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Abstract: Asthma disproportionally affects Hispanic and/or Latino backgrounds; however, the
relation between circulating metabolites and asthma remains unclear. We conducted a cross-sectional
study associating 640 individual serum metabolites, as well as twelve metabolite modules, with
asthma in 3347 Hispanic/Latino background participants (514 asthmatics, 15.36%) from the His-
panic/Latino Community Health Study/Study of Latinos. Using survey logistic regression, per
standard deviation (SD) increase in 1-arachidonoyl-GPA (20:4) was significantly associated with 32%
high odds of asthma after accounting for clinical risk factors (p = 6.27 × 10−5), and per SD of the
green module, constructed using weighted gene co-expression network, was suggestively associated
with 25% high odds of asthma (p = 0.006). In the stratified analyses by sex and Hispanic and/or
Latino backgrounds, the effect of 1-arachidonoyl-GPA (20:4) and the green module was predomi-
nantly observed in women (OR = 1.24 and 1.37, p < 0.001) and people of Cuban and Puerto-Rican
backgrounds (OR = 1.25 and 1.27, p < 0.01). Mutations in Fatty Acid Desaturase 2 (FADS2) affected
the levels of 1-arachidonoyl-GPA (20:4), and Mendelian Randomization analyses revealed that high
genetically regulated 1-arachidonoyl-GPA (20:4) levels were associated with increased odds of asthma
(p < 0.001). The findings reinforce a molecular basis for asthma etiology, and the potential causal
effect of 1-arachidonoyl-GPA (20:4) on asthma provides an opportunity for future intervention.

Keywords: asthma; metabolites; metabolomics; HCHS/SOL; Hispanics; 1-arachidonoyl-GPA (20:4)

1. Introduction

Asthma is a common respiratory disease that affects more than 25 million people in
the United States [1]. Although Hispanic/Latino individuals have a lower prevalence of

Metabolites 2022, 12, 359. https://doi.org/10.3390/metabo12040359 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12040359
https://doi.org/10.3390/metabo12040359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-2341-0179
https://orcid.org/0000-0002-9510-4923
https://orcid.org/0000-0002-8903-0366
https://orcid.org/0000-0003-4911-5290
https://orcid.org/0000-0002-6139-5320
https://orcid.org/0000-0003-4818-1077
https://doi.org/10.3390/metabo12040359
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12040359?type=check_update&version=2


Metabolites 2022, 12, 359 2 of 14

asthma than white or black individuals [2,3], there is wide variability in asthma morbidity
among Hispanic and/or Latino backgrounds. In the USA, the burden of asthma is highest
in Puerto Ricans and lowest in Mexican Americans [4,5]. Asthma is a complex multifactorial
disease [4,6]. Differences in socioeconomic status, tobacco use, air pollution, and obesity
are associated with ethnic disparities in asthma [5,7], but the mechanisms underlying these
associations are not fully understood [8,9].

Metabolomics can be used to uncover causal pathways and biomarkers of asthma
and asthma-related phenotypes [10–12]. Indeed, multiple circulating metabolites (mainly
involved in the pathways of inflammation, immunity, lipid, oxidative stress, hypoxia re-
sponse metabolism, and tricarboxylic acid cycle) have been linked to asthma in people of
non-Hispanic/Latino backgrounds [10,12–18]. Some of them found that the metabolites
from arachidonic acid metabolism were associated with asthma [15–18]. However, there
have been few studies conducted on Hispanic and/or Latino backgrounds. In one study,
it was discovered that metabolites in glycerophospholipid, linoleic acid, and pyrimidine
metabolism were associated with percent-predicted forced expiratory volume in one sec-
ond/forced vital capacity ratio (FEV1/FVC), FEV1/FVC post-bronchodilator, and airway
hyper-responsiveness (AHR) in Costa Rican children with asthma [19].

To date, there has been no large-scale study of metabolites and asthma in adult His-
panic and/or Latino backgrounds, the fastest growing population in the USA. To this end,
we examined the relationship between biologically informative metabolites and asthma in
3347 subjects who participated in the Hispanic/Latino Community Health Study/Study
of Latinos (HCHS/SOL). The findings of the present study suggest candidate pathways
for asthma in Hispanic/Latino populations in general, and in two Hispanic/Latino back-
grounds in particular.

2. Results
2.1. Study Sample Characteristics

A total of 3347 participants consisting of 514 asthmatics and 2833 non-asthmatics
were selected for the study. Characteristics of the study sample are described in Table 1.
There was no significant difference in age between asthmatics (47.14 ± 13.40 years) and
non-asthmatics (45.93 ± 13.37 years) (p = 0.060). Participants with asthma were more likely
to be female, born in the USA with a longer-living period in the USA, had a smoking
history, lower family income, and higher BMI compared to those without asthma. Those
who were from Puerto-Rican and Cuban backgrounds occupied considerable portions
within asthmatics in comparison with the other Hispanic and/or Latino backgrounds
(Puerto-Rican, 40.47%; Cuban, 21.21%). There were no differences in education and lipid
levels between asthmatics and non-asthmatics. When comparing pulmonary function and
additional risk factors between asthmatics and non-asthmatics, it showed that asthmatics
had poorer pulmonary function compared to non-asthmatics (Table S1).

2.2. Single Metabolites and Asthma

Three metabolites, 1-arachidonoyl-GPA (20:4), glutamate, and tyrosine, were signifi-
cantly associated with asthma in Model 1 with basic demographic factors adjusted (Table 2).
With further adjustment of other risk factors, the effects for most metabolites were slightly
attenuated. Only 1-arachidonoyl-GPA (20:4), a lysophospholipid, manifested statistical
significance across all three models with similar effect sizes. The estimated odds for asthma
were 1.32 (95% CI: 1.15–1.51) per one SD increase in 1-arachidonoyl-GPA (20:4) with full
covariates adjustment, and the effect remained unchanged in the sensitivity analysis using
doctor-diagnosed asthma (data not shown). Figure 1 visualized the distribution of the
effect of Model 3 for 640 single metabolites.
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Table 1. Demographic Characteristics of the Samples in Study (n = 3347).

Asthma
(n = 514)

Non-Asthma
(n = 2833) p-Value

Female, N (%) 343 (66.73) 1561 (55.10) <0.001
Age, years ± SD 47.14 ± 13.40 45.93 ± 13.37 0.060
Ethnicity, N (%) <0.001

Dominican 42 (8.17) 286 (10.10)
Central American 47 (9.14) 286 (10.10)

Cuban 109 (21.21) 445 (15.71)
Mexican 93 (18.08) 1216 (42.92)

Puerto-Rican 208 (40.47) 404 (14.26)
South American 15 (2.92) 196 (6.92)

Cigarette Use, N (%) <0.001
Never 247 (48.05) 1710 (60.36)

Former 117 (22.76) 566 (19.98)
Current 150 (29.18) 557 (19.66)

Less than High School Education, N (%) 174 (33.98) 970 (34.23) 0.905
BMI, kg/m2 ± SD 31.48 ± 7.12 29.58 ± 5.90 <0.001

Lipids, mg/dL ± SD
LDL 121.53 ± 37.27 123.96 ± 36.68 0.173
HDL 49.56 ± 13.34 49.70 ± 13.04 0.826
TG 128.20 ± 65.38 129.93 ± 68.39 0.585

Immigration Status
Residence Period in US, years ± SD 28.06 ± 16.57 22.24 ± 14.98 <0.001

US Born, N (%) 134 (26.07) 463 (16.34) <0.001
Annual Family Income, N (%)

<$20,000 294 (57.20) 1306 (46.10) <0.001
Definition of abbreviations: SD = Standard Deviation; LDL = Low-Density Lipoprotein; HDL = High-Density
Lipoprotein; TG = Triglyceride; BMI = Body Mass Index. Results are presented as mean ± SD or number (%) of
persons as appropriate.
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Figure 1. Volcano plot illustrating the relationship between 640 single metabolites and asthma. The
odds ratios were calculated from survey logistic regressions adjusting for age, sex, immigration
status, field centers, years of living in the U.S., Hispanic and/or Latino backgrounds, low-density
lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides (TG), smoking,
education level, and household income. x-axis: odds ratio between each metabolite level and
asthma status; y-axis: −log10(Bonferroni adjusted p-value) for each metabolite with the dashed line
(−log100.05 = 1.301) representing the significance threshold.
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Table 2. Logistic Regression Analysis of 640 Single Metabolites.

Metabolite Model (1) Model (2) Model (3)

1-arachidonoyl-GPA (20:4) 1.32 *
(1.16, 1.51)

1.33 *
(1.17, 1.52)

1.32 *
(1.15, 1.51)

Glutamate 1.36 *
(1.17, 1.58)

1.36
(1.16, 1.59)

1.34
(1.14, 1.57)

Tyrosine 1.28 *
(1.13, 1.44)

1.27
(1.12, 1.43)

1.26
(1.12, 1.42)

Odds ratio with 95% confidence interval in parentheses. Bonferroni adjusted p-values: * p < 0.05. Model 1 included
age, sex, immigration status, field centers, years of living in the U.S., and Hispanic and/or Latino backgrounds;
Model 2 additionally adjusted for LDL, HDL, and TG; and Model 3 supplemented smoking, education level, and
household income.

2.3. Metabolite Modules and Asthma

In addition to single metabolite asthma associations, metabolite modules were ana-
lyzed to explore the potential metabolic pathways in relation to asthma. Twelve different
metabolite modules with unique colors were generated, and the number of metabolites in-
cluded in each module was ranged from 13 (green-yellow) to 191 (grey) (Figure S1, Table S2).

After applying three consecutive models, none of the modules showed significant
associations in the fully adjusted model (Table S3). However, the green module was
significantly associated with asthma in the demographics adjusted model, and its effect
became slightly attenuated in the fully adjusted model (Model1: OR = 1.28, 95% CI:
1.10–1.49; Model 2: OR = 1.25, 95% CI: 1.07–1.47; Model 3: OR = 1.25, 95% CI: 1.07–1.46)
(Figure 2). This trend was not altered in the sensitivity analyses (data not shown). When
correlating with clinical risk factors, the green module appeared to have modest correlation
with BMI (r = 0.22), TG (r = 0.29), pre- and post- bronchodilator values of FEV1 and FVC
(r = 0.24 to 0.33), whereas the red and yellow modules had relatively higher relationship
with TG and LDL respectively (Red: TG (r = 0.86); Yellow: LDL (r = 0.68)) (Figure S2).
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Figure 2. Forest plot representing odds ratio and 95% confidence interval of three models between
each module and asthma. Model 1 included age, sex, immigration status, field centers, years of living
in the U.S., and Hispanic and/or Latino backgrounds; Model 2 additionally adjusted for LDL, HDL,
and TG; and Model 3 supplemented smoking, education level, and household income.
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The green module included 40 metabolites comprised of four super-pathways: amino
acid (26), peptide (12), lipid (1), and nucleotide (1) (Table S4). About half of the metabolites
(47.5%) showed suggestive association with asthma in the fully adjusted model (p < 0.05).
Among those 40 metabolites, there was no significant pathway overrepresented based on
Bonferroni adjusted p-value, while two pathways showed nominal significance (Valine,
Leucine, and Isoleucine Degradation: p = 0.004; Phenylalanine and Tyrosine Metabolism:
p = 0.016) (Figure S3, Table S5).

2.4. Stratification Analysis by Sex and Hispanic/Latino High-Risk Backgrounds

In the stratified analysis to explore potential effect modification by sex and His-
panic/Latino high-risk backgrounds, about 36–41% increases in odds were observed per
one SD increase in the green module eigenvector in women (p < 0.001) (Tables 3 and S6).
In contrast, no significant increase in odds was observed in men. Meanwhile, about a
26–27% increase in odds was observed in the high-risk group of Cubans and Puerto-Ricans
(p < 0.01), but the effect was weakened in the other Hispanic and/or Latino backgrounds
when adjusting all risk factors shown in Model 3. As for 1-arachidonoyl-GPA (20:4), similar
patterns were found that the effect sizes were larger in women and Cuban and Puerto-
Rican backgrounds compared to men and the other Hispanic/Latino backgrounds. The
effects were consistent across three models in women and men (OR = 1.22–1.24, p < 0.001).
Moreover, the larger odds of asthma were seen in people of Cuban and Puerto-Rican
backgrounds (OR = 1.25, 95% CI = 1.09–1.49, p < 0.01) in comparison with the other His-
panic/Latino backgrounds (OR = 1.15, 95% CI = 1.00–1.32, p < 0.05). A two-sided z score
test revealed statistical significance for the interaction effects of sex and Hispanic/Latino
high-risk backgrounds on asthma (Table S7).

Table 3. Stratification Analysis of Green Module and 1-arachidonoyl-GPA (20:4) by Sex and His-
panic/Latino Backgrounds.

Cases/Controls Model (1) Model (2) Model (3)

Sex

Green Module
Women 343/1561 1.41 ***

(1.22, 1.64)
1.36 ***

(1.17, 1.59)
1.37 ***

(1.17, 1.60)

Men 171/1272 1.00
(0.83, 1.21)

1.05
(0.87, 1.27)

1.04
(0.86, 1.25)

1-arachidonoyl-GPA (20:4) Women 343/1561 1.23 ***
(1.09, 1.38)

1.22 ***
(1.08, 1.37)

1.24 ***
(1.10, 1.40)

Men 171/1272 1.12
(0.95, 1.32)

1.15
(0.96, 1.35)

1.13
(0.95, 1.34)

Hispanic/Latino Backgrounds

Green Module
Cuban and Puerto-Rican

Backgrounds 317/849 1.27 **
(1.09, 1.47)

1.26 **
(1.08, 1.48)

1.27 **
(1.09, 1.49)

Others 197/1984 1.21 *
(1.02, 1.45)

1.20 *
(1.00, 1.44)

1.20
(1.00, 1.44)

1-arachidonoyl-GPA (20:4)
Cuban and Puerto-Rican

Backgrounds 317/849 1.26 ***
(1.10, 1.44)

1.26 ***
(1.10, 1.44)

1.25 **
(1.09, 1.43)

Others 197/1984 1.14
(0.99, 1.30)

1.15 *
(1.00, 1.31)

1.15 *
(1.00, 1.32)

Odds ratio with 95% confidence interval in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05. Model 1 in-
cluded age, sex, immigration status, field centers, years of living in the U.S., and Hispanic/Latino backgrounds;
Model 2 additionally adjusted for LDL, HDL, and TG; and Model 3 supplemented smoking, education level, and
household income.

2.5. Causal Effect Exploration

For the one asthma-related metabolite, 1-arachidonoyl-GPA (20:4), one locus of rs28456,
an intronic variant of Fatty Acid Desaturase 2 (FADS2), was previously reported in HCHS/SOL
that reached genome-wide significance for asthma (beta = 0.16, se = 0.03, p = 6.08 × 10−11,
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allele frequency of the effect allele A = 0.54) [20]. Rs28456 showed a strong direction asso-
ciation with adult asthma, but a modest association with childhood asthma in European
populations; and it was also associated with adult asthma in East Asian populations [21,22].
In all scenarios, Mendelian Randomization analyses suggested that high genetically regu-
lated 1-arachidonoyl-GPA (20:4) levels were associated with an increased risk of asthma
(Table 4).

Table 4. The association between rs28456 and asthma from observational studies and Mendelian
Randomization analysis.

Direct Association Mendelian Randomization

Study Outcome Population N AF beta se p beta se p

Ferreira
(2019) Adult asthma European 327,253 0.69 1.06 0.01 2.5 × 10−12 6.53 0.05 <0.001

Ferreira
(2019)

Childhood
asthma European 327,253 0.68 1.03 0.01 0.03 6.30 0.08 <0.001

Ishigaki
(2020) Adult asthma East

Asian 209,808 0.61 0.04 0.02 0.02 0.24 0.01 0.02

AF: allele frequency of the A allele; Beta: effect size of the A allele; se: standard error.

3. Discussion

In a cross-sectional analysis of 640 single metabolites in 3347 participants in HCHS/SOL,
1-arachidonoyl-GPA (20:4) was significantly associated with asthma status. The green mod-
ule, consisting of 40 metabolites, also showed a positive association with asthma though
the effect was attenuated with further adjustment of clinical risk factors. The estimated
effects of 1-arachidonoyl-GPA (20:4) and the green module were found predominantly in
women and participants with Cuban and Puerto Rican backgrounds. Mendelian Random-
ization analyses revealed a potential causal association between 1-arachidonoyl-GPA (20:4)
and asthma.

1-arachidonoyl-GPA (20:4), a metabolite in the lysophospholipid pathway, is a deriva-
tive of arachidonic acid that plays a key role in inflammation [20]. Arachidonic acid is a
precursor for a diverse range of lipid inflammatory mediators that may cause airway inflam-
mation in asthma by generating proinflammatory mediators [23,24]. Several arachidonic
metabolites have been reported for their associations with asthma [15–18]. Leukotriene B4
(LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) are mediators generated by alveolar
macrophages in lung inflammation [25]. The activities of the metabolites related to cys-
teinyl leukotrienes (CysLT), such as leukotriene C4 (LTC4) and secretory phospholipases
A2 (sPLA2), are enhanced in asthma [26]. A more recent study found that prostaglandin E2
(PGE2), 15-Deoxy-Delta-12,14-PGJ2 (15d-PGJ2), and lipoxins (LXs) are good candidates to
develop asthma treatments [27], but those studies did not focus on Hispanic and/or Latino
backgrounds. One recent study analyzed metabolites with lung function parameters in
asthmatic children in Costa Rica, and found out that the metabolites of glycerophospho-
lipid, linoleic acid, and pyrimidine metabolism were related to asthma severity [19]. In
the present study, some glycerophospholipids and metabolites in pyrimidine metabolism,
e.g., 1-lignoceroyl-GPC (24:0), and 5-methyluridine (ribothymidine), were associated with
asthma at a nominal significance level (p < 0.05), but did not meet the significance threshold
after applying stringent Bonferroni correction to account for multiple testing. Further
investigation is warranted to detail the associations between those metabolites and asthma.

The asthma-related green module consisted of 40 metabolites: 65% were under the amino
acid pathway and 30% were under the peptide pathway. Interestingly, 1-arachidonoyl-GPA
(20:4) was not included in the green module, highlighting the importance of considering
metabolite pathways, in addition to single metabolites, when studying the metabolic effects
of a disease such as asthma. Of the 26 metabolites categorized into amino acids, twelve
of which were branched-chain amino acids (BCAAs), classified as leucine, isoleucine,
and valine metabolism. BCAAs as the essential amino acids have a number of biological
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functions for energy, stress, and muscle metabolism. BCAAs have been identified as
biomarkers for insulin resistance and type 2 diabetes [28], but there are few studies about
BCAAs’ role in asthma pathophysiology. Matysiak et al. [29] described the decreased level
of valine, one of the BCAAs, in asthmatic children (n = 13) compared to healthy ones
(n = 17). Another study showed considerably lower BCAA levels in asthmatics with a low
fraction of exhaled NO (FENO) (n = 9), a biomarker of eosinophilic airway inflammation,
than in those with high FENO or in healthy controls (n =19) [30]. Our findings underpin
those prior findings in that BCAAs may be a key metabolic pathway in asthma.

Twelve metabolites from the green module belonged to Gamma-glutamyl Amino
Acids (GGAAs). They are catalyzed by gamma-glutamyl transferase (GGT). A few studies
have found associations between asthma and GGT or GGT-related metabolites. The level
of GGT in serum is inversely linked to pulmonary function [31]; however, the study was
limited to chronic obstructive pulmonary disease (COPD). Inhibiting GGT activity in lung
lining fluid has been developed as a novel target to treat asthma [32,33].

Additionally, the red and yellow modules were examined closely as they showed
relatively higher relationships with TG and LDL respectively compared to the other mod-
ules in Figure S2. The red module is composed of 21 metabolites. Nineteen of them
(90%) are under the lipid pathway (Sub pathways: ten in monoacylglycerol and nine in
diacylglycerol), and two of them (10%) are under the cofactors and vitamins pathway (Sub
pathway: two in tocopherol metabolism). One of the major pathways for TG synthesis is
the acylation of monoacylglycerol by monoacylglycerol acyltransferase enzymes to form
diacylglycerol [34,35], therefore suggesting a high association with TG. The yellow module
consists of 44 metabolites. All of them are under the lipid pathway (Sub pathways: 33 in
sphingolipid metabolism, 10 in ceramides, and 1 in sterol). Sphingolipids are a group of
lipids, containing a molecule of especially ceramides and sphingomyelins [36], and are
known to play crucial roles in maintaining membrane function and integrity, preserving
lipoprotein structure and functions [37]. Sphingomyelin is the most prevalent sphingolipid
found in lipoproteins, and VLDL/LDL and HDL account for around 63–75% and 25–35%
of sphingomyelin, respectively [38]. We also observed that the yellow module, consisting
of various sphingomyelins and ceramides, showed a strong relationship with LDL.

The estimated effects of 1-arachidonoyl-GPA (20:4) and the green module were mod-
ified by sex or Hispanic/Latino backgrounds. Although ethnicity is a potential effect
modifier in asthma [39], this has not been shown for Hispanic and/or Latino backgrounds
in a large study of metabolites or metabolite clusters and asthma. Effect modification by
Hispanic and/or Latino backgrounds is likely to be predominantly due to underlying
differences in risk factors correlated with social determinants of health (e.g., air pollution
or diet) [40–42].

Two-sample Mendelian Randomization (MR) has been used to explore underlying
causal associations between an exposure and an outcome. It is suboptimal to perform MR
if exposure and outcome data were extracted from different ethnic populations, therefore,
observing the direct association between asthma and the locus of 1-arachidonoyl-GPA (20:4)
is an alternative approach to exploring casualty [43]. In this study, genetically highly regu-
lated 1-arachidonoyl-GPA (20:4) levels were observed to be associated with asthma. This
is consistent with an observational study that showed that high levels of 1-arachidonoyl-
GPA (20:4) were correlated with asthma, and 1-arachidonoyl-GPA (20:4) is influenced by
FADS2 [20]. FADS2 has been linked to adult asthma in European backgrounds [21,22], and
key inflammatory metabolites have been identified near FADS2 [44]. Moreover, decreased
activity of FADS2 is accompanied by asthma progression [45], which might be caused by
the interrupted metabolism of polyunsaturated fatty acids (PUFAs) and pro-resolving lipid
mediator synthesis.

We recognized several study limitations. First, we only explored known metabolites
with a low missing rate. The full picture of the metabolic effect on asthma warrants future
investigation. Second, other lifestyle factors, such as diet, may influence asthma and
metabolites [46,47]. How metabolites may mediate the effect of diet on asthma remain to
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be explored. Moreover, genetic factors—such as family history of asthma—and air pollution
as an environmental risk factor [48,49] were not analyzed in the present study; thus, it is
recommended for future research to demonstrate a more robust association between the
identified metabolite and the metabolite module, and asthma in Hispanic and/or Latino
backgrounds. Third, it would be worth future investigation of the impact of asthma
treatment, such as inhaled corticoids, on circulating metabolites, because its use might
change the biological metabolomic profiles associated with asthma [50]. Fourth, self-
reported asthma cases were used in the present study, which might not reflect the true
disease status. A sensitivity analysis comparing doctor diagnosed to self-reported asthma
cases did not alter our main findings. Fifth, few large Hispanic/Latino background studies
with metabolomic profiling data are available, therefore, we were not able to perform
external validation. However, the MR analysis using published genetic summary statistics
from external studies demonstrated the potential causal effect of 1-arachidonoyl-GPA
(20:4) on asthma, strengthening the observed association. Lastly, the current study used a
cross-sectional design, which limited the ability to estimate temporal relationships between
metabolites and asthma. However, we identified a potential causal association between
1-arachidonoyl-GPA (20:4) and asthma by leveraging genetic summary statistics from
genome-wide association studies.

4. Materials and Methods
4.1. Study Samples

Subject recruitment and the study design of HCHS/SOL have been previously de-
scribed in detail [51,52]. In brief, the HCHS/SOL is a prospective cohort study aiming to
identify factors influencing the health of Hispanic and/or Latino backgrounds. By using
a stratified two-stage area probability sampling method in four communities in the US
(Chicago, IL; Miami, FL; Bronx, NY, and San Diego, CA), participants aged 18 to 74 years
at the screening were recruited from randomly selected households. In total, 16,415 in-
dividuals who self-identified as Hispanic and/or Latino backgrounds (South Americans,
Central Americans, Mexicans, Puerto Ricans, Cubans, and Dominicans) were recruited
between June 2008 and July 2011. Of those completing the first study visit, 3349 randomly
chosen participants had metabolite measures and complete clinical data for this study.
After removing two outlier samples, 3347 participants were included in the current analysis.
The HCHS/SOL was approved by the institutional review boards at each participating
institution, and written informed consent was obtained from all study participants.

4.2. Metabolite Profiling

Fasting serum samples were collected from the HCHS/SOL baseline visit for metabol-
omic profiling and stored at −70 ◦C since collection. The profiling was performed at
Metabolon (Durham, NC, USA) using the Discovery HD4 platform in 2017 [20]. Untargeted
liquid chromatography–mass spectrometry (LC-MS) protocol was utilized to semi-quantify
metabolites [53–55]. In total, 1136 metabolites were discovered, including 782 known and
354 unknown metabolites. Finally, 640 analyzable metabolites were verified as only known
metabolites with missing rates ≤ 25% were regarded for quality control. Missing data for
the metabolites were imputed to half of the lowest value [56,57]. Additional details are
provided in the Supplemental Methods (Table S8).

4.3. Ascertainment of Asthma and Covariates

In HCHS/SOL, asthma cases were identified using questionnaire data. A case for the
current study was defined as those who answered “yes” to the survey question, “Have
you ever had asthma?” [7,58]. A cross-check was conducted to verify that all of the cases
diagnosed by medical professionals in the present study were counted as cases in the case
definition question. All self-defined cases as ever-asthma cases included those diagnosed
by health professionals. The non-asthmatics were defined as those who neither reported
ever asthma nor were diagnosed with asthma by a physician. A total of 514 individuals
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were characterized as asthma cases and 2833 were controls. There were 23 cases (4.47%)
of self-reported ever asthma cases that were not diagnosed by medical professionals. A
sensitivity analysis was conducted to evaluate the consistency between the self-reported
and doctor-diagnosed asthma definitions.

Risk factors for asthma were collected from the baseline survey questionnaires in-
cluding age, sex, smoking status (never; former; current), cigarette years, education levels
(less than high school; high school or equivalent; greater than high school or equivalent),
annual household income (ten categories in total; from less than $10,000 to $29,999 by $5000,
from $30,000 to $50,000 by $10,000, and from 50,001 to more than $100,000 by $25,000),
immigrant status (residence period in US and US born or immigrant), and self-defined
Hispanic and/or Latino backgrounds (Dominican; Central American; Cuban; Mexican;
Puerto-Rican; South American) [59–63]. TG and HDL levels were measured with the serum
from 12-hour fasting blood samples collected in accordance with standard protocols [64],
and the Friedewald equation was employed to calculate LDL levels [65]. Body Mass Index
(BMI) was calculated as weight in kilograms divided by height in meters squared [66].
Pulmonary function measures, including FEV1, FVC, and FEV1/FVC ratio of pre and post
bronchodilator levels were gauged using a dry rolling seal spirometer with automated
quality checks by American Thoracic Society and European Respiratory Society guide-
lines [67,68]. Eosinophil counts were enumerated by Sysmex XE-2100 instrument (Sysmex
America) at the University of Minnesota based on national and international standards and
procedures with the whole blood in EDTA collected at the baseline examination [69].

4.4. Statistical Analysis

The demographic characteristics of the samples between asthmatics and non-asthmatics
were compared using a t-test for continuous variables and a chi-square test for categorical
variables. Each of 640 single metabolites was tested for the association with asthma using a
survey logistic regression analysis, incorporating sampling weights in the statistical mod-
els [70]. Three consecutive models were performed: Model 1 included age, sex, immigration
status, field centers, and Hispanic and/or Latino backgrounds; Model 2 additionally ad-
justed for LDL, HDL, and TG; and Model 3 supplemented smoking, education level, and
household income.

We constructed metabolite modules based on similarities using Weighted Gene Co-
expression Network Analysis (WGCNA) [71]. It is used to locate clusters, called modules,
of highly correlated genes, metabolites, or proteins [72]. The soft-thresholding power β was
computed and selected as 5, which was the first number of the degree of independence ex-
ceeding 0.9 with soft thresholding r2 of 0.928 (Figure S4, Table S9). The algorithm identified
the co-expressed metabolite modules with a minimum module size of 10. A dissimilarity
matrix was used to distinguish modules through a dynamic tree-cutting algorithm by
splitting the whole network into multiple co-expressed modules. Random colors were
assigned to the identified modules. The modules were considered to be merged with
similar modules based on the height cut criteria of 0.25, implying the correlation between
modules was 0.75 [73–75]. Metabolites not showing similarity with any clusters were
classified into the grey module. Module eigenvectors were calculated as the first principal
component of the expression matrix of the corresponding module, and were standardized
before analyses [76–78]. The eigenvectors were analyzed using the same aforementioned
three models. Bonferroni adjusted p-values < 0.05 were considered statistically significant
for both single metabolites and metabolite modules analyses.

The Pearson correlations between each module’s eigenvectors and risk factors: age,
cigarette years, eosinophils, pulmonary function (FEV1, FVC, and FEV1/FVC ratio of pre
and post respectively), BMI, and lipids (LDL, HDL, and TG) were estimated after demon-
strating the different distribution between asthmatics and non-asthmatics by t-test. [79].
Since biological sex plays a key role in asthma [80], and individuals with Puerto-Rican
and Cuban backgrounds show more prevalent asthma compared to people of other His-
panic/Latino backgrounds [58,81,82], stratified analyses were conducted to determine the
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potential effect modification of sex and Hispanic/Latino high-risk backgrounds on metabo-
lite and metabolite module associations with asthma. Additionally, a two-sided z score
test was computed to test interaction effects on asthma between sex and Hispanic/Latino
high-risk backgrounds, and metabolite and metabolite modules, respectively.

For the identified asthma-related metabolite module, over-representation analysis
(ORA) was performed in MetaboAnalyst 5.0 to identify biologically meaningful metabolome
patterns [83]. ORA is designed to test what biological pathways would be represented more
often than expected by chance [84]. A total of 40 metabolites chosen based on WGCNA
and grouped in a module were fed into the pathway database of the Human Metabolome
Database (HMDB); 37 metabolites were successfully mapped and were carried over into
ORA. The Bonferroni adjusted p-value < 0.05 was defined as significant accounting for
34 pathways tested.

For the metabolite associated with asthma, its significant genetic loci were looked up in the
published metabolite genome-wide association study from HCHS/SOL (p < 1.23 × 10−10) [20].
The direct association between the metabolite loci and asthma was examined primarily
using published asthma genome-wide association studies from European and East Asian
populations [21,22]. The MR approach was applied secondarily to assess their potential
causal relation, since using ethnic different populations for exposure and outcome were
suboptimal for MR. The MR analysis was performed using the R package “TwoSampleMR”
(version 0.5.6).

All analyses were conducted using R 4.0.5, and statistical significance was defined as
a two-sided p-value < 0.05 unless specified otherwise.

5. Conclusions

In summary, we identified 1-arachidonoyl-GPA (20:4) and a metabolite module that
were associated with asthma respectively in Hispanic and/or Latino backgrounds. Our
findings provide additional insights into asthma etiology and candidates for future more
targeted metabolomic studies on asthma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12040359/s1, Figure S1: (a) Clustering dendrograms of metabolites; (b) eigengene
dendrogram, Figure S2: Module-trait relationship heatmap, Figure S3: Over-representation analysis
of the 40 metabolites in green module, Figure S4: (a) Outliers detection by SampleTree function
of WGCNA; (b,c) analysis of network topology for a set of soft-thresholding powers, Table S1:
Demographic Characteristics of the Samples in Study Used for the Heatmap of the Pearson Cor-
relation Test, Table S2: The number of metabolites in 12 modules, Table S3: Association between
colored modules and asthma, Table S4: Pathways and metabolites classification of green module,
Table S5: The List of 1-arachidonoyl-GPA (20:4) and 40 Metabolites in Green Module by LC/MS
Analysis, Table S6: Over-representation analysis of the 40 metabolites in green module, Table S7:
Stratification analysis of green module and 1-arachidonoyl-GPA (20:4) by sex and Hispanic/Latino
backgrounds, Table S8: Interaction Effects of green module and 1-arachidonoyl-GPA (20:4) by sex and
Hispanic/Latino backgrounds, Table S9: Scale-free metrics resulting from pickSoftThreshold function
of WGCNA [20,53,56,57,85,86].
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