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Near-atomic structure of a giant virus
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Although the nucleocytoplasmic large DNA viruses (NCLDVs) are one of the largest group of
viruses that infect many eukaryotic hosts, the near-atomic resolution structures of these
viruses have remained unknown. Here we describe a 3.5 A resolution icosahedrally averaged
capsid structure of Paramecium bursaria chlorella virus 1 (PBCV-1). This structure consists of
5040 copies of the major capsid protein, 60 copies of the penton protein and 1800 minor
capsid proteins of which there are 13 different types. The minor capsid proteins form a
hexagonal network below the outer capsid shell, stabilizing the capsid by binding neighboring
capsomers together. The size of the viral capsid is determined by a tape-measure, minor
capsid protein of which there are 60 copies in the virion. Homologs of the tape-measure
protein and some of the other minor capsid proteins exist in other NCLDVs. Thus, a similar
capsid assembly pathway might be used by other NCLDVs.
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he nucleocytoplasmic large DNA viruses (NCLDVs),

including Phycodnaviruses, Mimiviruses, Iridoviruses,

Asfarviruses, Ascoviruses, Marseilleviruses, Pandor-
aviruses, and Poxviruses, are one of the largest group of viruses
that infect a broad variety of eukaryotic hosts. These viruses have
genomes! of between 100kb and 2.5Mb with some shared
genetic traits>3. Except for Poxviruses, Pandoraviruses, and
Ascoviruses, all these viruses are roughly icosahedral in shape.

Previously reported cryo-EM reconstructions of these
approximately icosahedral NCLDVs are Paramecium bursaria
chlorella virus 1 (PBCV-1)%4-6, Chilo irridescent virus (CIV)%7,
Phaeocystis pouchetti virus (PpV01)3, Melbourne virus®, Cafe-
teria roenbergensis virus (CroV)!0, Acanthamoeba polyphaga
mimivirus (APMV)!1, faustovirus!2, and pacmanvirus!'3. These
cryo-EM reconstructions showed that these viruses have some
common structural features. Most of these viruses have an ico-
sahedral or roughly icosahedral external capsid assembled from
hundreds of pseudo-hexagonal, close-packed, trimeric capsomers
and an inner membrane that separates the nucleocapsid from the
external capsid. The capsomers of the external capsid are orga-
nized into 20 threefold-axes-centered triangular arrays and 12
fivefold-axes-centered pentagonal arrays named trisymmetrons
and pentasymmetrons, respectively. The pentasymmetrons con-
sistently contain 31 capsomers (30 trimers and a pentamer). In
addition, minor capsid proteins, internal to the major capsid
proteins and outside the lipid membrane can be recognized in
those cryo-EM reconstructions that have better than ~15A
resolution®”12. The common structural features of these
approximately icosahedral NCLDVs indicate that these viruses
probably use similar principles in assembling their capsids.

A previously reported 10 A resolution, icosahedrally averaged,
cryo-EM reconstruction of PBCV-1 capsid is currently the
highest-resolution structure available for any of these approxi-
mately icosahedral NCLDVs®. The large size (150-500 nm in
diameter) and potential flexibility of the viral capsids might have
impeded structure determinations to higher resolution!41>. Near-
atomic-resolution structures are required to establish how these
viral capsids are assembled. Given the recent resolution revolu-
tion!® in the use of cryo-EM, the resolution limit of these virus
reconstructions can probably be improved. Because PBCV-1 has a
relatively small size (~190nm in diameter) among these
NCLDVs, it is a good candidate for exploring this possibility. An
increase in resolution might establish the function of the minor
capsid proteins and suggest various assembly pathways such as
how the size of the icosahedrally symmetric capsid is controlled
during assembly.

PBCV-1, a member in the chlorovirus genus of the family
Phycodnaviridae'”18, is a large, dsDNA-containing virus that
infects certain chlorella-like green algae. It has a 330-kbp genome
that encodes 416 predicted proteins and 11 tRNA molecules!®. A
proteomic study identified 149 different proteins in the mature
PBCV-1 virion!®. The PBCV-1 nucleocapsid is enclosed by a lipid
bilayer membrane*. The membrane is surrounded by a roughly
icosahedral external capsid shell that has a unique vertex where a
spike structure®, required for host entry®, is located. The external
capsid is constructed of capsomers that are arranged into tri- and
pentasymmetrons. Each tri- and pentasymmetron contain 66 and
31 capsomers (30 pseudo-hexameric capsomers and a pentameric
capsomer), respectively. The atomic structure of the major capsid
protein (MCP), Vp54, was determined by X-ray crystallography
and consists of two sequential jelly-roll folds with four N-linked
glycans?0-21, Each pseudo-hexameric capsomer consists of three
copies of the MCP arranged with pseudo-6-fold symmetry
relating the six jelly-roll domains. The overall arrangement of the
capsomers in the icosahedral lattice follows T'=169d triangula-
tion?2. The cleavage line between neighboring symmetrons is

caused by a pseudo-6-fold rotation between capsomers on either
side of the boundary between neighboring symmetrons23. Below
the outer capsid shell there are several minor capsid proteins,
presumably for stabilizing the viral capsid®.

Here we have extended the resolution of the PBCV-1 structure
to 3.5 A by collecting data using a direct electron detector. Fur-
thermore, the resolution improvement benefitted greatly by
developing a method to account for the defocus gradient in large
virus particles and for dealing with local flexibility of the virus
particles?4. The improved resolution of the cryo-EM map resulted
in the identification of 13 different minor capsid proteins and an
atomic model of the viral capsid consisting of 6900 polypeptide
chains. This is by far the largest viral capsid structure that has
been determined to near-atomic resolution, and the first near-
atomic description of a NCLDV capsid. The structure suggests
that the PBCV-1 capsid is assembled via a pathway that is likely
to be similar in other approximately icosahedral NCLDVs.

Results

Overall structure of PBCV-1. A 4.4 A resolution, icosahedrally
averaged reconstruction of PBCV-1 was calculated using con-
ventional image processing programs?® by averaging ~13,000
particles from 5624 images recorded with a direct electron
detector (Supplementary Fig. 1a). This compares with the earlier
10 A resolution structure obtained by using film data®. This
resolution was still not sufficient for de novo atomic modeling.
However, further improvement of the resolution to 3.5 A was
obtained by correcting for the defocus gradient through large
virus particles and by correcting for the flexibility of the viral
capsid®* (Fig. 1a and Supplementary Fig. 1a, b). These significant
improvements in resolution of the PBCV-1 cryo-EM map made it
possible to model the viral capsid at near-atomic resolution
(Supplementary Fig. 2).

The atomic structures of the 28 pseudo-hexameric capsomers
in the icosahedral asymmetric unit were obtained by fitting the
previously reported atomic model of Vp54 (the MCP) pseudo-
hexamers as rigid bodies into the cryo-EM map. Each amino acid
residue of each independent Vp54 molecule was then adjusted by
hand to improve the fit into the density using the program
COOT?¢, followed by real-space refinement using the program
PHENIX?7,

The main chain of many of the remaining uninterpreted parts
of the map representing minor capsid proteins as well as the
penton proteins around the 5-fold vertices were built using the
EMBuilder program?® and then rebuilt manually using the
program COOT?%. Because the identities of the minor capsid
proteins and the penton protein were unknown, a program was
designed to match the side chain size distributions observed in
the cryo-EM map with the protein sequences determined by a
proteomic study of the mature PBCV-1 virion!® (Methods). This
led to the identification of the penton protein (P1) and 13
different minor capsid proteins (P2, P3, P4, P5, P6, P7, P8, P9,
P10, P11, P12, P13, and P14) (Supplementary Table 1). The
minor capsid proteins and penton protein were found to be
conserved in 40 other chloroviruses2>30 that infect four different
algae, indicating that they presumably have significant roles in the
life cycle of chloroviruses.

The outer capsid shell of the icosahedrally averaged PBCV-1
structure consists of the MCP (Vp54) and the penton protein.
The MCP and penton protein exist as pseudo-hexameric trimers
and pentamers, respectively. The pseudo-hexameric capsomers
are organized into 20 triangular trisymmetrons and 12 pentago-
nal pentasymmetrons (Fig. la and Supplementary Fig. 3a).
In addition, there is one pentameric capsomer that consists of
five penton protein monomers in each pentasymmetron
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Fig. 1 Overall structure of the PBCV-1 capsid. a Icosahedrally averaged cryo-EM reconstruction of the viral capsid, colored according to the radial distance
from the center of the virus. The boundaries of two neighboring trisymmetrons and two pentasymmetrons are outlined in black. The T number including the
h and k vectors are indicated. b The cryo-EM density of the minor capsid proteins and the penton proteins after removing the outer capsid shell. Each
protein is shown in a different color as indicated on the right. ¢ Diagrammatic organization of the minor capsid proteins and capsomers viewed from inside
the virus. The pseudo-hexameric capsomers are outlined. Each gray dot within each hexagon represents a Vp54 subunit. The icosahedral 3-fold and 2-fold
axes are shown as solid black triangles and ovals, respectively. Different minor capsid proteins and the penton proteins are shown as different shapes with
different colors, as indicated. Darker color is used in one icosahedral asymmetric unit. The pseudo-hexameric capsomers are labeled A, B, C, ... in the
trisymmetrons and a, b, ¢, ... in the pentasymmetrons

(Supplementary Fig. 3a). Each icosahedral asymmetric unit of the P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, and P14) form a
outer capsid shell contains 28 pseudo-hexameric capsomers with  hexagonal network that is immediately below (inside) the outer
6 of these in the pentasymmetron (a, b, ¢, d, e, and f) and 22 in  capsid shell (Fig. 1b, ¢). Most of these minor capsid proteins are at
the trisymmetron (A, B, C,D,E,F, G, H, L], K,L, M, N, O, P, Q, the interface between neighboring capsomers and probably
R, S, T, U, and V) (Fig. 1a, c). The minor capsid proteins (P2, P3, function to stabilize the whole capsid. P2, P5, P6, P7, P8, P9,
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P12, P13, and P14 are present as a single copy in each icosahedral
asymmetric unit, whereas the copy number per icosahedral
asymmetric unit of P3, P4, P10, and P11 are three, four, two and
12, respectively (Fig. 1b, c).

The penton protein and the major capsid protein. The penton
protein forms pentameric capsomers positioned at the 5-fold
vertices of the outer capsid shell of PBCV-1. All the residues of
the penton protein, P1, except for its last two residues, were built
into the cryo-EM density map with a good agreement between
the amino acid sequence and the density of the cryo-EM map.
The penton protein folds into a canonical jelly-roll structure3!
composed of eight f3-strands, arranged into the standard two
four-stranded B-sheets (BIDG and CHEF) (Fig. 2a, b). As in other
jelly-roll structures, the two four-stranded sheets are stabilized
primarily by their hydrophobic interface.

The penton protein has branched electron densities attached to
four Asn residues (N21, N93, N129, and N137), indicating the
presence of N-linked glycans at these sites. Except for N21, these
N-linked glycosylation sites (AN, TTP, GNg;VFF, GN;,oVLT,
and GN;3,EHS) are not associated with the canonical NX(T/S)
sequon usually recognized by endoplasmic reticulum-located
glycosyltransferases. Similarly, the four glycosylation sites on the
MCP Vp54 are associated with the non-canonical sequences
AN28()IPG, GN302TGT, GN399TET, and AN406TAT21. It is
noteworthy that the sites of N-linked glycosylation of the MCP
and the penton protein are all preceded by a small residue (Ala or
Gly). Thus, the penton protein and the MCP likely share common
glycosyltransferases unique to chloroviruses.

The closest structure to the penton protein found in a DALI
search3? is the structure of the penton protein of Sputnik virus33.
The penton protein subunits of PBCV-1 and Sputnik virus adopt
similar orientations with respect to their central 5-fold axes. The
primary difference between the penton protein of PBCV-1 and
the Sputnik virus are that the PBCV-1 penton protein lacks a
large insertion that forms a small domain on top of the penton

protein. In addition, there are no glycans attached to the Sputnik
virus penton protein.

Each pseudo-hexameric capsomer is composed of three Vp54
(the MCP) subunits. Each icosahedral asymmetric unit of the
PBCV-1 structure contains 28 pseudo-hexameric capsomers,
giving a total of 84 Vp54 subunits in the icosahedral asymmetric
unit of the virus. The structures of these Vp54 subunits are closely
similar to that of the previously reported crystal structure of
Vp542l, The coordinates of chain A of the best resolved
Vp54 structure (PDB accession code: 5TIP) were used to
compare with the atomic models of these 84 Vp54 subunits.
The root-mean-square deviations (rmsd) between the equivalent
Co atoms of the crystal structure and the atomic models of the 84
Vp54 subunits ranged from 0.3 to 1.1 A. However, bigger
differences occurred at the N-terminal 24 residues of a
Vp54 subunit of capsomer a and a Vp54 subunit of capsomer b
triggered by making contacts with some of their neighboring
minor capsid proteins (Fig. 2c). The averaged interface area3*
between any pseudo-hexameric capsomer and its capsomer
neighbors, and between any pseudo-hexameric capsomer and
its neighboring minor capsid proteins are 5800 A2 and 5600 A2,
respectively. Thus, the interface areas between major and minor
capsid proteins are about the same as between neighboring
capsomers, indicating that the minor capsid proteins play
important roles in stabilizing the viral capsid.

Minor capsid proteins that stabilize trisymmetrons. The 66
capsomers within each trisymmetron are glued together by a
hexagonal network formed by four different minor capsid pro-
teins (P2, P3, P4, and P5) (Fig. 1b, c). Both P2 and P3 have
extremely extended, fiber-like conformations, located in the gaps
between neighboring capsomers and facing the inside of the virus
(Figs. 1c and 3a, b). Minor capsid proteins P2 and P3 have
similar, extended polypeptide structures (Fig. 3a, b), but are quite
different in their lengths, namely ~720 A and ~200 A, respec-
tively. Like P2 and P3, P5 fills the gaps between neighboring

Fig. 2 Structures of the penton protein (P1) and the MCPs. a Ribbon diagram of the penton protein. b Diagrammatic representation of the arrangement of
B-strands in the penton protein. Residues are numbered at the ends of the p-strands. ¢ Different conformational arrangements of the N terminus of the
MCP. The Vp54 subunit structure of capsomer a (yellow) and capsomer b (magenta) are superimposed on the crystal structure of Vp54 (gray). Only the

N-terminal 35 residues of each are shown for clarity
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Fig. 3 Structures of the minor capsid proteins that glue together capsomers within each trisymmetron. Each minor capsid protein is rainbow colored from
red at the C terminus to magenta at the N terminus. The neighboring capsomers are shown in gray and labeled as in Fig. 1c. a The minor capsid protein P2
(blue in Fig. 1c). Scale bar, 50 A. b The three P3 molecules within one icosahedral asymmetric unit (red in Fig. 1c) and their neighboring capsomers. Scale
bar, 50 A. ¢ Ribbon diagram of the three-helix bundle formed by the N-terminal parts of each P3 molecule around each icosahedral 3-fold axis. The

icosahedral 3-fold axis is identified by a solid black triangle. Scale bar, 10 A. d The minor capsid protein P5. Scale bar, 50 A. e One of the four P4 molecules

within an icosahedral asymmetric unit. Scale bar, 50 A

capsomers (Figs. 1c and 3d) but folds to a Y-shaped structure
(Fig. 3d). The N-terminal part of P4 (residues 5-23) glues toge-
ther two neighboring capsomers (Fig. 3e). Its central domain
(residues 24-54) is folded into a fist-like structure consisting of
three short helices (Fig. 3e). The C-terminal part of P4 anchors in
the central 3-fold cavity of a third capsomer (Fig. 3e).

Each icosahedral asymmetric unit contains three P3 minor
capsid proteins that glue together four neighboring rows of
capsomers (Fig. 1c). The structures of the first and second P3
proteins resemble each other with an rmsd of 2.0 A between
equivalent Ca atoms. The amino terminus of the third P3 protein,
together with its icosahedral 3-fold related counterparts, forms a
three-helix bundle around the icosahedral 3-fold axis of each

trisymmetron (Fig. 3c). The nine copies of P3 that are in each
trisymmetron link a set of 36 capsomers, forming a triangular
array of capsomeres with eight capsomers per edge centered on
the icosahedral 3-fold axis (Fig. 1c). Thus, the three-helix bundle
formed by three P3 molecules may be the initiation of the
assembly of a trisymmetron. At the completion of the
trisymmetron assembly, three copies of P2 bind along the three
edges of the triangular capsomer array (Fig. 1c). The amino
terminus (residues 94-230) of the three P2 molecules extend to
the neighboring pentasymmetrons, and finally stop near the
icosahedral 5-fold axis of neighboring pentasymmetrons (Figs. 1b,
¢ and 3a), thus establishing the position of the next 5-fold vertex
in the assembly of the virus. These observations suggest that P2,
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Fig. 4 Structures of the minor capsid proteins that glue together capsomers within each pentasymmetron. The minor capsid proteins and their neighboring
capsomers are shown as ribbon diagrams. All the capsomers are colored gray and labeled as in Fig. 1c. @ Minor capsid proteins P6, P7, and P8. b Minor

capsid protein P9. ¢ Minor capsid protein P10. Scale bars, 50 A

together with P3, assemble a scaffold that glues together all the 66
capsomers that occur in each trisymmetron, determining the final
size of each trisymmetron and providing a finite limit for each
trisymmetron in the assembly of the virus.

Minor capsid proteins that stabilize pentasymmetrons. The 30
pseudo-hexameric capsomers in each pentasymmetron are held
together by the N-terminal part of P2 (residues 94-230), P6, P7,
P8, P9, and P10 (Figs. 1b, ¢ and 3a). Unlike the minor capsid
proteins that stabilize the trisymmetrons, the structures of most
of the minor capsid proteins in the pentasymmetrons are less
extended. P6 has an N-terminal arm (residues 26-60), a central
globular domain that consists of a five-stranded antiparallel 3-

sheet wrapped around a central a-helix and flanked by another a-
helix, and a C-terminal arm (residues 177-214) (Fig. 4a). P8, like
P6, has an N-terminal (residues 5-32) and a C-terminal arm
(residues 138-170) (Fig. 4a). The central region (residues 33-137)
of P8 folds into a wedge-shaped structure that consists of three
short a-helices wrapped around a long a-helix (Fig. 4a). Although
P7 consists primarily of loops, it is folded into a globular domain
stabilized by three intramolecular disulfide bonds (C120-C134,
C156-C172, and C188-C211) (Supplementary Table 2). The V-
shaped P9 protein (Fig. 4b) and the P10 protein (Fig. 4c) exhibit
slightly more extended conformations than do P6, P7, and P8.
Like P7, P9 has two intramolecular disulfide bonds (C104-C131
and C194-C201) that stabilize its structure (Supplementary
Table 2).
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The N-terminal region of P2 (residues 94-230) holds together
capsomers b, ¢, d, e, and f by gluing the interfaces between
capsomers (Figs. 1c and 3a). Furthermore, P2 binds to the
internal face of capsomer a, gluing together all six pseudo-
hexameric capsomers in the asymmetric unit of a pentasymme-
tron (Figs. 1c and 3a). P9 bridges the gaps between capsomers a
and b, and a and c, gluing together a set of three capsomers
(Figs. 1c and 4b).

P6, P7 and P10 are located below P2, suggesting that P2 probably
contributes to recruiting these three proteins to the viral capsid
(Fig. 1b, c). The central globular domain of P6 is located at the
conjunction of capsomers ¢, d, and f with its C-terminal arm making
contacts with the central 3-fold cavity of capsomer d (Figs. 1c and
4a). P7 is situated at the conjunction of capsomers b, ¢, and e and
glues these three capsomers together (Figs. 1¢ and 4a). There are two
copies of P10 in each icosahedral asymmetric unit (Figs. 1c and 4c).
The first and second P10 molecules makes contacts with the internal
surfaces of capsomer a and capsomer b, respectively (Figs. 1c and
4c). The two P10 molecules are cross-linked by an intermolecular
disulfide bond (C215-C215) (Fig. 4c). Thus, capsomer a and
capsomer b are bound together by two P10 molecules.

P8 binds together capsomers b, ¢, d, and e (Figs. 1c and 4a). In
addition to binding neighboring capsomers together, P8 also
interlocks with P7 at its N terminus and P6 at its C-terminal
arm (Figs. 1c and 4a), which all contribute to stabilizing the
pentasymmetrons.

a . \
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Minor capsid proteins that bind neighboring symmetrons.
There are 12 copies of the zip protein, P11, per icosahedral
asymmetric unit (Fig. 1c), the highest copy number among the 13
types of minor capsid proteins. The structures of all the P11
proteins consist primarily of intrinsically flexible loops (Fig. 5a).
The P11 proteins zip together most of the capsomers at the
boundary of neighboring tri- or pentasymmetrons via their C-
terminal regions (residues 168-206) (Fig. 5a). The C-terminal
regions of each P11 protein is located underneath the conjunction
of a set of three neighboring capsomers (Figs. 1c and 5a), gluing
these capsomers together. Two out of the three capsomers that
are from the same symmetron have roughly identical orienta-
tions, whereas the third capsomer, which is from a different
symmetron, rotates by ~60° with respect to the other two cap-
somers. Such a spatial arrangement of neighboring capsomers
occurs only at the symmetron boundaries and at some regions
within pentasymmetrons (Fig. 1c).

Membrane association. Unlike most of the other minor capsid
proteins, three (P12, P13, and P14) (Figs. 1c and 5b) of the 13
identified minor capsid proteins do not serve a cross-linking
function between neighboring capsomers, suggesting that they
play other roles in the viral capsid assembly. Transmembrane-
region predictions using the computer programs TMHMM?3>:30,
HMMTOP37-38, and Phobius®® showed that two regions at the
N terminus of P12 (residues 20-42 and 50-67), a region at the

e
\ P11

168

206

168
2nd

Fig. 5 Structures of minor capsid proteins P11, P12, P13, and P14. These proteins bind together neighboring symmetrons and/or have potential membrane
association functions. All the structures are shown as ribbon diagrams. a The second, third, and fourth P11 molecule within an icosahedral asymmetric unit
(see Fig. 1c) and their neighboring capsomers (gray). All the capsomers are labeled as in Fig. Tc. b Minor capsid proteins P12, P13, and P14. Scale bars, 50 A
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N terminus of P13 (residues 4-23), and a region at the C ter-
minus of P14 (residues 243-265) may all be transmembrane
helices (Supplementary Table 3). Further transmembrane-region
predictions for the other minor capsid proteins showed that the N
terminus of P2, P6, P7, P9, P10, and P11 also have transmem-
brane helix properties (Supplementary Table 3). Thus, these
proteins (P2, P6, P7, P9, P10, P11, P12, P13, and P14) might play
roles in associating the viral capsid with the inner viral
membrane.

All the predicted transmembrane helices are in disordered
regions of the identified minor capsid proteins. Secondary
structure predictions*® showed that the linkers between the
predicted transmembrane helices and the ordered portions of
each protein consist mainly of flexible loops. Thus, the reason
why the transmembrane helices are not visible in the cryo-EM
map is that they cross the membrane in slightly different
positions in different parts of the virus that are averaged out by
icosahedral symmetry. The lengths of the linkers between the
visible part of each protein and the predicted transmembrane
helices varies from 5 to 171 residues (Supplementary Table 3).
The proteins that are closer to the capsid vertices generally have
longer linkers, which is consistent with the distance variation
between the viral capsid shell and the inner viral membrane. P6,
P12, and P13 have very short linkers of less than 9 amino-acid
residues (Supplementary Table 3), indicating that the visible
portions of these proteins are close to the membrane. The
inward-pointing faces of these three proteins are mostly positively
charged (Supplementary Fig. 4), which might be needed for these
minor capsid proteins to make contacts with the negatively
charged outer surface of the inner viral membrane.

Viral assembly. The viral capsid appears to be assembled with the
help of the minor capsid proteins. Three rows of P3 and three
copies of P2 construct a scaffold that glues together all the cap-
somers in each trisymmetron (Fig. 1b, ¢). The N terminus of each
P2 protein extends to a neighboring pentasymmetron and glues
together one-fifth of the pseudo-hexameric capsomers in a pen-
tasymmetron (Fig. 1c). Neighboring symmetrons are bound
together by the zip proteins (P11) (Fig. 1c). Other minor capsid
proteins are recruited to the viral capsid either to stabilize the
viral capsid further, to associate the inner viral membrane with
the outer capsid shell, or to be involved in both (Fig. 1c and
Supplementary Table 3). P2 and the zip protein (P11) play crucial
roles in the whole process. P2 essentially acts as a molecular tape
measure (or ruler) and determines the size of the viral capsid. The
zip protein binds neighboring symmetrons together. Previous
cryo-EM studies™® showed that PBCV-1 has a unique vertex. To
account for how the viral capsid is assembled around the unique
vertex, it will be necessary to make a high-resolution 5-fold
averaged reconstruction of the viral capsid. However, to achieve
this, twelve times more data will be required.

Previous studies showed that bacteriophage PRD14! and
Bam3542 also use fiber-like tape-measure proteins to determine
the size of the viral capsid. Such tape-measure proteins were first
identified and modeled while interpreting the 4.0 A X-ray
structure of the bacteriophage PRD1 capsid. However, the
identity of the Bam35 tape-measure protein is uncertain because
of the limited resolution (7.3 A) of the cryo-EM map. Like the
tape-measure protein P2 of PBCV-1, the tape-measure proteins of
both PRD1 and Bam35 adopt extremely extended fiber-like
conformations, running roughly along each edge of the
icosahedral faces, binding neighboring capsomers together. The
major difference between the tape-measure protein P30 of PRD1
and P2 of PBCV-1 is that P30 of PRD1 forms a dimer through its

N-terminal 30 residues, whereas P2 of PBCV1 is a monomer. In
addition, the PBCV-1 P2 protein is much longer than the PRD1
P30 protein, which is consistent with the larger size of the PBCV-
1 capsid.

Discussion

PBCV-1 assembles its capsid by using the tape-measure protein
(P2) to determine its capsid size and the zip protein (P11) to bind
neighboring symmetrons together. Most likely other approxi-
mately icosahedral NCLDVs have a similar assembly pathway
and hence also contain a homologous tape-measure protein and a
homologous zip protein. Like the zip protein (P11) of PBCV-1, a
previous cryo-EM study showed that the zip protein of CIV also
locates under the boundaries between neighboring symmetrons’,
presumably for gluing neighboring symmetrons together. BLAST
searches*? identified homologs of the tape-measure protein (P2)
and zip protein (P11) of PBCV-1 in viruses belonging to Mimi-
viridae, such as APMV and CroV. Previous cryo-EM studies
showed that the diameters of APMV!! and CroV10 are ~500 and
~300 nm, respectively. The viral capsid of PBCV-1 has a diameter
of ~190 nm. The portion of the tape-measure protein of PBCV-1
that is involved in making contacts with the major capsid shell
has ~473 amino acids (residues 94-566). Assuming the tape-
measure protein homologs from APMV and CroV also exhibit
extremely extended conformations as does the tape-measure
protein of PBCV-1, we conclude the polypeptide chains of the
tape-measure protein of APMV and CroV should contain ~1250
and ~750 amino acids, respectively. The polypeptide chains of the
tape-measure protein of APMV (gene product of L454) and CroV
(gene product of crovI85) contain 1257 and 869 amino acids,
respectively, close to their estimated lengths.

The icosahedrally averaged near-atomic structure of PBCV-1
shows that the PBCV-1 capsid is stabilized by a dense array of
minor capsid proteins (P2-P14) inside the major capsid shell.
This minor capsid protein shell cements most of the gaps between
neighboring capsomers and uses transmembrane helices to
mediate inner viral membrane association. The tape-measure
protein P2 and the zip protein P11 play crucial roles in deter-
mining the capsid size and binding neighboring symmetrons
together, respectively. Homologs of the tape-measure protein and
the zip protein were also found in viruses belonging to Mimi-
viridae. Thus, other approximately icosahedral NCLDVs are very
likely to have similar capsid assembly pathways. The use of tape-
measure proteins to determine viral capsid size has also been
observed in other viruses such as bacteriophage PRD14! and
Bam35%2. Thus, tape-measure proteins are probably used by
many other large dsDNA viruses for capsid size determination.

Methods

Virus sample preparation. The production and purification of virus PBCV-1 were
described elsewhere4. Briefly, PBCV-1 virus was grown in Chlorella variabilis
NC64A cells (ATCC 50258), and then purified by 1% Triton X-100 treatment and
two successive rounds of gradient centrifugation in 10-40% sucrose. The virus was
treated with proteinase K (0.02 mg/ml) between sucrose gradients to remove
external contaminating proteins. After purification, the virus was re-suspended in
virus suspension buffer (50 mM Tris-HCI, 10 mM MgCl,, pH 7.8), filter sterilized
(0.45 pm filter) and stored at 4 °C. Virus concentrations were determined by plaque
assays (PFU/ml) and using a UV spectrophotometer as A,qo values.

Cryo-EM data collection and processing. The PBCV-1 sample was frozen onto
Lacey carbon EM grids using a Gatan CP3 freezer with a blotting time of 6 s. The
frozen grids were loaded into an FEI Titan Krios EM operated at 300 kV equipped
with a Gatan K2 Summit detector. Automatic data collection using the Leginon
program®° and the Appion program?® was performed using a magnification of
18,000x in the super-resolution mode, which resulted in a pixel size of 0.81 A. The
dose rate was ~8 e-/(pixel's). A total of 5624 movies, each composed of 40 frames,
were collected. Each frame has an exposure time of 200 ms. The movies were
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subjected to motion correction using the MotionCorr program®’. Micrographs
were produced by summing up the aligned and dose-weighted frames of each
movie. The contrast transfer function (CTF) parameters of each micrograph were
estimated using the program CTFFIND348. A total of 13,807 particles were picked
using the Appion program“®. The picked particles were subjected to reference-free
two-dimensional (2D) classification using the RELION program®’. After 2D
classification, around 13,000 particles were selected for further processing. A pre-
viously reported icosahedrally averaged cryo-EM reconstruction of PBCV-16, low
pass filtered to 40 A resolution, was used as an initial model for determining the
orientation and center of each particle and further refined using the jspr program?°,
giving a resolution of 4.4 A. To account for the defocus gradient and potential
flexibility of the virus particles, a program?* was designed to refine the structure
further, resulting in a final resolution of 3.5 A. The resolution was estimated by post
process procedure in the RELION program®*’ after applying a soft mask around the
capsid shell.

Model building and refinement. The cryo-EM density representing the MCPs was
interpreted by fitting a previously reported crystal structure of the MCP, Vp54, into
the density map?!. Because the densities of the glycans of the MCPs are poor, no
attempt was made to model the glycans. The fitted atomic models were then rebuilt
manually in COOT?6. Ca models of the penton protein and the minor capsid
proteins were built using EMbuilder? and rebuilt manually with COOT?°. The Ca
models that contain more than 60 amino acids and have prominent side-chain
information in the density map were subjected to searching for satisfactory amino
acid sequence fits using a Python script (see below) (Supplementary Fig. 3b). All
the atomic models were refined using real-space refinement in PHENIX?’ (Sup-
plementary Table 4).

Alignment of the cryo-EM map density with protein sequences. A Python
script was written to compare the visual description of side chains as seen in the
cryo-EM map with potential amino acid sequences identified by a proteomic study
of the PBCV-1 virion!®. The residues, which have good side-chain density, were
reduced to numbers from 0 to 6 that described the size of the side chains as
estimated by eye. The regions of poor density were classified into three different
situations and treated differently. (1) When a region did not have good side-chain
density, but had reliable Ca positions, the program was told that there was an
amino acid here that might be any of the 20 possibilities. (2) When a region had
good main-chain connectivity, but did not have reliable Ca atom placement, Ca
atoms were tentatively built into the density. The total number of placed Ca atoms
was taken as an estimate of how many amino acids there were in this region.
Assuming the estimated number was n, the program would be told there were
between n — x/2 and n + x residues in this region, where x was the maximum
possible error. (3) When the density in a region was completely missing or so poor
that the user had no idea where to place the Ca atoms, only the density before or
after this region was used. The known protein sequences were similarly reduced to
numbers (from 0 to 6) indicative of the size of each amino acid. The script was then
used to search the side-chain size distribution of the polypeptide against that of the
known protein sequences. Each aligned residue was scored according to Supple-
mentary Table 5. The final score of each trial alignment was calculated by averaging
the scores of all the aligned residues. A trial alignment was excluded from the list of
possible alignments when encountering the following situations: (1) The potential
amino acid sequence was shorter than the polypeptide chain seen in the cryo-EM
map; (2) The side-chain size number of any residue as estimated using the cryo-EM
map was larger than the side-chain size number of the aligned residue of the
potential amino acid sequence by 2 or more. When two or more different regions
of the cryo-EM map appeared to represent the same sequence (multiple sites for
the same polypeptide within each icosahedral asymmetric unit), the density
information of these polypeptide chains was combined to search for the target
sequence when satisfying the following conditions: (1) these polypeptide chains
had similar main-chain conformations; (2) the density information of each of these
polypeptide chains had their best match with the same sequence candidate.
However, in the case of the minor capsid protein P11, the ordered parts of its 12
copies were very short. Therefore, in this case, the density information of these
polypeptide chains was grouped together based on the similarity of their main-
chain conformations and on how they bound to their neighboring MCPs.

Two situations occurred in making the final sequence assignment of the
identified minor capsid proteins and the penton protein: (1) there was only one
sequence candidate that had possible alignments with the density information; (2)
more than one protein sequence candidate had possible alignments with the
density information. In the second case, a sequence was assigned based on two
conditions: (1) the best alignment score of this sequence was larger than that of any
other possible alignments of other sequence candidates by more than 0.1; (2) all the
possible sequence assignments of other sequence candidates could be rejected using
protein secondary structure prediction.

The Python script was tested on a few randomly chosen MCP cryo-EM
densities before being applied to other proteins with unknown identity. Since
information on the local chemical environment of any trial alignment was not used
by the script, large inter- or intramolecular hydrophobic interfaces observed for
any preferred alignment were used to validate the sequence found by the program.

Secondary structure predictions were also used to support the peptide identity.
Furthermore, the structures of some of the identified proteins were found to have
potential inter- or intramolecular disulfide bonds (Supplementary Table 2). Among
the 14 proteins identified using the Python script mentioned above, five proteins
were identified with potential intramolecular disulfide bonds and one with an
intermolecular disulfide bond (Supplementary Table 2). The existence of some of
the disulfide bonds predicted by the Python script was validated by mass
spectrometry (Supplementary Fig. 5 and Supplementary Table 2). Two
intramolecular disulfide bonds were identified for the P7 protein, C120-C134 and
C188-C211. The product-ion spectra (MS/MS) for each of these peptides
(Supplementary Fig. 5a, b) confirm the disulfide bonds present in this protein.
Similarly, the loop-linked peptide containing C194-C201 was identified, and the
product-ion spectra suggest the presence of a disulfide bond between the two
cysteines (Supplementary Fig. 5¢). Product-ion spectra from the peptide containing
the inter-molecular disulfide bond (C215-C215) (Supplementary Fig. 5d) further
confirmed the presence of the P10 protein in the cryo-EM map.

Mass spectrometry. Verification of the disulfide linkages was by mass spectro-
metry. Free cysteines were made unreactive by derivatizing with N-ethylmaleimide
(NEM), and peptides with S—S bonds were then identified by a bottom—up pro-
teomics strategy.

An aliquot (100 pL) of PBCV-1 virus in 50 mM HEPES, 10 mM MgCl,, pH 7.8
was diluted with 20 uL of 50 mM HEPES buffer to a total volume of 120 puL and
incubated at 25 °C for 1h with shaking at 350 rpm in a thermomixer. After an
aliquot (6 uL) of 1 M Tris-HCl buffer was added, the sample was heated at 60 °C for
60 min with shaking at 500 rpm and then spun down at 10,000xg for 10 min. The
supernatant was taken and transferred to a new tube. Proteins were precipitated
with excess acetone and stored at —20 °C until the NEM reaction and protease
digestion. The sample preparation and NEM reaction were performed following a
previously reported protocol®?. The thawed sample was vortexed for a few sec,
centrifuged at 15,000xg for 30 min, the acetone decanted, and the tube air-dried at
room temperature for ~15 min. The sample was resuspended in 15 pL of 8 M urea
in 100 mM Tris buffer, pH 7.5 to which was added NEM to 4 mM, incubated at 37 °
C for 2 h. After the NEM reaction, the sample was removed from the incubator,
centrifuged briefly, adjusted to 2 M urea concentration with 100 mM Tris buffer,
pH 7.5, containing 2.5 mM NEM, and sequentially digested with Lys-C/Trypsin
mix followed by Glu-C proteases. First, the Lys-C/trypsin mix (Promega) was
added (1:20 protease: protein w/w) and incubated at 37 °C for 12 h followed by the
addition of Glu-C protease (1:20 w/w) and incubated at 37 °C for 10 h.

An aliquot (5 uL) of the digested proteins was diluted 10-fold in Solvent A
(water with 0.1% formic acid) and ~0.5 pg of the sample was loaded onto the
column for LC-MS/MS analysis. The sample was analyzed three times with a Q
Exactive plus mass spectrometer (Thermo Fisher Scientific) attached in line with an
Ultimate 3000 Nano LC system (Thermo Scientific Dionex). Peptides were trapped
and desalted in a guard column (Acclaim PepMap100, 100 um x 2 cm, C18, 5 pm,
100 A; Thermo Scientific Dionex) in Solvent A and were separated on a custom-
packed C18 reversed-phase column (ProntoSIL ag, 0.075 mm x 150 mm, 3 pm, 120
A, BISCHOFF chromatography, Germany). Peptides were separated over a linear
98-min gradient from 2-90% solvent B (80% acetonitrile, 20% water, 0.1% formic
acid) and sprayed into the mass spectrometer with a spray voltage of 3.1kV. The
instrument was operated in positive-ion mode with a scan range for ions of m/z
400-2000. Full mass spectra were acquired (R = 70,000 at rn/z 200), with automatic
gain control set at 5x 10 ions and a maximal injection time of 200 ms. Data-
dependent product-ion HCD spectra were collected (R = 17,500 for m/z 200) for
the 10 most abundant precursor ions by using an isolation window of 2.0 m/z and a
normalized collision energy of 30%.

NEM data analysis and search parameters. Data were searched with pLink
2.0 software®?>! against the PBCV-1 database containing 148 proteins with default
pLink settings with few changes. Briefly, flow type for identification was set to
disulfide bond (HCD-SS) with SS as the cross linker. Glu-C and trypsin were
chosen as the enzyme, and the number of missed cleavages to 5. The peptide length
was set between 4 and 30 with peptide mass set between 400 and 3000 Da. Pre-
cursor and fragment mass tolerances were set to +20 ppm, respectively, and N-
ethylmaleimide of cysteine, N-ethylmaleimide + water of cysteine. Oxidation of
methionine, deamidation of asparagine and glutamine were included as variable
modifications. The searched data were further filtered at a mass tolerance of +10
ppm and false discovery rate of <5% at the spectra level. Only peptides identified
with multiple product-ion (MS/MS) spectra were included in the result.

Code availability. All scripts and programs developed for this work are available at
https://github.com/fgyfql/seqFinder

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability

The atomic coordinates for the major and minor capsid proteins and the cryo-EM
density map have been submitted to the Protein Data Bank and Electron
Microscopy Data Bank with accession codes 6NCL and EMD-0436, respectively.
The authors declare that all other data supporting the findings of this study are
available within the article and its Supplementary Information files or are available
from the authors upon request.
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