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Abstract

Context: Distinction of spindle cell melanoma (SM) and desmoplastic melanoma (DM) 
is clinically important due to differences in metastatic rate and prognosis; however, 
histological distinction is not always straightforward. During a routine review of cases, 
we noted differences in nuclear circularity between SM and DM. Aim: The primary aim 
in our study was to determine whether these differences in nuclear circularity, when 
assessed using a basic ImageJ‑based threshold extraction, can serve as a diagnostic 
classifier to distinguish DM from SM. Settings and Design: Our retrospective analysis 
of an established patient cohort (SM n = 9, DM n = 9) was employed to determine 
discriminatory power. Subjects and Methods: Regions of interest (total n = 108; 6 
images per case) were selected from scanned H and E‑stained histological sections, and 
nuclear circularity was extracted and quantified by computational image analysis using open 
source tools (plugins for ImageJ). Statistical Analysis: Using analysis of variance, t‑tests, 
and Fisher’s exact tests, we compared extracted quantitative shape measures; statistical 
significance was defined as P < 0.05. Results: Classifying circularity values into four 
shape categories (spindled, elongated, oval, round) demonstrated significant differences 
in the spindled and round categories. Paradoxically, DM contained more spindled 
nuclei than SM (P = 0.011) and SM contained more round nuclei than DM (P = 0.026). 
Performance assessment using a combined shape‑classification of the round and spindled 
fractions showed 88.9% accuracy and a Youden index of 0.77. Conclusions: Spindle 
cell melanoma and DM differ significantly in their nuclear morphology with respect to 
fractions of round and spindled nuclei. Our study demonstrates that quantifying nuclear 
circularity can be used as an adjunct diagnostic tool for distinction of DM and SM.
Key words: Digital pathology, morphometry, numerical histology

Access this article online
Website:  
www.jpathinformatics.org

DOI: 10.4103/2153-3539.143335

Quick Response Code:

remains the primary means for groundbreaking recent 
discoveries.[1,2] In pathology, rendering a diagnosis rests in 
large parts on the skill of pattern and shape‑recognition 
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INTRODUCTION

Cellular shape, as an integral part of the cellular theory, 



J Pathol Inform 2014, 1:40 http://www.jpathinformatics.org/content/5/1/40

for appropriate classification,[3] and for the foreseeable 
future, microscopy will remain a cornerstone of surgical 
pathology.[4] Simultaneously, the digital revolution and 
specifically the adaptation of imaging methods into 
diagnostics,[5] continues to accelerate progress,[6‑11] 
including advanced imaging methods[12] and computerized 
quantitative algorithms.[3] Computer‑assisted quantitative 
histology is already applied as an adjunct diagnostic tool 
in some cases. For example, digital quantification of 
stained‑elements (e.g. human epidermal growth factor 
receptor 2‑immunolabeling intensity) has become part 
of the repertoire for many diagnostic pathologists.[11,13‑15] 
Despite various studies reporting on classification of 
morphometric[3] and in particular nuclear features,[16‑21] 
these shape‑based quantification tools are not widely 
established in routine surgical pathology. In contrast, 
there are several recent basic‑science examples of 
clever combinations of computational morphometry, 
molecular‑genetic, and functional methods.[1,20,22‑25] 
The lack of adoption in the routine diagnostic setting 
is particularly surprising given that morphometry can 
provide clinically relevant information[8,17,20,26] and is 
able to solve diagnostic problems.[16‑21,26,27] Due to the 
drastically increasing performance and adoption of 
imaging solutions in pathology, one key opportunity of 
digital pathology quantitative shape‑assessment, is largely 
unexplored.

During routine histological review of several melanoma 
subtypes, we noted nuclear shape variations between 
two diagnostic subgroups. Briefly, the two examined 
melanoma subtypes were spindle cell melanoma (SM) 
and desmoplastic melanoma (DM). While the 
one (SM) can essentially occur anywhere in the body 
and typically presents with widespread metastatic 
disease, the other (DM) typically occurs in the head‑and 
neck region and has a substantially lower rate of nodal 
metastasis.[28] Notably, SM and DM are composed of 
spindle‑shaped cells, both are typically amelanotic, and 
both can be negative for otherwise reliable melanoma 
immunomarkers. Thus, diagnostic distinction of SM 
and DM can be challenging. Nuclear‑morphometric 
studies have been conducted in a variety of melanocytic 
lesions,[16,19,29‑31] to our knowledge, however, the spectrum 
of nuclear shapes in SM and DM has not been studied. 
Using freely available computational image analysis 
tools, we carried out a quantitative examination of the 
nuclear circularity in our SM/DM cohort. The primary 
aim of our study was to determine whether differences 
in nuclear circularity can serve as a diagnostic classifier to 
distinguish SM from DM.

Based on differences in their relative composition of 
nuclei with distinct nuclear morphologies (i.e. circularity 
values), we adopted and tested a shape‑based classifier 
to distinguish DM from SM. Examination of the 
diagnostic performance measures in this particular setting 

provides proof of principle that quantification of nuclear 
circularity can be used as an adjunct diagnostic tool in 
this specific setting.

SUBJECTS AND METHODS

Study Cohort and Tissue Samples
Cases (DM, n = 9; SM, n = 9) were identified by 
computer‑assisted archival searches and excluded when 
there was no material or slides available for review. We 
used formalin‑fixed, and paraffin‑embedded tissues, 
that was sectioned at 2 µm and H&E stained. At least 
two board‑certified pathologists reviewed each case and 
confirmed the diagnosis. The applied morphological 
criteria followed prior publications.[28,32‑35] Briefly, SM 
and DM are composed of an invasive proliferation of 
spindled/fusiform melanocytes that are separated by 
desmoplasia composed of dense collagen fibers or fibrous 
stroma. Based on the degree of desmoplasia the following 
subtypes can be assigned: DM (≥90%), mixed (≥10-90% 
desmoplasia) or SM (<10%).[28]

Slide Digitization and Image Capture
Selected H&E‑stained sections were scanned using 
an ×40 objective (final magnification, ×400) on a “.slide” 
scanning system (Olympus; Hamburg, Germany “.slide” 
version 1. 2) or a Scancope XT Scanner System (Aperio, 
Vista, CA, USA), as previously described.[36] Each 
scan was visually inspected for scan‑quality before 
subsequent review and analysis. Digitized slides (file 
size range: 0.4‑7.1GB; total: 51.5 GB) were stored  in .vsi 
(Olympus, Hamburg, Germany) or .svs (Aperio, Vista, 
CA, USA)  file‑format. Digital slides were reviewed, 
and the senior author outlined tumor regions. The 
first author (M. S.), initially blinded to the primary 
diagnosis, chose at least 6 representative regions of 
interest (18 cases × 6 fields = 108 regions of interest). 
Fields were prioritized when mainly composed of tumor 
cells with a small nontumor cell component and minimal 
sectioning‑, tissue‑, or staining artifacts. Images were 
captured at a resolution of 0.65 megapixels and stored 
using the .jpeg file format.

Image Analysis
Processing of each image consisted of a consecutive 
series of algorithms implemented as plugins in the freely 
available software ImageJ (http://imagej.nih.gov/ij/; last 
accessioned August 19, 2014). First, a color deconvolution 
step achieved segmentation of nuclei as previously 
described.[37‑39] Briefly, the image is deconvoluted 
into separate color channels and subsequently, the 
hematoxylin‑containing channel (i.e. R‑channel of 
the RGB‑color space) is extracted and used for pixel 
intensity‑based threshold segmentation.[36‑40] Next, 
the outlines of segmented nuclei are determined 
using edge detection algorithms based on differential 
brightness cut‑offs. For the analysis of extracted image 
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elements, we applied the “analyze particle” filtering and 
chose the following three measurements for analysis: 
Circularity (defined as: 4*π*area/perimeter^2), aspect 
ratio (defined as major_axis/minor_axis) and solidity 
(defined as area/convex_area) using ImageJ.[41] For 
circularity, the form factors 1.0 (representing a perfect 
circle) and 0 (representing a straight line) were excluded 
from subsequent analyses. We classified nuclei 
based on factor values, representing the nuclear 
shapes, into four categories: Spindled (circularity 
values > 0-0.35), elongated (circularity ≥ 0.35-0.6), oval 
(circularity ≥ 0.6-0.8), and round (circularity ≥ 0.8-<1.0). 
A previously reported customized link connected several 
software platforms (Adobe Photoshop CS3 Adobe 
Systems, San Jose, CA; Aperio ImageScope; ImageJ 
version 10.2 or v1.47f).[36]

Data and Statistical Analysis
Measurements were exported for each particle into a 
database that tracked data regarding the case, image and 
position for within‑ and between‑tumor comparisons. 
The measured data did not support the assumption of 
a Gaussian distribution of shape‑based measures. Thus, 
we chose nonparametric statistical tests. Specifically, we 
employed the Mann–Whitney test for comparison at the 
individual measurement level, the Kruskall–Wallis test 
for comparisons of means at the case‑level, and one‑way 
analysis of variance (ANOVA) to compare means in 
the SM and DM groups (using the posttest Bonferroni 
correction). For the visualization of case‑to‑case 

comparisons (9 SM vs. 9 DM) we generated heatmaps 
using the “pheatmap” library in the R programming 
environment (http://www.r‑project.org; version 2.13.2). 
All data were analyzed by using Prism 5.0b (GraphPad 
Software Inc., La Jolla, CA, USA), Microsoft Excel 
2008 (Microsoft Corporation, Redmond, WA, USA), 
or the online statistical toolkit http://www.hutchon.net/
EPRval.htm (last accessioned, November 11, 2013). 
P <0.05 were regarded as statistically significant.

RESULTS

Our archival searches identified 18 cases of SM/DM 
that we used as our study cohort. Pertinent features 
of the study cohort are summarized in Table 1. Briefly, 
these features are in accord with prior publications[32‑35] 
and we consider our study set representative. Classic 
examples of the histological appearance are shown 
in Figure 1a and b. Spindled, amelanotic tumor cells 
characterize both melanomas. In the case of DM 
these cells are separated by dense fibrous connective 
tissue.[28,32‑35] During routine microscopic review, we 
noted differences between the spindled, cytoplasmic 
outlines and the nuclear shape. Specifically, we noted 
that in SM, a fraction of tumor cells (with an overall 
spindled cytoplasmic outline) contain more round 
nuclei than the spindled cells in DM. Based on this 
initial observation, we decided to examine the spectrum 
of nuclear circularity in SM/DM.

Table 1: Clinicopathological characteristics of the study cohort

Characteristic SM (n=9) DM (n=9) P 
(SM vs. DM)

Number of cases Percentage Number of cases Percentage

Age
Median 65 87 0.04
Range 48‑82 53‑96

Sex
Female 2 22 6 67 0.15
Male 7 78 3 33

Location
Head and neck 1 11 8 89 0.003
Trunk 8 89 1 11
Extremities 0 ‑ 0 ‑

Pigmentation
Yes 4 44 0 0 0.08
No 5 56 9 100

Stage
IA 1 11 1 11 0.96
IB 2 22 1 22
IIA 1 11 2 11
IIB 3 33 3 33
III 0 ‑ 0 ‑
IV 2 22 2 22

P values derived from Student’s t‑test (age) Fisher’s exact (sex, pigmentation) or Chi‑square test (location, stage). SM: Spindle cell melanoma, DM: Desmoplastic melanoma
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One of the authors, blinded to the primary diagnosis, 
captured a total of 108 regions of interest (6 
images × 18 cases). These regions were then 
computationally analyzed using ImagJ software. Given 
that we applied ImageJ‑plugins (“as‑is”), the nuclear 
extraction step carries some limitations, for example, 
due to prominent nucleoli or nuclear anisochromasia. 
A representative image illustrating these limitations is 
depicted in Figure 2a. The image segmentation step 
for nuclear detection within tissues could be subject to 
further improvement; however, this missegmentation 
adds “nonround” features to the SM‑group. Since 

our initial observation and hypothesis was that SM 
might be characterized by a higher fraction of round 
nuclei – accepting these imperfections can be regarded 
as the more pessimistic assumption for hypothesis 
testing (see Discussion).[42] Readouts for circularity (and 
for comparison aspect ratio and solidity) were tabulated 
and a summary of the measurements is provided in 
Table 2. Simple comparison of mean values between 
histotypes did not reveal striking differences; however, 
additional modes of individual case‑comparisons 
suggested substantial variation within and between 
histotypes [Table 2]. Specifically, when performing 
analysis of variance of individual cases (ANOVA with 
posttest correction), we noted significant differences 
between SM and DM (which was not the case for aspect 
ratio or solidity; shown for comparison only).

To assess whether variation between entities is represented 
on an individual case‑basis, we performed comparison at 
the case‑level and plotted significant versus nonsignificant 
P values. The results of these comparisons are depicted 
as 9 × 9 matrix plots [Figure 2b]. When grouping SM 
and DM together, larger 2 × 2 square‑sets (i.e. upper 
left SM vs. SM and lower right DM vs. DM; separated 
by black lines) allow visual assessment of the total 
number of significant differences [red squares in 
Figure 2b]. Evaluation of the matrix plots showed that 
circularity demonstrates a large number of statistically 

Figure 1: Classic histological appearance of spindle cell 
melanoma (SM) and desmoplastic melanoma (DM). (a) SM. (b) DM. 
Both melanomas are typically composed of amelanotic spindled 
cells. In desmoplastic melanoma thick strands of fibrous/
collagenous tissue separate the neoplastic melanocytes. Note: 
Despite the spindled configuration of cytoplasmic outlines, the 
nuclear shape (i.e. circularity) differs between SM and DM. Scale 
bar corresponds to 100 µm

ba

Figure 2: Image processing and feature comparison. (a) Image processing of the original H and E (left) consisted of three steps: Left, spindle 
cell melanoma (SM) and desmoplastic melanoma (DM) high‑power fields were captured; middle, nuclear threshold‑based segmentation; 
and right, edge detection. The resulting image (“outline”) served as the source file for subsequent image analysis. Note, that the depicted 
images also illustrate some of the limitations of the threshold‑based nuclear feature extraction (e.g., imposed by nucleoli or nuclear 
anisochromasia). (b) Results of the case‑by‑case comparison (9 × 9 correlation matrix plots) using analysis of variance analyses depicted 
for circularity and for comparison with other shape‑measure (i.e., aspect ratio and solidity). (c) Histograms of the frequency distribution 
for circularity values (total range: 0.024‑0.998 with 0 representing a straight line and 1 a perfect circle). Note differences in distribution 
between SM (top row) versus DM (bottom row)

c

ba
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significant differences when opposite histotypes are 
compared [e.g. SM vs. DM; Figure 2b], whereas there are 
fewer differences when cases within one group (e.g. SM 
vs. SM). Such differences between histotypes (SM vs. 
DM), indicative of discriminatory power, were not present 
for aspect ratio and solidity [Figure 2b].

For a detailed examination of circularity values at a 
case‑level, we compared histograms displaying the relative 
frequency of the circularity measurements [Figure 2c]. 
First, we noted that the distributions are non‑Gaussian 
and demonstrate local peaks that correspond to the most 
common nuclear shape in the respective case. Notably, as 
compared to SM, DM showed a relatively higher amount 
of spindled nuclei. To create a diagnostic classifier based 
on these observations, circularity values were binned into 
four categories termed: Spindled, elongated, oval, and 
round (see methods). The relative percentage of nuclei 
in each bin is shown in Figure 3a and the elongated and 
oval bins showed no significant differences (P = 0.77; 
P = 0.95, respectively). However, when examining the 
spindled and round groups, paradoxically DM contained 
more spindled nuclei than SM (22.2% ±0.8% in DM vs. 
18.6% ±0.9% in SM; P = 0.011) and SM contained more 

round nuclei than DM (22% ±1.0% in SM vs. 17.9% 
±1.4% in DM; P = 0.026).

To determine diagnostic test performance, we decided 
to incorporate both the rounded and the spindled 
category into a combined classifier termed classified 
as SM (CSM). When examining the difference in the 
round and spindled category and accounting for the 
fact that most diagnostic pathologist apply 10%-steps 
when quantifying microscopic information, we set the 
cut-off to 20% [Figure 3b and c]. Specifically, the case 
was considered positive when containing less than 20% 
spindled nuclei or more than 20% round nuclei. In other 
words, if one or both of the criteria are met, the case 
is CSM. With these assignments of the shape‑based 
classifier, comparison to the original morphological 
diagnosis was possible [Figure 3d]. Results of the overall 

Table 2: Results of the nuclear circularity classifier

Case Mean±SD

Circularity Aspect ratio Solidity

SM
SM 1 0.608±0.215 1.94±0.730 0.800±0.098
SM 2 0.596±0.246 1.96±0.732 0.771±0.106
SM 3 0.589±0.228 2.09±0.844 0.771±0.097
SM 4 0.580±0.238 2.19±0.851 0.733±0.115
SM 5 0.582±0.229 2.19±0.831 0.701±0.121
SM 6 0.599±0.231 1.98±0.829 0.790±0.110
SM 7 0.585±0.250 2.04±0.825 0.776±0.109
SM 8 0.593±0.207 2.01±0.839 0.788±0.107
SM 9 0.587±0.239 2.11±0.925 0.773±0.110
Mean±SD 0.59±0.003 2.06±0.032 0.77±0.010

DM
DM 1 0.540±0.233 2.10±0.777 0.73±0.111
DM 2 0.558±0.206 2.18±0.843 0.76±0.106
DM 3 0.525±0.241 2.08±0.706 0.73±0.113
DM 4 0.565±0.242 2.07±0.632 0.71±0.118
DM 5 0.588±0.244 2.09±0.917 0.77±0.111
DM 6 0.571±0.230 2.01±0.743 0.75±0.127
DM 7 0.582±0.234 2.04±0.725 0.75±0.113
DM 8 0.567±0.229 2.12±0.804 0.74±0.109
DM 9 0.583±0.254 2.02±0.776 0.75±0.118
Mean±SD 0.56±0.007 2.08±0.018 0.75±0.007

Mann‑Whitney test 0.003 0.605 0.050
Kuskall‑Wallis test 0.004 0.799 0.068
One‑way ANOVA 0.005 0.772 0.121

DM: Desmoplastic melanoma, SM: Spindle melanoma, SD: Standard deviation, 
ANOVA: Analysis of variance, bold values indicate significant differences

Figure 3: Nuclear circularity‑based diagnostic classifier in 
spindle cell melanoma (SM) and desmoplastic melanoma (DM). 
(a) Cellular‑shape classifier constructed as four distinct bins chosen 
based on the circularity value (shown along a representative nuclear 
outline). Plotted is the combined frequency distribution in each 
bin for all SM versus DM cases. Statistical comparison (t‑test) 
showed no significant difference between SM versus DM when 
comparing elongated and oval; however, there were significant 
differences in the spindled and round category. (b) Threshold 
determination at the single case‑level identified. Cut‑off values 
in percent for the spindled (left) and round (right) classifier are 
provided as “classified as spindled melanoma (CSM)” or “classified 
as desmoplastic melanoma” (CDM) along with symbols. (c) 
Comparison of diagnostic classification based on the original 
morphological‑(columns) and shape‑based diagnosis (rows). The 
combined classifier followed the “believe the positive” rule and 
classified as SM was assigned when either test was positive

c

b

a
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test performance calculations are shown in Table 3. 
Briefly, performance measures are substantial and with 
an overall accuracy of 89% and a Youden index of 
0.77, our data point out that nuclear circularity‑based 
quantification can be applied as an adjunct diagnostic 
tool.

DISCUSSION

Here, we report that quantification of nuclear circularity in 
DM and SM demonstrated significant differences in the 
fraction of round and spindled nuclei in these melanoma 
subtypes. SM is characterized by a relatively higher 
fraction of round nuclei whereas DM is characterized 
by a relatively higher fraction of spindled nuclei. 
The proposed classifier demonstrates substantial test 
performance measures and is relatively straightforward. 
The required computational tools are freely available, 
user‑friendly, and well‑established, all of which argues for 
the implementation as a diagnostic aid, when necessary.

Examination of nuclear shapes is one of the key 
components in every histopathological examination. 
Specifically, variation in nuclear shape is a distinct feature 
of malignancy, and anisonucleosis a key feature of many 
neoplasias. Notably, nuclear grading is not established 
in the setting of SM/DM – neither is it in the setting 
of melanoma in general, probably in part due the broad 
spectrum of morphologies (i.e. melanoma as the “great 
imitator”).[43] With respect to automated quantification 
of microscopic information, nuclear morphometry is 
clearly a useful diagnostic tool in several settings.[16‑21,26,27] 
Automated quantification of microscopic information can 
uncover differences not necessarily captured visually;[44] 
and in reverse, qualitative morphological impressions are 
hard to compare or quantify. Here, we applied a nuclear 

circularity‑based classifier to confirm a morphological 
impression of the variation in nuclear shapes between 
SM and DM. Despite the name, we found that DM 
contains more spindled shaped nuclei when compared 
to SM – and in reverse that SM contained more round 
nuclei than DM [Figure 3a]. Clearly some overlap of 
shapes between the groups did exist and suggested that 
studies on a larger number of cases, examination in 
mixed‑or unknown cases may be interesting to further 
investigate the nuclear morphometry and its diagnostic 
value in this specific context.

From a biological perspective, it is noteworthy to mention 
that gene‑sets that promote rounding of cells have 
recently been reported.[2] Clearly, such combinations of 
genetic, and morphological data provide insights into the 
underlying molecular machinery orchestrating cellular‑ 
and nuclear shapes; however, we are at this point not 
aware of a cellular SM/DM model or system to examine 
whether similar genetic programs are at play. Nonetheless, 
many of the genes that are part of this conserved shaping 
program (e.g. PTEN, MAPK, JAK) have clear roles in 
melanoma.[45]

Technically, the applied circularity classifier is simple and 
easy to use – yet, as with other morphometric software 
tools, some constraints apply and have to be taken into 
account. First, morphometry requires well‑fixed samples, 
expert sectioning and reliable staining. However, in 
routine diagnostics this is not always achievable, and 
specimens may be cauterized, sections folded and staining 
heterogeneous. Second, given that the circularity classifier 
works on light‑microscopic images‑ scanning and image 
acquisition as well as correction have to be performed 
and can introduce errors such as blurred regions. Third, 
the histological content itself can impose problems; for 
example, hypercellular regions with nuclear molding 
or inflammatory infiltrates. While we can account for 
some of these constraints (e.g., by the choice of region 
of interest), clearly not all of these variations can be 
accounted for and one can summarize these aspects that 
ultimately limit the quality of the downstream results as: 
“garbage in – garbage out.”[46]

From an image analysis standpoint, our ImageJ‑based 
algorithm,[41] combines well‑established analytical 
functions and requires only a routine personal 
computer with Java and other widely available software 
packages (see methods). While we automated some of the 
steps in our analyses, there are numerous sophisticated 
algorithms[1‑3,7,8,23,24,27,47,48] and examples of excellent 
software applications that are in part freely available. Some 
examples include TMARKER,[47] cellprofiler[49] or matlab.
[50,51] The versatility of these programs is impressive; 
however, at the same time they require a kind of expertise 
that, at least currently, lays out of scope for most 
diagnostic, surgical pathologist. The chosen approach 

Table 3: Diagnostic test performance of the 
developed SM classifier

Variable SM classifier (CSM)

Number of cases=18

True positive 9
False positive 2
True negative 7
False negative 0
Sensitivity (95% CI) 100 (62.9‑100)
Specificity (95% CI) 77.8 (40.2‑96.1)
PPV (95% CI) 81.8 (47.8‑96.8)
NPV (95% CI) 100 (56.1‑100)
Accuracy 88.9
Pretest odds positive 1
Posttest odds positive 4.5
Youden index 0.77

CI: Confidence interval, PPV: Positive predictive value, NPV: Negative predictive value, 
CSM: Classified as spindle cell melanoma, SM: Spindle cell melanoma
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is relatively easy to use; however, the applied plugins, 
and in particular the extraction of the nuclear outlines 
carries limitations. As illustrated in Figure 2a (top right), 
prominent nucleoli, irregular chromatic, anisochromasia 
and nuclear outline irregularities, cannot be precisely 
extracted by the simple threshold‑based extraction. 
Clearly there are more sophisticated approaches for 
feature extraction; however, from a statistical perspective 
these ‘limitations’ actually increase the stringency of our 
study. Since our study was triggered by the observation 
that SM carries more round nuclei, the “weakness” of 
our threshold‑based extraction actually introduced even 
more “nonround” elements in this melanoma subtype. 
Accepting these additional constraints in our analysis, 
demonstration of a significantly higher fraction of 
round particles in SM, actually represents, statistically 
speaking, the more pessimistic assumption.[42] Thus, our 
study may trigger verification, ideally performed by other 
laboratories or applying more sophisticated approached. 
However, the starting point for this study was a simple 
morphological impression (nuclear circularity variation) 
that we confirmed using easy‑to‑use and freely available 
tools. Having said that, we still want to point out that 
our nuclear circularity‑based classifier should not replace 
careful and state‑of‑the‑art evaluation by a trained 
pathologist – especially for diagnostic distinction of 
difficult cases. In these difficult settings we foresee that 
information from adjunct digital tools may become 
increasingly useful.

In summary, we present a nuclear circularity‑based 
classifier of SM and DM that can be applied as an 
adjunct digital tool for diagnostic distinction in this 
setting.
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