
Frontiers in Oncology | www.frontiersin.org

Edited by:
Jernej Kovac,

University Medical Center Ljubljanaju,
Slovenia

Reviewed by:
Emil Bulatov,

Kazan Federal University, Russia
Ribhav Mishra,

Northwestern University,
United States

*Correspondence:
Yubao Li

liyubao@lcu.edu.cn
Liangliang Li

lifeiyang2017@163.com

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Oncology

Received: 14 February 2022
Accepted: 17 March 2022
Published: 08 April 2022

Citation:
Wang T, Liu W, Wang C, Ma X,
Akhtar MF, Li Y and Li L (2022)
MRKNs: Gene, Functions, and
Role in Disease and Infection.

Front. Oncol. 12:862206.
doi: 10.3389/fonc.2022.862206

REVIEW
published: 08 April 2022

doi: 10.3389/fonc.2022.862206
MRKNs: Gene, Functions, and
Role in Disease and Infection
Tongtong Wang1, Wenqiang Liu1, Changfa Wang1, Xuelian Ma2,
Muhammad Faheem Akhtar1, Yubao Li1* and Liangliang Li1*

1 College of Agronomy, Liaocheng University, Liaocheng, China, 2 Veterinary Medicine, Xinjiang Agricultural University,
Urumqi, China

The makorin RING finger protein (MKRN) gene family encodes proteins (makorins) with a
characteristic array of zinc-finger motifs present in a wide array from invertebrates to
vertebrates. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) as RING finger E3 ligases that
mediate substrate degradation are related with conserved RING finger domains that
control multiple cellular components via the ubiquitin-proteasome system (UPS), including
p53, p21, FADD, PTEN, p65, Nptx1, GLK, and some viral or bacterial proteins. MKRNs
also served as diverse roles in disease, like MKRN1 in transcription regulation, metabolic
disorders, and tumors; MKRN2 in testis physiology, neurogenesis, apoptosis, and
mutation of MKRN2 regulation signals transduction, inflammatory responses,
melanoma, and neuroblastoma; MKRN3 in central precocious puberty (CPP) therapy;
and MKRN4 firstly reported as a novel E3 ligase instead of a pseudogene to contribute to
systemic lupus erythematosus (SLE). Here, we systematically review advances in the
gene’s expression, function, and role of MKRNs orthologs in disease and pathogens
infection. Further, MKRNs can be considered targets for the host’s innate intracellular
antiviral defenses and disease therapy.

Keywords: makorin RING finger protein (MKRN), disease, infection, regulation, role
INTRODUCTION

Orthologs of the Makorin RING finger protein (MKRN) have been found in fungi, plants, and
mammals (1). The mkrn gene family encodes proteins with unique zinc finger arrays, including
C3H motifs, a new Cys-His motif, and a RING finger. The ancestral founder of this gene family is
mkrn1. Another component, mkrn2, may have evolved 450 million years ago due to mkrn1 gene
duplication (2). mkrn3 is an intronless gene found on chromosome 15’s long arm in the Prader-
Willi syndrome (PWS) crucial area (3). mkrn4 has been previously known as MKRNB (4).

Ubiquitination is a post-translational modification mechanism involved in several biological
processes, including cell survival, differentiation, innate and adaptive immunity. Ub is covalently
coupled to the target protein with single or multiple 76 amino acid globular protein by activating
(E1), conjugating (E2), and ligating (E3) enzymes (5). These three types of enzymes work in a
certain order. E1 activates Ub before it is passed to an E2 conjugating enzyme. Following that, E3
ubiquitin ligases attach to E2 and the substrate, principally supplying the Ub chain to the substrate
and promoting isopeptide synthesis. Finally, the 26S proteasome degrades the target protein into
tiny peptide fragments (6, 7). Indeed, the presence of the RING finger domain is the most noticeable
structural feature of MKRNs, not only because this region is found in proteins that form repressive
April 2022 | Volume 12 | Article 8622061

https://www.frontiersin.org/articles/10.3389/fonc.2022.862206/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.862206/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liyubao@lcu.edu.cn
mailto:lifeiyang2017@163.com
https://doi.org/10.3389/fonc.2022.862206
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.862206
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.862206&domain=pdf&date_stamp=2022-04-08


Wang et al. MRKNs Gene and Functions
complexes to reduce target gene activity (8), but also because it is
a signature domain of E3 ubiquitin ligases (9). This review will
concentrate on the function of E3 ubiquitin ligases to mediate
substrate degradation by UPS of MKRN1, MKRN2, MKRN3,
and MKRN4. Special attention is also focused on the potential
role of MKRNs in physiological functions and disease regulation.
MKRN GENE AND EXPRESSION

Makorin RING finger protein (MKRN) is produced by the mkrn
gene family, distinguished by the intron-containing founder of
the intronless and a high level of sequence conservation in taxa
spanning from invertebrates to vertebrates. Nine mkrn family
loci spread throughout the human genome (2). So far, four
functional mkrn genes mkrn1, mkrn2, mkrn3 and mkrn4 have
been elaborated in literature. mkrn1 is ancestral gene of this
family and characterized in humans, mice, wallabies, chickens,
pigs drosophila, nematode and plants (10, 11). MKRN1 is
substantially and ubiquitously expressed in human organs,
including the hypothalamus and the amygdala, according to
expression assessments. When transfected into different cell
types, MKRN1 is expressed in the nucleus and cytoplasm.

The identification and characterization of the mkrn2 locus in
yellowtail fish aided research into the makorin gene family.mkrn2
orthologs are found in humans, mice, and zebrafish. mkrn2 is
assumed to have evolved from an ancestral mkrn1 by gene
duplication 450 million years ago, and it (mkrn2) partially
overlaps with the raf1 protooncogene in an antisense
transcriptional direction. MKRN2 is found in all human tissues
and cell lines, according to expression studies (12). MKRN2
expression was greater in primary leukemia samples than in age-
matched normal BM cells. However, no significant association was
found between MKRN2 expression levels in any leukemia
subtypes (13).

mkrn3 is specific to therian mammals, and it is an intronless
retrocopy of mkrn1 produced by reverse transcription of an
Frontiers in Oncology | www.frontiersin.org 2
mkrn1 mRNA molecule. The reverse transcriptase encoded by
autonomous retrotransposable elements catalyzes the production
of such retrogenes. Several more mkrn1 retrocopies have been
found in mammalian genomes, with the majority of these most
likely belonging to pseudogenes (14). The presence of mkrn3 in
the dog, mouse, and human genomes, together with its lack in the
chicken, fish, and platypus genomes, suggests that Prader-Willi
syndrome (PWS) acquired mkrn3 critical area about 80-90
million years before (15). MKRN3 is ubiquitously expressed in
adult tissues in both mice and humans, with the greatest level in
the testis. MKRN3 was found in high concentrations in the brain
and lung of human embryonic tissues.mkrn3 gene expression has
been identified in mice from the blastocyst stage and embryonic
days 8 to 17 and in ESCs (3).

However,mkrn4, a novel member of the makorin gene family,
was discovered in poeciliidae fish. MKRN4 has been discovered
as having gonad-specific expression in vertebrates (4). MKRN4
shares 81% of its amino acid identity with MKRN1, 46% with
MKRN2, and 52% with MKRN3 (16). mkrn4 gene has been
previously known as MKRNB, although it is also present in the
human genome, labelled as a pseudogene (4). MKRN4
expression investigation in medaka, zebrafish (ray-finned
fishes), and amphibians revealed a substantially gonad-biased
expression pattern, as did MKRN1 and MKRN2, with
particularly strong expression in the ovaries (2, 17).

The gene structures of the members of the makorin protein
family (human mkrn1, mkrn2, mkrn3, mkrn4) were analyzed in
Figure 1 to show their similarities and differences. mkrn1 and
mkrn2 have the same exons, but mkrn3 has only one exon,
mkrn4 has five exons. All of them possessed different exons about
location and sizes.
MKRN FUNCTIONAL DOMAINS

The mkrn gene family encodes different proteins with diverse
zinc-finger motif composition and structure, including
FIGURE 1 | Schematic gene structures of human mkrn1, mkrn2, mkrn3 and mkrn4 loci. Exons are represented as boxes. Number and locus of exons in genome
are indicated.
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numerous C3Hmotifs, a RING finger motif, and a Cys-His motif
(2, 3). C3H zinc fingers, which are present in various
ribonucleoproteins and may serve as RNA-binding proteins,
affect post-transcriptional RNA processing at numerous levels,
including alternative splicing, mRNA stability, mRNA
localization, and translation efficiency (18, 19). Most E3
ubiquitin ligases have the RING finger domain, which
mediates the transfer of ubiquitin from an E2 ubiquitin-
conjugating enzyme to target protein substrates (20). Figure 2
demonstrated the functional domains of human MKRN1,
MKRN2, MKRN3, and MKRN4. It showed that MKRN1,
MKRN2, and MKRN4 have the same number of C3H-type
zinc fingers, but MKRN3 has one less. They all share the
identical Cys-His (CH) and C3HC4-type RING finger domains
as makorins (Figure 2). Human MKRN1 has four isoforms that
encoded by a single mkrn1 gene and emerge via alternative
splicing and variable polyadenylation. MKRN1-long has four
C3H-type zinc fingers, a Cys-His-type motif, and a highly
conserved C3HC4-type RING finger domain. MKRN1-short1/
MKRN1-short3 human MKRN1 transcript variants are missing
the C-terminal ZF and the final 6 amino acids (aa) of the RING
finger domain (RFCC), which are required for binding the
second zinc ion, or the N-terminal segment (64 aa). Previous
research found that the pattern of pig MKRN1 expression is
similar to that of human MKRN1-short 2, which lacks the N-
terminal 64 aa seen in MKNR1-long (11) (Figure 2). Three C3H
zinc fingers flank the RING finger domain on its N-terminal side
and one C3H zinc finger on its C-terminal side in most plants
and invertebrates (but not in drosophila). The cysteine and
histidine residues motif (the Cys-His motif) is located between
the third C3H zinc finger and the RING domain. These domains
are associated with their function, as discussed below.
Frontiers in Oncology | www.frontiersin.org 3
MKRN1 FUNCTION

Transcription Regulation
MKRN1 can regulate RNA polymerase II-dependent
transcription. As a transcriptional factor, it inhibits not just c-
Jun/AP-1 transcriptional activity but also numerous other RNA
polymerases II-dependent transcriptional activators, including
p53, NF-kB (p65), and the human androgen receptor (hAR)
(21), its transrepression action is unrelated to its ubiquitin ligase
activity (22). MKRN1 has been reported to act downstream of
OCT 4, a transcriptional factor, suggested playing a role in
establishing and maintaining totipotency or pluripotency of
embryonic and undifferentiated stem cells, embryonal
carcinoma cells, and embryonic germ cells in vitro (23). The
pseudogene trans-regulation model is predicated on active,
imprinted transcription of mkrn1-p1 to stabilize mkrn1
mRNAs in trans and down-regulate mkrn1 transcripts to
exhibit the reported kidney and bone phenotypes (24).
According to this scenario, the mechanism and the pseudogene
should be maintained between species since their absence would
destabilize MRKN1 and significantly lower reproductive fitness
due to severe newborn mortality associated with its disruption.
However, mkrn1-p1 is solely found in mice and not in any other
species, including rats. To address this discrepancy, it was
postulated that other mammalian species employ distinct
mkrn1-derived pseudogenes to conduct the identical trans-
stabilization of mRNA generated by the mkrn1 source gene (25).

MKRN1 was also shown to be connected with several RNA-
binding proteins, indicating that it is a component of the
ribonucleoprotein complex. Because MKRN1 has four C3H
zinc finger domains associated with RNA-binding capability,
UV crosslinking and immunoprecipitation can be used to
FIGURE 2 | Functional domains of human MKRN1 (MKRN1-long), MKRN2, MKRN3 and MKRN4, the transcript variants of human MKRN1 (MKRN1-short1,
MKRN1-short2, MKRN1-short3) and porcine MKRN1. The makorins contain several C3H zinc finger domains (pink), a Cys-His (CH) motif (purple), a C3HC4 RING
domain (red), missing C3H motif (C3HDC) (green) and RING finger domain (RINGDCC) (aqua).
April 2022 | Volume 12 | Article 862206
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examine MKRN1’s ability to interact directly with RNA (CLIP)
(20, 26). MKRN1 has a hitherto unknown RNA-binding
function, according to this study.

MKRN1 as an E3 Ubiquitin Ligase
Ubiquitylation is well recognized for directing proteins for
destruction by the 26S proteasome, as well as internalization
and lysosomal targeting, transcriptional control, protein
interaction modulation, subcellular distribution change, DNA
repair, and transmembrane signaling propagation (27–30).
Ubiquitylation has been connected to almost every biological
activity, which is not unexpected. The great majority of E3 ligases
are RING-domain E3 ligases (RING) and RING-related E3s,
which include plant homeodomain (PHD), leukemia-associated
protein (LAP) finger proteins, and U-box family members (9,
31–33). More than 600 possible RING finger domain E3s are
encoded in the mammalian genome (34, 35). A classical RING
finger is a Zn2+-coordinating domain made up of a succession of
precisely spaced cysteine and histidine residues that facilitate E2-
dependent ubiquitylation (36, 37).

In the search for regulators of the ubiquitination and
proteasome-dependent degradation of human telomerase
reverse transcriptase (hTERT), mkrn1 was discovered as a new
RING finger gene expressing E3 ligase (38). MKRN1’s E3 ligase
activity, on the other hand, is linked to its gene structure in
distinct orthologs. MKRN1 has recently been demonstrated to
promote the degradation of several substrates via the ubiquitin-
proteasome system (UPS), including host proteins p53,
p21, FADD, PTEN, AMPK1 and 2, as well as viral proteins
or bacteria associated with intact RING finger domains
(11, 39–43).

MKRN1 interacts with viral proteins and polyubiquitinates
these proteins. MKRN1 preferentially targets PCV2 Cap lysine
residues and promotes polyubiquitination mediated destruction.
Mutation of either of the three lysine residues in the Cap protein
or histidine at residue 243 within MKRN1’s RING finger domain
abolished MKRN1’s E3 ligase function, making cells incapable of
triggering Cap ubiquitination and destruction (11). In a
proteasome-dependent manner, MKRN1 may also cause
WNVCp ubiquitination and destruction. Interestingly, MKRN1
degraded the WNV Cp mutant with amino acids 1 to 105
deleted, but not the mutant with amino acids 1 to 90 deleted.
When three lysine sites at positions 101, 103, and 104 of WNV
Cp were replaced with alanine, MKRN1-mediated ubiquitination
and mutant degradation were significantly inhibited, indicating
that these sites are required for ubiquitination (40).

Recombinant MKRN1 ubiquitinates entire M. tuberculosis in
vitro, indicating a new potential role for MKRN1 against
mycobacteria (44), suggesting MKRN1 E3 ligase acts as a
defensive effect during pathogens infection.

In HAdV-C5-infected cells, however, the cellular E3 ubiquitin
ligase MKRN1 is a unique precursor pVII interacting protein.
Surprisingly, the endogenous MKRN1 protein was degraded by
proteasomes during the late phase of HAdV-C5 infection in
various human cell lines (45), implying that HAdV may
have evolved a mechanism to avoid MKRN1-mediated host
defensive strategies to benefit their replication. MKRN1 was
Frontiers in Oncology | www.frontiersin.org 4
identified as a possible common target throughout several
viral infections.

Regulation of MKRN1 in Disease
MKRN1 is an E3 ubiquitin ligase that regulates metabolic diseases
and malignancies through the ubiquitination of substrate proteins
(39, 46). AMPK is implicated in a variety of metabolic disorders,
including obesity, type 2 diabetes, fatty liver syndrome,
cardiovascular disease, and cancer. AMPK is an appealing target
for controlling or curing metabolic illnesses due to its impact on
creating brown and beige adipose tissues and mitochondrial
regeneration. MKRN1 regulates AMPK/AMPK ubiquitination
and proteasome-dependent degradation to maintain its protein
homeostasis might have major systemic metabolic consequences,
allowing researchers to create innovative treatment techniques
that target not just AMPK but also its regulators. An oncogene
initiates the senescence process by activating p14ARF and then
p53, preventing cells from becoming tumorigenic in the tumor
suppression process (39). The endogenic p53 protein is tightly
regulated by ubiquitin proteasome degradation pathway induced
by negative regulator murine double minute 2 (MDM2), which
inhibits the oncogenic action of MDM2 and enhances p53-
dependent transactivation and apoptosis (47). However, the
tumor suppressor protein p53 is also a transcriptional activator
of PTEN, and this inhibits the downstream signaling of
phosphatidylinositide 3 (PI3)-kinase, leading to the inactivation
of AKT and, eventually, mTOR. In this mechanism, MKRN1may
cause the degradation of p14ARF, p53, and PTEN (39).

The adenomatous polyposis coli (APC) protein, which acts as a
negative regulator of the Wnt signaling pathway, is also a tumor
suppressor. MKRN1, an E3 ligase, has been shown to bind with and
ubiquitylate APC, increasing its proteasome degradation and
favorably regulating Wnt/-catenin-mediated biological activities
(46). MKRN1 promotes Fas-associated protein with death
domain (FADD) substrate ubiquitination and proteasome
pathway degradation to delay the cell death-receptor apoptosis
cascade activation by caspase 8, lower cell sensitivity to death
ligands, and eventually protect against cell death. FADD content
rises in MKRN1-depleted cervical cancer cells, indicating increased
susceptibility to exogenous apoptotic ligands (41). Surprisingly,
MKRN1 expression is reduced in cardiac tissues during
intermittent hypoxia (IH). Furthermore, MKRN1 stimulates p21
ubiquitination and proteasome pathway degradation to down-
regulate p21 expression, decreasing IH-induced ROS generation
and myocardial apoptosis, providing a novel target for lowering
cardiovascular risk in obstructive sleep apnea (OSA) patients (48).

In promoting atherosclerosis, MKRN1 expression was
uniquely inhibited and contributed to endothelial cell (EC)
activation and senescence, in which process TERF2IP S205 was
phosphorylated and induced a downstream event of p90RSK
activation (49). mkrn1 gene functions in the metabolic
regulation of oogenesis through up-regulating the MKRN1
protein. It functions as a tissue-specific regulator of the insulin/
Tor signaling pathway (upstream of Akt/S6K) to stimulate
oogenesis in the ovaries in a nutrient-dependent manner (50).
In pancreatic malignancies, lncRNA-CF129145.1 (CF129)
stimulates the interaction of p53 with the E3 ligase MKRN1,
April 2022 | Volume 12 | Article 862206
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resulting in the ubiquitination and degradation of the p53 protein,
which inhibits the proliferation and metastasis of PC cells.
MKRN2 FUNCTION

MKRN2’s possible physiological activities have recently been
identified. MKRN2 knockout mice, for example, have been
shown to have problems in male fertility as well as
abnormalities in testis function (51). Furthermore, MKRN2 has
been implicated as a negative regulator of a variety of cellular and
physiological pathways, including neurogenesis in Xenopus laevis
(52, 53), NF-kB signaling in human cells (54), and non-small-cell
lung cancer cell metastasis via the PI3K/Akt signaling pathway
(55). MKRN2 inhibits the p53 apoptosis effector related to PMP22
(PERP) expression, and levels of the protein in sperm samples
have an inverse correlation with infertility levels, implying that
MKRN2 is important for protecting germ cells from excessive
apoptosis and implicating MKRN2-based suppression of the
p53/PERP signaling pathway in spermatogenesis and male
fertility (56). In addition, specific gene missense mutation of
MKRN2 is associated with degenerative lumbar spinal stenosis
(DLSS), the major variant type was single nucleotide
polymorphism (SNP), and C > T was the most common single
nucleotide change (57), and genetic differences in microRNA 154-
binding sites, as well as MKRN2, reduce or abolish microRNA-
mediated regulation of genes related with cardiometabolic
abnormalities (58).

MKRN2 also has E3 ligase activity associated with the RING
finger domain, which is bound to p65 and promotes
polyubiquitination, proteasome-dependent degradation of p65
via the MKRN2 RING finger domain, which inhibits p65-
mediated NF-kB transactivation and inflammatory responses
(54). Furthermore, MKRN2 controlled melanoma cell
Frontiers in Oncology | www.frontiersin.org 5
proliferation via interacting with and ubiquitylating p53,
implying that MKRN2 might be a therapeutic target for
melanoma (59). Previous research found that IGF2BP3 is a
novel ubiquitylating substrate for MKRN2 and that MKRN2
reduces central nervous system tumors by regulating CD44 and
PDPN in an IGF2BP3-dependent way. As a result, MKRN2 may
be a promising therapeutic target for neuroblastoma (60).
MKRN3 FUNCTION

The RING finger domain of MKRN3 is thought to be a potential
E3 ubiquitin ligase that suppresses Nptx1 expression by
polyubiquitination before puberty. Genetic variations in and
near the MKRN3 gene have been linked to instances of familial
and non-familial central precocious puberty (61–64). As a result,
MKRN3 has been found to inhibit trigger protein maturation in
juvenile puberty delay. The genetic treatment for accurate
MKRN3 compensation may be a promising strategy for central
precocious puberty (CPP) therapy.
MKRN4 FUNCTION

Because of the lack of functional promoters, integrated,
processed pseudogenes have been assumed to be untranscribed
and utterly non-functional since their discovery (65). Processed
pseudogenes may occasionally gain promoter activity and be
transcribed (66, 67). Interestingly, a recent study reported
that the novel E3 ligase MKRN4 was identified that induces
GLK protein degradation, which suppresses GLK protein
overexpression and has a positive SLE function. For the first
time, MKRN4 is shown as an E3 ubiquitin ligase instead of a
pseudogene (16).
FIGURE 3 | The roles of MKRNs in cells. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) served as E3 ubiquitin ligase play a leading role in degrading many substrates and
regulating several diseases. MKRN1 regulates energy metabolism, tumor suppression, viral protein or bacteria ubiquitination, and apoptosis by degrading their substrates.
MKRN1 has RNA-binding functions, up-expressed to regulate the insulin signaling pathway during oogenesis and down-expressed to regulate the senescence-associated
secretory phenotype (SASP). MKRN2, MKRN3, and MKRN4 also mediated substrates ubiquitination and degradation.
April 2022 | Volume 12 | Article 862206
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CONCLUSION AND FUTURE
PERSPECTIVES

mkrn gene family has similar the RING finger domain required
for E3 ubiquitin ligases of the RING finger class, despite a
different array of zinc-finger motifs. However, as multiply
function proteins, MKRNs served as E3 ubiquitin ligase play a
leading role in degrading many substrates and regulating several
diseases (Figure 3). Thus, in the future, novel therapeutic
techniques that target protein-protein interactions and
interfere with the binding of MKRNs and their substrates may
be developed, and these tactics may create fresh therapeutic
options for the treatment of illnesses or pathogens infection.
Frontiers in Oncology | www.frontiersin.org 6
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