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ABSTRACT

Pseudotime analysis from scRNA-seq data enables
to characterize the continuous progression of vari-
ous biological processes, such as the cell cycle. Cell
cycle plays an important role in cell fate decisions
and differentiation and is often regarded as a con-
founder in scRNA-seq data analysis when analyzing
the role of other factors. Therefore, accurate predic-
tion of cell cycle pseudotime and identification of
cell cycle stages are important steps for character-
izing the development-related biological processes.
Here, we develop CCPE, a novel cell cycle pseudo-
time estimation method to characterize cell cycle tim-
ing and identify cell cycle phases from scRNA-seq
data. CCPE uses a discriminative helix to character-
ize the circular process of the cell cycle and esti-
mates each cell’s pseudotime along the cell cycle.
We evaluated the performance of CCPE based on a
variety of simulated and real scRNA-seq datasets.
Our results indicate that CCPE is an effective method
for cell cycle estimation and competitive in various
applications compared with other existing methods.
CCPE successfully identified cell cycle marker genes
and is robust to dropout events in scRNA-seq data.
Accurate prediction of the cell cycle using CCPE can
also effectively facilitate the removal of cell cycle ef-
fects across cell types or conditions.

INTRODUCTION

The rapid development of single-cell RNA-sequencing
(scRNA-seq) technologies makes it possible to character-
ize cellular heterogeneity in gene expression at single-cell
resolution (1–4). Accurate analysis of heterogeneous gene
expression in single cells can help to better understand the
specificity of any particular disease, thus discovering new

genes as drug targets. There are many reasons for gene ex-
pression heterogeneity between cells, such as regulatory dif-
ferences between cell types, cell cycle stage differences of
the same type of cells, external microenvironment, etc. (5,6).
Cell cycle, in particular, has been recognized as a key con-
tributor of cell-to-cell gene expression variance (7,8). Nu-
merous studies have demonstrated a tight association of cell
cycle with cell fate decisions during development and tissue
regeneration (9,10). During development/embryogenesis,
embryonic stem cells/progenitor cells undergo self-renewal
and lineage-specific differentiation programs to generate
specific cell types. In adulthood, stem cells continue to dif-
ferentiate and create fully differentiated progeny cells dur-
ing tissue repair and normal cell renewal. Cell cycle plays
an important regulatory role in cell fate decisions (9) and
differentiation (10) of stem cells. As the main rate-limiting
step of cell differentiation (10), cell cycle control is essen-
tial in ensuring generating cell diversity and maintaining
the homeostasis of adult tissues. Cancer cells are derived
from cancer stem cells/progenitor cells and can also be de-
differentiated to re-enter the cell cycle and become cancer
progenitor cells (11,12). Loss of cell cycle control can lead
to uncontrolled tumor cell proliferation and growth (13). In
addition to the significance in studies of tumorigenesis and
development (14–16), the cell cycle is often regarded as a
confounder in scRNA-seq data analysis when analyzing the
role of other factors on transcriptional regulation. Remov-
ing confounder effects will improve the resolution of other
biological processes (17). One of the strategies to remove
cell cycle effects is removing cell cycle-related genes (18).
Accurate prediction of cell cycles can help to identify cell
cycle-related genes, thereby promoting the removal of cell
cycle effects. Therefore, accurately identifying the cell cycle
of individual cells is needed to fully understand a number
of different biological problems and data analysis issues.

However, there are many challenges in predicting cell cy-
cle using scRNA-seq data. Most of cell cycle-related infor-
mations are obtained through experimental methods, such
as chemical induction (19), counterflow centrifugation elu-
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triation (20) and DNA content (21). They have been used
to detect the cell cycle phases of individual cells (22). These
methods are time-consuming and laborious and not a quan-
titative measurement of cell cycle phase duration. There-
fore, computational methods have been developed to deter-
mine cell cycle stages based on the transcription profile of
the cells. The main computational methods currently used
can be divided into two categories, knowledge-based and
unsupervised. Knowledge-based methods, such as cyclone
(8) and CellCycleScoring function in Seurat (23), use anno-
tated cell cycle genes to predict the classification of each cell
in G1, S or G2/M phase. Peco is another knowledge-based
approach that uses the data generated from FUCCI fluo-
rescence images and scRNA-seq to train the ‘naive Bayes’
predictor for predicting the progression position of each
cell through the cell cycle process, which we called cell cy-
cle pseudotime (6). Peco is specially designed for human
induced pluripotent stem cells. reCAT requires cell cycle
marker genes to calculate the Bayes-scores of each cell, and
uses consensus traveling salesman problem (TSP) and hid-
den Markov model (HMM) to recover cell cycle pseudo
time-series and stages (24). A common drawback of the
knowledge-based methods is that their applications are lim-
ited to datasets with pre-annotated cell cycle genes and ex-
perimental cell cycle labels. To address this issue, several un-
supervised methods have been proposed to predict cell cycle
pseudotime, such as Cyclum (25) and CYCLOPS (26). Cy-
clum employs an autoencoder model that takes both non-
linear and linear components in the hidden layer into ac-
count. The non-linear projection of gene expression profiles
is trained to infer the pseudotime of cells in the circular pro-
cess (25). CYCLOPS uses an autoencoder model with linear
projection to project data onto a closed elliptical curve in
low-dimensional space (26). However, CYCLOPS employs
square root and division in the autoencoder model, which
makes optimization more complicated. Using unsupervised
methods to estimate the cell cycle not only has to consider
how to model the circular process in the cell cycle, but also
has to take the inherent characteristics of scRNA-seq data,
sparsity and high dimensionality into account, which makes
it difficult to use unsupervised methods to estimate the cell
cycle.

In this study, we proposed a novel unsupervised method
named CCPE to estimate cell cycle pseudotime of single
cells from single-cell RNA-seq data. CCPE learns a dis-
criminative helix to characterize the circular process and
estimates pseudotime in the cell cycle. We assessed the per-
formance of CCPE in estimating cell cycle pseudotime and
cell stage assignment using both simulated and real scRNA-
seq datasets. We also assessed the performance of CCPE
in handling dropout events, analyzing smaller datasets with
fewer genes or cells and removing the cell cycle effect from
scRNA-seq data. We compared the performance of CCPE
with the other methods, including cyclone, Seurat, Cyclum,
CYCLOPS and reCAT.

MATERIALS AND METHODS

Datasets

We used both simulated datasets and real datasets (Supple-
mentary Table S1) to evaluate the performance of CCPE.

Simulated scRNA-seq datasets. We simulated three
datasets with different dropout rates (25.6%, 51.1% and
68.8%) using the simulation model in CIDR (27). Each
simulated dataset contains three cell stages, representing
G1, S, G2/M phases. One hundred fifty cells and 20,180
genes were generated for each simulated dataset by setting
parameters N = 3, k = 50 in scSimulator function of CIDR
package. Different dropout rates (25.6%, 51.1% and 68.8%)
are achieved by setting the dropout level parameter v equal
to 6.5, 9 and 12, respectively. Higher v means a higher level
of dropouts.

mESCs Quartz-Seq dataset. The mouse embryonic stem
cells (mESCs) were sequenced by Quartz-Seq technology, a
reproducible and sensitive single cell RNA-seq method (21).
This dataset has known cell cycle phases. Therefore, we used
this dataset to evaluate the performance of different meth-
ods. Many other studies have used this dataset in cell-cycle
analysis (8,24,28). The mESCs Quartz-Seq dataset has 35
mouse embryonic stem cells, including 20 cells in G1 phase,
seven cells in S phase and eight cells in G2/M phase. mESCs
Quartz-Seq dataset is available from Gene Expression Om-
nibus (GEO) with GEO Series ID GSE42268.

H1 hESCs scRNA-seq dataset. To compare the perfor-
mance of CCPE and Cyclum on the data with different
gene and cell sizes, especially the data with small number of
genes and cells. We randomly subsampled the scRNA-seq
data from human embryonic stem cells (GSE64016). This
dataset consists of 247 cells and 19 084 genes. We selected
seven gene sizes, ranging from 50 to 600 genes, and five cell
sizes, ranging from 10 to 100 cells. Each data with a specific
size was sampled 10 times for fair evaluation. Normalized
expected counts were provided in this dataset and the cell
cycle phases of 247 cells were identified using Fluorescent
Ubiquitination-based Cell Cycle Indicator (FUCCI).

E-MTAB-2805 mESCs dataset. This scRNA-seq dataset
of mouse embryonic stem cells were generated by Buettner
et al. (28). The dataset was downloaded from https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-2805/. The
cells were stained with Hoechst and sorted using FACS for
respective cell-cycle fractions (G1, S and G2/M phase).
Two hundred eighty-eight mouse embryonic stem cells
were sequenced using HighSeq 2000 sequencing system.

Nutlin-treated multiple cancer cell lines dataset. This
dataset consists of two 10× single-cell RNA-seq data from
nutlin-treated cells and control group. A mixed culture
of 24 cell lines were treated with either dimethyl sul-
foxide (DMSO) or nutlin. This dataset was downloaded
from https://figshare.com/s/139f64b495dea9d88c70. Nutlin
is known to elicit cell cycle arrest exclusively in cells express-
ing wild-type (WT) TP53 (29). Thus, seven cell lines express-
ing WT TP53 were used in CCPE to characterize the cell
cycle effect of a cell cycle perturbation.

416B cell line scRNA-seq dataset. 416B cell dataset con-
tains two 96-well plates of 416B cells (an immortal-
ized mouse myeloid progenitor cell line) (30). It is pro-
cessed using the Smart-seq2 protocol (31). The CBFB-
MYH11 oncogene was expressed in half of the cells and

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2805/
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silent in the other half of cells (control). This dataset
was downloaded from https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5522/.

Normalization and pre-processing

For the mESCs Quartz-Seq data and E-MTAB-2805 data
with FPKM and TPM expression levels, and other datasets
with read counts for expression levels, we normalized the
single cell RNA-seq datasets by taking log 2 transformation
with a pseudo count 1 as

log2 (FPKM |TPM| Counts + 1) (1)

Gene selection is recommended for the data pre-
processing in CCPE. ‘dpFeature’ is a powerful and gen-
eral approach for unsupervised feature selection to solve
the sparsity problem in scRNA-seq data (32). ‘dpFeature’
excludes genes that are expressed in <5% of all the cells
and selects the significantly differentially expressed genes
for CCPE (32).

Construction of CCPE model

Learning a helix in the reduced dimension. We suppose
scRNA-seq data X with N cells and D genes lies in the
high dimension. In CCPE, we consider the linear projection
Z = f (X) = WT X to infer the embedded expression pro-
files Zd×N (d � D) from X and the reversed linear projec-
tion is X = f −1 (Z) = WZ, where d is the reduced dimen-
sion and W ∈ RD×d with WTW = I. We construct a circular
helix Ẑ = f (x, y, z) in 3D dimension to get the best fit of Z,
a circular helix of radius a and slope v/a (or pitch 2πv) is
described as follows for cell i

Ẑi = fHeli x (x̂i , ŷi , ẑi ) =
{ x̂i = vθi

ŷi = a sin θi
ẑi = a cos θi

(2)

Then we formulate the following object function to ob-
tain the reduced dimension via learning a helix

min
W,Z,Ẑ

N∑
i=1

‖Xi − WZi‖2 +
N∑

i=1

‖Zi − Ẑi‖2 (3)

s.t.

WTW = I

Ẑi = fHeli x (x̂i , ŷi , ẑi ) =
{ x̂i = vθi

ŷi = a sin θi
ẑi = a cos θi

a > 0, v > 0

where X = [X1, X2, . . . , XN] ∈ RD×N is the scRNA-seq
data, W = [W1, W2, . . . , Wd ] ∈ RD×d is an orthogonal set
of d linear basis vectors Wl ∈ RD, Z = [Z1, Z2, . . . , ZN] ∈
Rd×N is represented by the embedded expression profiles of
X in low-dimension Rd . Ẑ contains fitted points of Z on a
circular helix with the same dimension as Z and x̂i , ŷi , ẑi is
the coordinates of cell i projected on the circular helix.

Furthermore, cells in the same cell cycle phase should
cluster together on the helix, so we consider the clustering

objective into the optimization problem as below

min
W,Z,Ẑ,Y

N∑
i=1

‖Xi − WZi‖2 + λ

N∑
i=1

∥∥Zi − Ẑi
∥∥2

+ γ
[∑K

k=1

∑Nk

i=1
ri,k‖Zi − Yk‖2 + σ� (R)

]
s. t. WTW = I, Ẑi = fHeli x,

K∑
k=1

ri,k = 1, ri,k ≥ 0,∀i,∀k

(4)

where Nk is the number of cells in cluster k. ri,k is the weight
of soft clustering based on the assumption of K clusters. Yk
represents the centroid of cluster k. �(R) is the negative en-
tropy regularization and σ > 0 is the regularization param-
eter for �(R). λ > 0, γ > 0 are parameters that indicate the
importance of each component of the objective function.

The solution of ri,k in terms of
K∑

k = 1
ri,k = 1 and formula of

�(R) are described in (33) as the following

ri,k = exp
(

−‖Zi − Yk‖2

σ

) / K∑
k=1

exp
(

−‖Zi − Yk‖2

σ

)
(5)

� (R) =
N∑

i=1

K∑
k=1

ri,klogri,k (6)

Optimization of CCPE’s objective function. We optimize
the object function (4) using alternating structure optimiza-
tion, which has been successfully applied to several opti-
mization problems (34). We divide the parameters to be op-
timized into two parts {W, Z, Y}and {Ẑ} and solve one
group by fixing the other group alternatively until conver-
gence.

Firstly, we optimize {W, Z, Y} by fixing {Ẑ}. Given a
known helix, we can see Ẑ as a constant matrix C ∈ Rd×N.
After simple matrix manipulation (Supplementary Text S1),
function (4) with respect to {W, Z, Y} can be rewritten as
the following optimization problem

min
W,Z,Y

tr
[
XXT − 2WT XZT + (1 + λ + γ ) ZZT

−2λCZT + λCCT − 2γ RT ZTY + γ Y�YT]
(7)

where � = diag(1T R) and R is the weight matrix of soft
clustering. Set L equals formula (7) and the first derivative
of L with respect to Y to zero

∂L
∂Y

= −2γ ZR + 2γ Y� = 0 (8)

Then we get the optimization of Y as

Y = ZR�−1 (9)

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5522/
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Substituting Y into L and set the first derivative of L with
respect to Z to zero, we can get the optimization of Z as

Z = (
WT X + λC

)
[(1 + λ + γ ) I − γ R�−1 RT]

−1

= (
WT X + λC

)
Q (10)

where Q = [(1 + λ + γ )I − γ R�−1 RT]−1 and the inverse of
[(1 + λ + γ )I − γ R�−1 RT] exists (Supplementary Text S2).
Similarly, substituting Z into L, the objective function be-
comes the following optimization problem

L = max
W

tr
(
CQXTW

)
: WTW = I (11)

This is the constrained quadratic problem (Supplemen-
tary Text S3) which has the closed-form solution (35) of W
as follows

W = VID×dUT (12)

where V is an D × D unitary matrix, U is an d × d unitary
matrix, and U
VT is the singular value decomposition of
matrix CQXT, 
 is an d × D rectangular diagonal matrix
with non-negative real numbers on the diagonal.

Secondly, given W, Z and Y, we can obtain Ẑ easily by
solving the following curve fitting problem

min
a,v,θ

N∑
i=1

‖Zi − Ẑi‖2 : Ẑi = fHeli x (13)

Overall, the optimization process of the problem (4) is
given in Algorithm 1 and the dimensions of all the matri-
ces used in CCPE were provided in Supplementary Table
S2.

Algorithm 1

1. Input: scRNA-seq data X, parameters λ, σ and γ , number of
clusters K .

2. Initialize Z and Y
3. Repeat
4. Obtain Ẑ by solving (13) via Helix fitting
5. Compute R with each element as (5)
6. � = diag(1T R)
7. Q = [(1 + λ + γ )I − γ R�−1 RT ]−1

8. A = Ẑ QXT

9. Perform SVD on A such that A = U
VT

10. W = VID×dUT

11. Z = (WT X + λẐ)Q
12. Y = ZR�−1

13. Until Convergence

Strategy for setting weighting parameters in CCPE. There
are three parameters λ, σ and γ in the objective function
and they represent the weights of multi tasks in CCPE.
λ regulates the coverage of Helix, γ regulates the perfor-
mance of clustering and σ represents the weight of negative
entropy regularization. We used both scRNA-seq datasets
with ground truth and without ground truth in CCPE.
For the datasets with ground truth, we firstly set the ini-
tial values of the parameters empirically, then fix two pa-
rameters and change the value of another parameter un-
til the model gets its best performance (36). Taking E-
MTAB-2805 mESCs dataset as example, the objective func-
tion values of CCPE converge as the number of iterations

increases (Supplementary Figure S1). We used the accu-
racy as a clustering evaluation criteria to assess the perfor-
mance of CCPE with respect to parameters {λ, γ, σ } and
CCPE achieved the best performance when λ = 70, γ =
140 and σ = 0.01 (Supplementary Figure S2). The same
strategy was also used on the mESCs Quartz-Seq dataset
and H1 hESCs scRNA-seq dataset. CCPE has a good per-
formance on mESCs Quartz-Seq dataset and H1 hESCs
scRNA-seq dataset when setting the values of {λ, γ, σ } to
{50, 50, 0.001}. For the datasets without ground truth, we
artificially set parameters {λ, γ, σ } to {50, 50, 0.001} in or-
der to avoid tuning too many parameters.

RESULTS

Overview of CCPE approach

Single-cell RNA sequencing (scRNA-seq) data is a cell-
specific gene expression matrix with high dimensionality
and sparsity. Traditional clustering methods have low effi-
ciency for computing high-dimensional and sparse matri-
ces. Therefore, it is necessary to introduce dimension re-
duction in the model. We develop CCPE, a novel cell cy-
cle pseudotime estimation method to characterize cell cy-
cle timing from single-cell RNA-seq data. CCPE maps
high-dimensional scRNA-seq data onto a helix in three-
dimensional space, where 2D space is used to capture the
cycle information in scRNA-seq data, and one dimension
to predict the chronological orders of cells along the cell cy-
cle, which we called cell cycle pseudotime (Supplementary
Figure S3). ScRNA-seq data is repeatedly transformed from
high dimension to low dimension and then mapped back to
high dimension. At the same time, CCPE iteratively opti-
mizes the discriminative dimensionality reduction via learn-
ing a helix until convergence (Figure 1). CCPE is applied to
several analyses and applications to demonstrate its ability
to accurately estimate the cell cycle pseudotime and stages.

Estimation of cell cycle pseudotime

As we mentioned in the introduction, few computational
tools have been developed so far to be used for the estima-
tion of cell cycle pseudotime for scRNA-seq data, including
Cyclum, CYCLOPS and reCAT (24–26). To test the per-
formance of CCPE in predicting the cell cycle pseudotime,
we compare the performance of CCPE with Cyclum, CY-
CLOPS and reCAT based on scRNA-seq data of mouse em-
bryonic stem cells (mESCs) sequenced by Quartz-Seq tech-
nology (21). This dataset has known cell cycle phases that
can be used as the golden standard to evaluate the perfor-
mance of different models. Figure 2A illustrates the distri-
bution of cell cycle pseudotime estimated by each method.
Both CCPE and Cyclum can maintain the correct cell cy-
cle order from G1 to S, and then to G2/M. Both of CY-
CLOPS and reCAT can distinguish G1 and S phases well
but do not characterize G2/M phase in the right order af-
ter S phase. Compared with Cyclum, CCPE shows a bet-
ter performance in separating S and G2/M phases. To test
whether the pseudotime estimated by CCPE is significantly
differential for G1, S and G2/M phases, we performed
Analysis of Variances (ANOVA) (37) on three groups (G1,
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Figure 1. Overview of CCPE approach. After normalization and pre-processing of the data, CCPE learns the discriminative helix by iteratively optimization
between the original and reduced dimension until convergence. After optimization, a 3D-helix with two-gene dimensions is used to represent circular
information of cell cycle phases and one dimension to represent pseudotime of cells along the cell cycle. Several downstream analyses and applications of
CCPE are used to assess its performance.

S and G2/M phases). The ANOVA result (Supplemen-
tary Table S3) shows the variance of the three groups dif-
fered significantly and the p-value of the ANOVA result is
1.24E–09, which confirms that the pseudotime estimated
by CCPE is significantly differential for G1, S and G2/M
phases.

We calculated the Pearson correlation of the gene expres-
sion and cell cycle pseudotime inferred by CCPE. Aurora
kinase A (Aurka), polo-like kinase 1 (Plk1) and karyopherin
alpha 2 (Kpna2) have the highest correlation with cell cycle
pseudotime. The correlation coefficients of Aurka, Plk1 and
Kpna2 genes are 0.85, 0.81 and 0.79, respectively (Figure
2B). Aurka is known as a key cell-cycle regulator, whose lev-
els of mRNA and protein are low in G1 and S and increase
sharply during G2/M phase (38). Plk1 has a crucial role in
the regulation of mitotic checkpoints and is active in the
late G2 phase (39). Knocking-down Kpna2 has been shown
to inhibit cell proliferation by inducing cell cycle arrest in
G2/M phase (40). We found that the most highly correlated
genes with cell cycle pseudotime are G2/M-phase marker
genes (Supplementary Figure S4), which are all highly
expressed in G2/M phase (Figure 2C, Supplementary
Figure S5).

Assignment of cell cycle stages

We compared the competence in assigning cells into the
correct cell cycle stages of CCPE with others models. To
do so, we took advantage of a Gaussian mixture model
with three components to transform the continuous pseu-
dotime generated by CCPE, Cyclum and CYCLOPS into

discrete cell cycle stages. In addition to Cyclum and CY-
CLOPS, we also compared CCPE with cyclone, Seurat and
reCAT using both mESCs Quartz-Seq and E-MTAB-2805
mESCs datasets. Seven classification metrics were used to
evaluate the models’ performance. Precision, Recall and Fs-
core represent Macro-Precision, Macro- Recall and Macro-
Fscore for multiclass classification evaluation, separately.
The details of clustering metrics are described in Supple-
mentary Text S4. Due to the randomness in the machine
learning models, each method was evaluated ten times on
each dataset and the average value of each clustering met-
ric was recorded (Supplementary Table S4, Supplementary
Table S5). CCPE has an excellent performance in analyz-
ing mESCs Quartz-Seq dataset, with highest values of clus-
tering metrics among all methods (Figure 3A). CCPE also
performs very well in analyzing the E-MTAB-2805 mESCs
dataset, ranking first in all of individual metrics (Figure 3B).
The performance of the knowledge-based method cyclone is
second only to CCPE and reCAT can not calculate Macro-
Fscore for E-MTAB-2805 mESCs dataset. The overall per-
formance of Cyclum is better than Seurat, CYCLOPS and
reCAT (Supplementary Table S5). Our results demonstrate
the excellent performance of CCPE in predicting the cell cy-
cle stages.

Robustness of CCPE in analyzing small size of scRNA-seq
data

To evaluate the performance of CCPE on the data with dif-
ferent numbers of genes and cells, especially the data with a
small number of genes and cells, we randomly subsampled
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Figure 2. Cell cycle pseudotime analysis of mESCs Quartz-Seq data. (A) Boxplots demonstrated the distribution of cell cycle pseudotimes inferred by
CCPE, Cylum, CYCLOPS and reCAT, respectively. Each box was colored by the corresponding cell cycle phases and outliers were ignored in the figure.
(B) The expressions of three cell cycle marker genes are highly correlated with the cell cycle pseudotime estimated by CCPE. The correlation coefficients
and p-value are shown on the top left of each figure. (C) shows density plots of the expressions of three G2/M-phase marker genes.

the scRNA-seq data from the human embryonic stem cell
dataset, which consists of 247 cells and 19 084 genes. We
selected seven sub-datasets with various number of genes,
ranging from 50 to 600 genes, and five sub-datasets with
various cell numbers, ranging from 10 to 100 cells. We found
that the median of all the clustering metrics of both CCPE
and Cyclum gradually increased with the number of genes
(Figure 3C, Supplementary Figure S6). CCPE consistently
outperformed Cyclum in terms of seven clustering metrics.
In other words, CCPE can predict cell cycle stages more ac-
curately based on a smaller number of genes than Cyclum.
CCPE also has better performance on a smaller number of
cells compared with Cyclum. The performance of CCPE
gradually declines as the number of cells increases and fi-
nally stabilizes (Figure 3D, Supplementary Figure S7). The
median value of Cyclum oscillates within a certain range
(between 0.65 and 0.68 in RI, between 0.23 and 0.38 in
NMI and between 0.63 and 0.7 in Accuracy), but lower than
CCPE. Our analysis indicates that CCPE is more robust
and has a higher prediction accuracy for the datasets with
a smaller number of genes or cells.

Differential gene expression analysis based on inferred cell
cycle phases

Differential gene expression analysis of inferred cell cycle
phases can identify gene expression variability between dif-
ferent cell cycle phases. We use DESeq2 (41) implemented
in R/Bioconductor to detect differentially expressed genes
(DEGs) from CCPE-inferred and Cyclum-inferred cell cy-
cle stages (P.adjusted ≤ 0.05 and |log2FC| ≥ 1) for E-
MTAB-2805 mESCs data. Gene set enrichment analysis
(42) shows that the DEGs identified by CCPE are mainly
involved in the cell cycle pathways and enriched in the bio-
logical cell cycle-related processes, including p53 signaling
pathway, progesterone-mediated oocyte maturation and cir-
cadian rhythm. The DGEs identified by Cyclum have lit-
tle relationship with the cell cycle (Figure 4A). Figure 4B
shows the expression of four G2/M phase marker genes
Plk1, Bub3, Cdc20 and Fzr1, which are enriched in the cell
cycle pathway.

Studies indicated that the DNA replication timing pro-
gram of the cell is highly organized and defined as the
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Figure 3. Cell-cycle stage inference from real datasets. (A) shows seven multiclass classification metrics to evaluate the cell cycle classification accuracy
of CCPE, cyclone, Seurat, reCAT, Cyclum and CYCLOPS for mESCs Quartz-Seq data. (B) shows seven multiclass classification metrics to evaluate the
cell cycle classification accuracy of CCPE, cyclone, Seurat, reCAT, Cyclum and CYCLOPS for E-MTAB-2805 mESCs data. Details of all the clustering
measurements are provided in Supplementary Text S4. (C) Boxplots of RI, NMI and Accuracy values indicate the performance of CCPE and Cyclum on
the subsampled datasets with smaller number of genes. (D) Boxplots of RI, NMI and Accuracy show the cell cycle classification accuracy of CCPE and
Cyclum on the subsampled datasets with different numbers of cells.
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Figure 4. Differentially expressed gene analysis on E-MTAB-2805 mESCs data. (A) Top ten enriched biological progresses associated with DEGs identified
by CCPE-inferred and Cyclum-inferred cell cycle stages. (B) The violin plots show the expression of G2/M phase marker genes Plk1, Bub3, Cdc20 and
Fzr1. (C) Schematic representation of the intersection between DEGs and DNA replication timing events. (D) Top ten enriched biological progresses of
the 682s DEGs overlapped with DNA replication timing events.

temporal sequence of locus replication events during the S
phase of the cell cycle (43,44). During the S-phase of each
cell cycle, all of the DNA in a cell is duplicated in order
to provide one copy to each of the daughter cells after the
next cell division. DNA replication timing is the temporal
order of DNA replication of all the segments in the genome.
To further investigate whether these differentially expressed
genes are associated with the cell cycle, we intersected the
positions of 1577 DEGs identified by CCPE on the chro-

mosomes with DNA replication timing events of the human
genome using intersect function in BEDTools (45) (Figure
4C). We found that 682 out of 1557 DEGs are overlapped
with features in DNA replication timing events (Supple-
mentary Figure S8). Enrichment analysis of the overlapped
genes shows the enriched terms are mainly associated with
the regulation of the cell cycle processes (Figure 4D). Our
results further confirms the accuracy of CCPE in predicting
cell cycle stages and identifying cell cycle related genes.
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Robustness of CCPE in dealing with dropout events of
scRNA-seq data

scRNA-seq data always suffers from many sources of tech-
nical noises, leading to excess false zero values, which are
termed as dropout events (46). The tools developed for an-
alyzing scRNA-seq data should take their ability to han-
dle dropout events into account. We used three simulated
datasets with different dropout rates (25.6%, 51.1% and
68.8%) generated by scSimulator function in CIDR (27) to
evaluate the robustness of CCPE in dealing with dropout
events. Figure 5A shows the UMAP visualization of sim-
ulated cells at different CCPE-inferred cell cycle stages.
As the dropout rate increases, the performance of CCPE
on separating three cell cycle clusters gradually decreases.
When the dropout rates are 51.1% and 68.8%, it is dif-
ficult for CCPE to distinguish the three cell cycle phases
(Figure 5A). As we all know, the higher the dropout rate,
the more gene expression are lost. We compared the im-
pact of the dropout rate on the performance of CCPE,
Cyclum and CYCLOPS. By calculating clustering evalua-
tion metrics (Figure 5B), we can see that when the dropout
rate is less than 51.1%, CCPE performs significantly bet-
ter than Cyclum and CYCLOPS. When the dropout rate
increases to 68.8%, CCPE, Cyclum and CYCLOPS all per-
formed poorly in estimating cell cycle phases. The values of
clustering evaluation metrics of CCPE are still higher than
Cyclum and CYCLOPS. Thus, our analysis indicates that
CCPE is more robust to dropout events than Cyclum and
CYCLOPS.

Detection of G1 arrest in Nutlin-treated cancer cell lines us-
ing CCPE

To further assess the performance of CCPE, we applied
CCPE to the cancer cell datasets with or without treatment
with nutlin. Nutlin is a MDM2-p53 inhibitor (47) and can
induce cell cycle arrest (48). One dataset was from the cells
treated with vehicle DMSO and another one is from the
same cells treated with nutlin (29). The cells used in cul-
ture were a cancer cell mixture with seven TP53 WT cell
lines and seventeen TP53 mut cell lines. As shown in Figure
6A, TP53 WT cells were in red circle and cells were colored
by CCPE-infered cell cycle stages. Compared with the cells
in the control group treated with DMSO, CCPE success-
fully detected an increase in the number of TP53 WT cells
in the G1 phase treated by Nutlin. (Figure 6A, Supplemen-
tary Figure S9). We screened out the data of the seven TP53
WT cell lines and calculated the cell number ratio in each
cell cycle phase. We found a significant increase of G1-phase
cells, which confirmed that Nutlin can elicit a pronounced
G1 arrest in TP53 WT cells compared with the untreated
control (Figure 6B). We also applied Deseq2 to identify the
DEGs associated with CCPE-inferred cell cycle stages. It is
obvious that some of the top 10 enriched pathways of these
DEGs are associated with cell cycle, such as regulation of
cell cycle progression and cell cycle G2/M checkpoint (Fig-
ure 6C). The enrichment analysis of DEGs further illus-
trates the accuracy of CCPE in estimating cell cycle stages
and the reliability of CCPE to successfully detect G1 arrest
in nutlin-treated TP53 WT cells.

Cell cycle effect removal from scRNA-seq data

Cells in different cycle stages may have quite different ex-
pression profiles, which can obscure the differences in ex-
pression between cell types and affect cell type identification
and functional analysis of scRNA-Seq data (49). Therefore,
it is important to remove cell cycle effect before conduct-
ing further analysis of scRNA-seq data. We use the murine
multipotent myeloid progenitor cell line 416B dataset (30)
to assess the performance of CCPE in removing cell cycle
effect. We compute the percentage of variance explained
by the CCPE-inferred cell cycle stages in the expression
profile for each gene. Genes with high percentages are re-
garded as cell cycle-related genes and are removed from the
dataset (18). We found that there is a small effect caused by
cell cycle in the 416B dataset (Supplementary Figure S10).
This dataset was generated from 416B cells with or with-
out the expression of CBFB-MYH11 oncogene. Therefore,
two phenotypes exist in the dataset. After removing cell cy-
cle effect using four methods, CCPE, Cyclum, Seurat and
ccRemover, CCPE can separate two phenotypes correctly
and the variation between two phenotypes was more pro-
nounced compared with raw data (Supplementary Figure
S11). Cyclum and Seurat can divide cells into two groups,
but these two groups do not correspond to the expected phe-
notypes. CcRemover unables to distinguish between the two
phenotypes (Supplementary Figure S10).

DISCUSSION

Pseudotime analyses of single-cell RNA-seq data have been
increasingly used to determine the latent pattern of dynamic
processes experienced by cells, such as the cell cycle (50).
We defined cell cycle pseudotime to describe the progression
through the entire cell cycle process. Clustering is a common
step to group cells into different cell cycle stages, learning
gene expression patterns within different subgroups (51).
It is widely used in single-cell transcriptomics workflows.
However, cell cycle is a dynamic process that gene expres-
sion varies between cells not subgroups. Cell cycle pseudo-
time analysis attempts to characterize such differences by
projecting cells along a continuous process rather than di-
viding cells into discrete clusters (6). In this study, we de-
veloped a novel cell cycle pseudotime estimation method
named CCPE to accurately characterize cell cycle timing for
single-cell RNA-seq data. CCPE learns a discriminative he-
lix with two dimensions to characterize circular process in
cell cycle and one dimension to symbolize the pseudotime
of cells along the cell cycle process. This is a kind of task in
manifold learning, a strategy to learn the intrinsic structure
of complex and high-dimensional data. We used alternating
structure optimization to fit the best helix from scRNA-seq
data. The parameters were optimized in the iterative trans-
formation of high and low dimensional spaces. Discrimi-
native information of cells in the same cell cycle phase was
taken into consideration during the optimization process.
Although CCPE is designed to predict cell cycle pseudo-
time, it can convert the pseudotime into discrete cell cycle
stages through a Gaussian mixture model. The Gaussian
mixture model is defined as a linear combination of multiple
Gaussian distributions, it is a common clustering method
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Figure 5. Robustness of CCPE in dealing with dropout events in simulated datasets. (A) UMAP plots for data with 0%, 25.6%, 51.1% and 68.8% dropout
rate. Full represents the data without dropout events. Cells were colored by CCPE-inferred cell cycle stages. (B) The impact of dropout rate on the per-
formance of CCPE, Cyclum and CYCLOPS evaluated by seven multiclass classification metrics using simulated datasets. The methods are marked with
different colors.

based on the estimation of the probability density distribu-
tion of the sample (52). In the Gaussian mixture model, we
used three Gaussian distributions to represent G1, S and
G2/M phases.

Gene selection is recommended during data pre-
processing of CCPE. Since single cell RNA-seq data suffers
from many sources of technical noise (53). Some cell
cycle estimation methods only use cell cycle genes, such
as cyclone, Seurat and reCAT. Cyclone applied thousands
of cell cycle gene pairs to determine the cell cycle phases
of cells (8). While in Seurat, only a small number of S
phase marker genes (43) and G2M phase marker genes
(54) are used to identify the cell cycle stages (23). The semi-
supervised algorithm, reCAT, used 378 cell cycle genes
listed in Cyclebase3 (54) to get gene expression matrix,
while other genes were excluded based on the risk of adding
noise to the model (24). Based on their performance on
real scRNA-seq datasets, it is difficult to figure out how
many cell cycle genes are sufficient to predict the cell cycle
accurately. On the other hand, there are some genes that are
influenced by cell heterogeneity and partially contribute to
the cell cycle. If these genes were completely ignored, then
additional noise would be introduced to the cell cycle pre-
diction. Therefore, we recommended using a sophisticated
approach called dpFeature to select differentially expressed

genes during pre-processing of CCPE. dpFeature discovers
the important ordering genes from the data, rather than
relying on cell cycle marker genes from the literature (32).

We assessed the performance of CCPE in estimating cell
cycle pseudotime and various applications using both sim-
ulated and real scRNA-seq datasets. Even though CCPE
is an unsupervised algorithm, we compared it with both
knowledge-based and other unsupervised algorithms, in-
cluding cyclone, Seurat, Cyclum, CYCLOPS and reCAT.
Peco is not included in the comparison since fluorescence
imaging is required with scRNA-seq to measure cell cycle
phases. The mESCs Quartz-Seq dataset is widely used in
various cell cycle studies (8,24,28). We compared the perfor-
mance of CCPE with several algorithms in characterizing
the cell cycle pseudotime using mESCs Quartz-Seq dataset.
CCPE not only captured the right order of three cell cycle
phases, but also separated them very well as expected. Addi-
tionally, correlation analysis shows the genes highly corre-
lated with CCPE-inferred cell cycle pseudotime are G2/M
phase marker genes. Gaussian mixture model in CCPE was
applied to estimate discrete cell cycle states. We calculated
seven multiclass classification metrics on real datasets and
our results indicated that CCPE had an outstanding perfor-
mance compared with cyclone, Seurat, Cyclum, CYCLOPS
and reCAT. We also tested the stability of CCPE in pre-
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Figure 6. Validation of CCPE prediction accuracy using scRNA-seq datasets from cells treated with cell cycle disruptors. (A) UMAP plots for 24 cancer
cell lines treated with DMSO and nutlin, separately. Cells were colored by CCPE-inferred cell cycle stages and cells in red circle are TP53 WT cells. (B) The
number of cells in CCPE-inferred cell cycle stages as a proportion of the total number of cells in DMSO- and nutlin-treated groups. (C) Top ten biological
processes of DEGs identified from CCPE-inferred cell cycle stages.

dicting cell cycle stages when the number of cells and genes
in the dataset is small. Enrichment analysis showed that
the DEGs identified by CCPE-inferred cell cycle stages had
more connection to the biological processes related to cell
cycle pathways. To evaluate the performance of CCPE in
analyzing the datasets with dropout events, we generated
three simulated datasets with different dropout rates. CCPE
had a strong capability to predict cell cycle states on the data
with 25.6% dropouts. When the dropout rate increased, the
performance of CCPE was reduced, but still outperformed
than Cyclum and CYCLOPS. Cyclone, Seurat and reCAT
require preliminary gene list and cannot be applied to sim-
ulated datasets, so we did not compare with these methods
on our generated datasets. To further validate the perfor-
mance of CCPE, we used CCPE to analyze the datasets col-

lected from mixed cell lines treated with a cell cycle pertur-
bation reagent nutlin. Nutlin, a selective MDM2 inhibitor
and MDM2 is a negative regulator of the tumor-suppressor
gene TP53. McFarland et al. (29) used Seurat to identify the
cell cycle phase of each cell and concluded that Nutlin elicits
rapid apoptosis and cell cycle arrest in G1 phase exclusively
in the TP53 wild-type cells compared with the untreated
cells. CCPE successfully caught the G1 arrest induced by
nutlin in TP53 WT cells. Differential gene expression anal-
ysis further validated the accuracy of CCPE in estimating
cell cycle phases. Removing cell cycle-related genes inferred
by CCPE enhances differences between two phenotypes for
416B dataset.

CCPE is an unsupervised machine learning method and
does not require cell-type specific or single cell sequencing-
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method specific information as input. Therefore, CCPE can
be applied to analyze various scRNA-seq data. In our stud-
ies, we applied simulated datasets and real datasets ob-
tained by different single-cell sequencing methods to eval-
uate the performance of CCPE, such as mESCs Quartz-
Seq dataset using Quartz-Seq technology, H1 hESCs
scRNA-seq dataset and E-MTAB-2805 mESCs dataset us-
ing Smart-seq technology, Nutlin-treated multiple cancer
cell line dataset using 10× technology and 416B cell line
scRNA-seq dataset using Smart-seq2 technology. This illus-
trates the applicability of CCPE to different types of single
cell RNA-seq data. The CCPE model is also designed based
on the modeling of circular or periodic processes, therefore,
it is not limited to deal with cell cycle problems, it can also
do pseudotime analysis of any periodic biological processes,
such as circadian rhythms, self-renewal processes, etc. In fu-
ture studies, we plan to use CCPE to study mechanisms in-
volving both linear and nonlinear components, such as cell
heterogeneity combined with cell cycle modeled by nonlin-
ear components and cell types modeled by linear compo-
nents from scRNA-seq data. In addition, CCPE uses soft
clustering methods instead of hard clustering assignments
to obtain cell cycle discriminative information, so that to
achieve smooth transitions between cell states and between
different cell cycle phases. The soft clustering algorithm
favors clusters with cells from multiple datasets and pre-
serves discrete and continuous topologies, while avoiding
local minima caused by excessively maximizing the repre-
sentation on multiple datasets (55). The application of soft
clustering in CCPE inspires the potential of CCPE to pre-
dict the cell cycle of datasets with different experimental and
biological batches, which is what we plan to investigate next.
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