mass index (kg/m2) Body Weight Gain(g)

NC 6.24 ± 0.53 0.025 ± 0.002 5.66 ± 0.18 71.67 ± 27.05

FC 6.98 ± 0.24* 0.029 ± 0.003 5.70 ± 0.39 79.67 ± 19.36

SC 6.34 ± 0.41 0.026 ± 0.002 5.65 ± 0.19 71.83 ± 9.15

FTH 6.71 ± 0.33 0.027 ± 0.003 5.81 ± 0.48 74.33 ± 17.67

FFH 6.50 ± 0.36 0.026 ± 0.004 5.75 ± 0.28 72.67 ± 25.90

At the end of the trial liver weight, liver weight/body weight ratio, body mass index and body weight gain were measured and calculated. NC normal control, FC
fructose control, SC silymarin control, FTH fructose + 200 mg/kg silymarin, FFH fructose + 400 mg/kg silymarin. Data were presented as mean ± SD. N = 6 for each
group. * p < 0.05 vs. NC
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groups were prevented from liver steatosis according to
NAS (Table 4).

Discussion
Our study aimed to evaluate the hepatoprotective effect
of silymarin in fructose-induced NAFLD rats. Many
studies investigating the influence of diet on liver fat
using a high-calorie diet that leads to a significant in-
crease in liver fat content were reviewed elsewhere be-
fore [30, 31]. NAFLD is a disease that can be defined by
evidence of hepatic steatosis either by imaging or by
histology first and secondly confirming whether there
are no causes for secondary hepatic fat accumulation
such as significant alcohol consumption, use of steato-
genic medication, or hereditary disorders [32]. Our study
used high fructose consumption as a method to induce
NAFLD and silymarin as a protective agent. Generally,
the hepatoprotective effect of silymarin could be sum-
marized; as an anti-inflammatory, antioxidant, antiprolif-
erative, antilipidemic, antifibrotic, nuclear expression
regulation, mitochondrial membrane stabilization, im-
proved insulin resistance, preserving hepatic mitochon-
drial bioenergetics, and decreased elevation of AST and
ALT in serum as described before [33–38].
In this study, the liquid intake was not statistically sig-

nificant, and this showed similar findings revealed by
Abdulla et al [39]. Our study showed that fructose con-
sumption reduces food intake. This finding was sup-
ported by a previously described finding in which
fructose in either 20% or 10% showed a significant

reduction in food intake [40]. However, another study
showed fructose consumption in either 5% or 10% did
not reduce food consumption [41]. In our study, sily-
marin treatment did not bring any significant change in
standard chow consumption. This result was also rein-
forced by another study [42]. Decreased standard chow
consumption due to fructose solution might be overall
due to fructose’s ability to compensate the daily calorie
requirement of the rats.
Our findings showed that fructose consumption for

eight weeks did not exhibit a significant change in body
weight gain. This finding was in agreement with a study
done on the C57BL/6 mouse model that showed the
least impact of fructose on body weight gain [43]. But
some other studies revealed that fructose had a highly
positive impact on body weight gain [44]. Another study
also showed that mice fed with HFD for 14 weeks devel-
oped significantly higher body weight and silymarin
given orally caused the loss of body weight in diet-
induced obesity mice to some extent [45]. However, an-
other study also showed that silymarin did not affect
body weight and food intake [46].
In our study, the Liver weight of the fructose control

group increased significantly as compared to normal
control. This finding was supported by another finding
which revealed either fructose alone or in combination
with a high-fat diet brought a significant increase in liver
weight [47]. This might be due to ectopic lipid accumu-
lation in the liver. One study showed that 12 weeks of
fat-induced liver weight gain was significantly reduced

Table 2 Effect of silymarin on serum and liver lipid profile

Group Lipid Profile of Rats

LDL-C (mg/dl) TC (mg/dl) HDL-C (mg/dl) S-TG (mg/dl) H-TG (mmol/g)

NC 5.50 ± 2.43 39.00 ± 4.77 17.00 ± 2.28 39.17 ± 5.52 0.5 ± 0.01

FC 9.00 ± 2.37* 53.83 ± 7.91* 12.17 ± 3.54 57.83 ± 8.10** 0.57 ± 0.03***

SC 6.00 ± 1.79 42.50 ± 6.95 15.83 ± 3.31 42.83 ± 6.05 ## 0.52 ± 0.01 ###

FTH 6.83 ± 1.94 50.67 ± 7.89 12.67 ± 3.08 45.50 ± 9.65 # 0.54 ± 0.02 #

FFH 6.67 ± 1.21 48.50 ± 10.84 15.33 ± 2.58 44.17 ± 4.96 # 0.53 ± 0.02 #

At the end of the experiment serum and liver lipid profile were measured. NC normal control, FC fructose control, SC silymarin control, FTH fructose + 200 mg/kg
silymarin, FFH fructose + 400 mg/kg silymarin. Data were presented as mean ± SD. N = 6 for each group. * p < 0.05 vs. NC; ** p < 0.01 vs. NC; *** p < 0.001 vs. NC
and # p < 0.05 vs. FC; ## p < 0.01 vs. FC; ### p < 0.001 vs. FC

Table 3 Effects of silymarin on H-MDA, H-GSH and Plasma TAC

GROUP H-MDA (nmol/g tissue) H-GSH (μmol/g tissue) P-TAC (nmol AAEAC/L)

NC 52.65 ± 3.49 37.98 ± 1.07 0.933 ± 0.001

FC 67.60 ± 3.21*** 33.93 ± 0.91*** 0.927 ± 0.002***

SC 56.21 ± 4.99 ## 36.53 ± 0.89 ## 0.931 ± 0.002 ##

FTH 59.77 ± 5.40 # 35.49 ± 0.98 0.930 ± 0.002 #

FFH 57.63 ± 4.48 ## 36.35 ± 0.93 ## 0.930 ± 0.001#

At the end of the experiment the H-MDA, H-GSH and Plasma TAC were measured. NC normal control, FC fructose control, SC silymarin control, FTH fructose + 200
mg/kg silymarin, FFH fructose + 400 mg/kg silymarin. Data were presented as mean ± SD. N = 6 for each group. *** p < 0.001 vs. NC and # p < 0.05 vs. FC; ## p <
0.01 vs. FC
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Fig. 3 Effect of silymarin administration on serum alanine aminotransferase. NC = normal control, FC = fructose control, SC = silymarin control,
FTH = fructose + 200mg/kg silymarin, FFH = fructose + 400mg/kg silymarin

Fig. 4 Effect of silymarin on serum aspartate aminotransferase. NC = normal control, FC = fructose control, SC = silymarin control, FTH = fructose +
200mg/kg silymarin, FFH = fructose + 400mg/kg silymarin
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by 5 weeks of silymarin treatment [48]. However, in our
study, silymarin treatment did not show significant im-
provement in liver weight gain.
In our study, serum TG, LDL-C, and TC were signifi-

cantly higher and this finding was similar to other stud-
ies done on either fructose or fructose with a high-fat
diet that showed a significant change in plasma TG,
LDL-C, and TC [49, 50]. In our finding, silymarin in ei-
ther dose did not show significant improvement except
on the S-TG level. This finding was supported by a study
that showed oral administration of silymarin did not
affect the TC concentration of high fructose high choles-
terol diet-induced NAFLD. However, it significantly re-
duced the LDL-C level [51]. Another study revealed that
serum TC, TG, and TC values showed improvement in
silybin-treated groups [52]. In our study, silymarin
treated groups showed significantly low H-TG level. An-
other study also reinforced our finding [53].
The fructose control group showed significantly higher

ALT and AST levels in this study and these were consid-
ered biomarkers for liver injury. Other previous findings

were in agreement with this result [54, 55]. In our study,
both doses of silymarin treatment brought improvement
in serum ALT and AST concentrations. Other studies
also showed similar results in different toxic and high fat
diet-induced liver injury when treated with silymarin
[56].
In our study, elevated levels of H-MDA, reduced levels

of H-GSH, and TAC of the plasma were observed in the
fructose control group. This finding was also indicated
in a previous study [57]. Another study on fructose-
sweetened liquid showed the use of products of lipid
peroxidation as markers of oxidative stress [58]. Fructose
produces damaging effects in hepatocytes because it is
highly reactive as a reducing agent and a precursor of
advanced glycation end product (AGE). The liver pro-
motes the removal of high levels of fructose aggressively
from the bloodstream to prevent the damaging effects of
glycation/fructation on serum lipids and proteins. Gly-
cated/fructated proteins not only show impaired func-
tions but are also more susceptible to oxidative damage.
Thus proteins are ultimately converted into toxic AGEs

Fig. 5 Rat gross hepatic characteristics. NC = normal control, FC = fructose control, SC = silymarin control, FTH = fructose + 200mg/kg silymarin,
FFH = fructose + 400mg/kg silymarin. a NC- with smooth texture and red brown color; b FC- rough texture and bright red brown color; c SC- red
brown color; d FTH- red brown color; e FFH- red brown color
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[59]. In our study, silymarin-treated groups significantly
reduced H-MDA while increased H-GSH and TAC of
plasma. This finding was supported by previous studies
[60–62].
The normal control group had a relatively small size,

smooth texture, and red-brown liver. The fructose con-
trol group had a large, hard texture, and bright red-
brown liver. The relative reduction in brightness and
size was observed in both silymarin-treated groups. This
finding was similar to a previous study [63]. The size in-
crement in the liver might be due to the higher numbers
of lipid droplets deposited in the hepatocyte cytoplasm.
The histopathological finding showed the ectopic lipid

accumulation in the liver and this might be due to

fructose overconsumption which led to de novo lipogen-
esis. Both doses of silymarin prevented liver steatosis in
our finding. This finding was in agreement with a study
done on hepatoprotective effect of silymarin on different
diet combinations to induce steatosis [64].

Conclusions
This study concluded that high fructose consumption
caused the development of dyslipidemia, oxidative stress,
and steatosis which are the characteristics feature of
NAFLD. These problems were ameliorated through sily-
marins treatment by improving the liver function and
lipid profile panels. Fructose-induced NAFLD was pre-
vented by silymarin via inhibition of lipid peroxidation

Fig. 6 Photomicrographs of liver samples stained with Hematoxylin & Eosin (X40 magnification, Indicate steatosis, indicate lobular
inflammation). NC = normal control, FC = fructose control, SC = silymarin control, FTH = fructose + 200mg/kg silymarin, FFH = fructose + 400mg/
kg silymarin. a No fatty change in NC group; b the micrographs showed steatosis in the FC group; c no fatty change on SC group; d little
improvement of stetosis in FTH group; e better improvement of stetosis and lobular inflammation in FFH group. The scale bar is 10 μm in a, b, c,
d and e micrographs
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through a regulatory property of membrane integrity
and their oxidant scavenging activity through increased
intracellular glutathione level. Silymarin treatment with
a higher dose (400 mg/kg) had better efficacy than a
lower dose (200 mg/kg) on treating NAFLD.
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Table 4 Histopathological NAS

NAFLD Activity Score GROUPS

NC FC SC FTH FFH

Steatosis grade 0 0.83* 0.17 0.50 0.33

Location of steatosis) 0 0.50 0 0 0

Microvesicular steatosis 0 0.17 0 0 0

Lobular inflammation 0 0.17 0 0 0

Fibrosis stage 0 0 0 0 0

Microgranulomas 0 0 0 0 0

Large lipogranulomas 0 0 0 0 0

Portal inflammation 0 0 0 0 0

Liver cell injury (ballooning) 0 0.17 0 0 0

Acidophil bodies 0 0 0 0 0

Pigmented microphages 0 0 0 0 0

Mega mitochondria 0 0 0 0 0

Mallory’s hyaline 0 0 0 0 0

Glycogenated nuclei 0 0 0 0 0

Total sum 0 1.84 0.17 0.50 0.33

Diagnostic classification for NASH Not steatosis Possible/border line Not steatosis Not steatosis Not steatosis

Histopathological NAS. NC normal control, FC fructose control, SC silymarin control, FTH fructose + 200 mg/kg silymarin, FFH fructose + 400mg/kg silymarin. Values
are mean (n = 6) for each group. * p < 0.05 vs. NC
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