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Abstract

Background: Inflammation is strongly associated with premature birth and neonatal morbidities.
Increases in infant haptoglobin (Hp&HpRP) and IL-6 levels are indicators of intra-amniotic
inflammation (IAl) and have been linked to poor neonatal outcomes. Inflammation causes
epigenetic changes, specifically suppression of miR-29 expression. The current study sought to
determine whether miR-29b levels in cord blood or neonatal venous blood are associated with 1Al,
identified by elevated IL-6 and haptoglobin, and subsequent clinical morbidities in the infant.

Methods: We tested 92 cord blood samples from premature newborns and 18 venous blood
samples at 36 weeks corrected gestational age. MiR-29b, haptoglobin (Hp&HpRP), and I1L-6 were
measured by PCR and ELISA respectively.

Results: Decreased levels of miR-29b were observed in infants exposed to 1Al with elevated
Hp&HpRP and IL-6 levels and in infants delivered by spontaneous preterm birth. Lower miR-29
levels were also observed in women diagnosed with histological chorioamnionitis or funisitis and
in infants with cerebral palsy. Higher levels of miR-29 were measured in infants small for
gestational age (SGA) and in venous samples from older infants.

Conclusion: MiR-29 may be an additional biomarker of 1Al and a potential therapeutic target
for treating poor newborn outcomes resulting from antenatal exposure to 1Al.
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INTRODUCTION

Premature birth before 37 weeks’ gestational age (GA) has a global incidence of
approximately 15 million per year, according to a World Health Organization report in 2018
(1). Moreover, the March of Dimes reported a preterm birth rate of 9.93% in 2017 in the
United States (2). Despite increased survival of extremely premature infants related to
advances in neonatal care, this subpopulation remains at high risk for significant shortand
long-term morbidities. These morbidities include necrotizing enterocolitis (NEC),
bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), and
neurodevelopmental sequelae such as cerebral palsy (CP), periventricular leukomalacia
(PVL), and intraventricular hemorrhage (IVH) (3). The wide clinical spectrum of chronic
disease and severity among this population suggest a multifactorial etiology, including
prematurity, maternal and fetal inflammation, and exposure to the postnatal interventions
required to compensate for organ system immaturity. These adverse exposures are thought to
lead to epigenetic changes which predispose preterm infants to more severe disease in
response to life-saving interventions after birth (4).

MicroRNAs (miRs) are small non-coding RNAs (~22 nucleotides) that act as epigenetic
regulators of normal physiologic processes and are implicated in abnormal pathologic
processes (4). MicroRNAs have been investigated in a variety of diseases, and changes in
microRNA expression have been proposed as biomarkers of disease severity (5-8). MiR-29
regulates extracellular matrix deposition and has been implicated in cancers and fibrotic
diseases (9-13). Inflammation has been shown to suppress miR29 expression via multiple
pathways (14, 15). Given the significant role of maternal inflammation on preterm birth and
health of the infant, miR-29 may be a significant modulator of the risk for prematurity-
related neonatal complications.

Interleukin-6 (IL-6) is a well characterized pro-inflammatory cytokine and an activator of
acute phase responses. Elevated IL-6 levels at birth are considered a risk factor for sepsis-
induced disseminated intravascular coagulation, pneumonia, periventricular leukomalacia,
and necrotizing enterocolitis (16-19). Haptoglobin (Hp), a well-characterized acute-phase
reactant, is an abundant plasma protein synthesized primarily by the liver. Hp was previously
considered to be nearly absent at birth, with an increase to adult levels throughout the first
year of life (20, 21). Hp acts as a potent antioxidant which counters lipid peroxidation
twenty-fold more effectively than vitamin E and has indirect antioxidant effects by binding
plasma free hemoglobin with high affinity to inhibit its oxidative activity (22, 23).
Buhimschi et al. revealed that the antenatal exposure to intra-amniotic infection and/or
inflammation (1Al) induces a precocious “switch-on” of Hp expression in the cord blood of
premature neonates and this could serve as a biomarker for the inflammatory context of
preterm birth (23-25). Because the employed immunoassays do not discriminate Hp from
the near-homologous Hp-related protein (HpRP) this cord blood biomarker is denoted as
Hp&HPpRP. Further studies identified that the sub-population of preterm neonates exposed to
IAl who are unable to switch-on Hp&HpRP expression and thus remain an- or
hypohaptoglobinemic despite elevated cord blood IL-6 had higher odds of the composite
outcomes of cerebral palsy (CP) or death and grade I11/1V intraventricular hemorrhage
and/or death than those newborns with appropriate Hp production (22).
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Using the combination of increased IL-6 levels and “switch-on™ haptoglobin as the indicator
of exposure to intrauterine inflammation, the current study sought to determine whether
miR-29b levels in cord blood or neonatal blood are associated with antenatal exposure to 1Al
and subsequent clinical morbidities. By identifying the population of premature infants at
the greatest risk for long-term disease, we can target our interventions to the infants most
likely to benefit.

Sample population and Study Design

The study used bio-banked cord blood specimens obtained at delivery and infant blood
samples obtained at 36—40 weeks corrected GA. Mothers were recruited at The Ohio State
University Wexner Medical Center and samples obtained as part of a biorepository
(Maternal Fetal Medicine Preterm Birth Repository (IRB #17-0079). Inclusion criteria were
infants born <32 weeks’ gestation with no genetic or anatomic anomalies. Informed consent
was obtained from the mother. For the purpose of this study, gestational age selection for
infants that were born less than or equal to 30 weeks, to include the subpopulation at highest
risk for morbidities associated with prematurity, and had available cord blood samples was
incorporated. These criteria resulted in 92 individual samples. A total of 88 placentas from
these patients were sent for pathologic analysis

In addition, venous blood samples obtained at 36—-40 weeks postmenstrual age were
identified through the Perinatal Research Repository at Nationwide Children’s Hospital
(Perinatal Research Repository, IRB# 10-00035) for 18 of these same infants. Both
repositories contained detailed fetal and postnatal data for the infant as well as for the
mother, including cytokine and biomarker analysis. Clinical outcomes of the newborns and
the results of placental pathology were obtained through retrospective chart review.

Analysis of IL-6, Hp&HpRP, and miR-29b

Umbilical cord blood was collected immediately after delivery and neonatal venous blood
(36-40 weeks) was collected in the Neonatal Intensive Care Unit. All blood samples were
separated within 45-120 minutes, plasma frozen within 12 hours of blood collection, and
stored at —80°C until analysis. Interleukin-6 and Hp&HpRP were measured on 92 cord
blood samples as previously described (24). Hp was measured as Hp&HpRP because the
antibody employed in ELISA does not discriminate between Hp and the closely related
haptoglobin-related protein (HpRP) in cord blood.

MiR-29b levels were measured using RT-PCR and normalized to the internal expression of
SP2 for the 92 cord blood samples and 18 36—-40 weeks’ GA plasma samples. A RNeasy
Mini kit (Qiagen; Hilden, Germany) was used to isolate total RNAs from plasma samples.
cDNA was synthesized using a Maxima First Strand cDNA Synthesis Kit for RT-
Quantitative PCR (K1642, Thermo Fisher; Waltham, MA). A MasterCycler epgradient
RealPlex RT-PCR Detection System (Eppendorf, Hamburg, Germany) was used for
quantitative real-time PCR analyses with Maxima SYBR Green/ROX gPCR Master Mix
(K0221, Thermo Fisher; Waltham, MA). Quantitative realtime PCR analyses for miR-29b
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were performed using the miRCURY LNA RT Kit (339340, Qiagen; Maryland) for cDNA
synthesis and the RNA Spike-In Kit (339347, Qiagen; Maryland).

Data Analysis

Log transformation was applied to the biomarkers (i.e., Hp and IL-6, mir-29). We performed
a sensitivity analysis to assess if the inclusion of twins changed the analysis outcomes due to
the familial effect (i.e., shared genetics and environment). No imputation of missing data
was performed. Categorical by categorical relationships were assessed using Barnard’s test
on the contingency tables as a uniformly more powerful test than Fisher’s exact test (26, 27).
Categorical by quantitative relationships were tested using the Kruskal-Wallis rank sum test
(28). Comparisons with p-values < 0.05 were considered statistically significant. R version
3.6.0 (https://CRAN.R-project.org) was used for testing, tabulations and to assess data.

RESULTS

Maternal and infant demographics

Demographics from the gestational age selected cohort are presented in Table 1. The average
infant gestational age was 27.3 weeks and the average birth weight was approximately 1,000
grams. Racial distribution matched the distribution of the geographical area. All mothers
received antenatal corticosteroids and the majority (66.3%) were delivered by C-section.
Approximately 14% were multiple gestations and sensitivity analysis was performed to
assess if newborn relatedness affected results. Preterm birth (PTB) was defined as
spontaneous (i.e. due to spontaneous preterm labor or preterm pre-labor rupture of
membranes) or medically-indicated (i.e. due to maternal or fetal indications including
preeclampsia). Overall, there were twice as many spontaneous as medical PTBs in the
dataset.

Non-exposed vs Exposed to 1Al

IL-6 and Hp&HpRP were measured on all 92 cord blood plasma samples and the results
were segregated by “non-exposed” and “exposed” status as previously described [22].
Briefly, “non-exposed” to 1Al status was assigned in those samples with Hp&HpRP levels <
2,000 ng/mL and IL-6 levels <100 pg/mL. All samples with Hp&HpRP levels = 2,000
ng/mL were subjected to western blot to confirm switch-on status (by presence of Hp beta
band). Newborns with switch-on Hp status (visible Hp beta band) were assigned as
“exposed” irrespective of IL-6 levels. Newborns with switch-off status (absent beta band) by
western blot were assigned as non-exposed if 1L-6 levels were <100 pg/mL and as exposed
if IL-6 levels =100 pg/mL (24). There were only 3 exposed hypohaptoglobimenic newborns
in this dataset. Clinical outcomes data were analyzed for differences between non-exposed
and exposed status. Biochemical criteria, rather than histologic placenta examination for
chorioamnionitis and/or funisitis were chosen to distinguish exposed vs non-exposed
because placental pathology was not performed for all patients. In addition, intraamniotic
infection is generally a clinical, rather than histological, diagnosis (29). Both placental
pathologies analyzed, funisitis and chorioamnionitis, demonstrated significant differences in
diagnoses between exposed and non-exposed status (Table 2). On the other hand, there was a
significantly higher rate of early-onset neonatal sepsis in the non-exposed group. This was
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potentially due to maternal intrapartum antibiotic exposure, with a significantly higher
proportion of the “exposed” group receiving antibiotics around the time of labor and
delivery (81.6% vs. 51.9%, Barnard test, S=—2.93, p=0.002). No other differences were
observed in neonatal outcomes.

MiR-29b and clinical outcomes.

Expression of miR-29b was not normally distributed, so Kruskal-Wallis test was applied to
assess miR-29b with categorical clinical outcomes. MiR-29b levels were measured on all 92
cord blood plasma samples and tested for correlations between miR-29b levels and placental
pathology, specifically funisitis and chorioamnionitis, as well as fetal and neonatal
outcomes: fetal growth restriction, necrotizing enterocolitis, retinopathy of prematurity,
intraventricular hemorrhage, periventricular leukomalacia, cerebral palsy, and
bronchopulmonary dysplasia (Table 3). MiR-29b CT values were higher in cases considered
“exposed” (mean=11.51, SD=2.53) than in “non-exposed” (mean=10.97, SD=1.52)
(Kruskal-Wallis rank sum test, df=1, X2:5.29, p=0.02) indicating that there is a greater
number of miR-29b transcripts in the non-exposed group. We also observed that miR-29b
CT levels were greater in infants born by spontaneous PTB (mean=11.25, SD=1.76) than
those whose PTB was medically indicated (mean=10.51, SD=2.42) (Kruskal-Wallis rank
sum test, df=3, X2:10.28, p=0.02) again indicating fewer miR-29b transcripts in the
spontaneous PTB group. Similar findings were observed with umbilical cord funisitis, with
higher CT values in the funisitis group compared to the non-funisitis group indicating lower
levels of miR-29b transcript in the group with diagnosed funisitis (Kruskal-Wallis rank sum
test, df=1, x?=4.17, p=0.04).

For neonatal outcomes, high CT values for miR-29b indicating lower transcript numbers
were observed for infants diagnosed with cerebral palsy (mean=11.93, SD=0.57) than those
who were not (mean=10.92, SD=2.12) (t-test, df=12, t=2.34, p=0.02) (Table 3). A reverse
correlation was observed for infants with small for gestational age (SGA) with lower
miR-29b CT values and thus higher transcript numbers in the infants diagnosed with SGA
(Kruskal-Wallis rank sum test, df=1, X2:6.38, p=0.01) (Table 3).

Venous blood samples collected at 36—40 weeks postmenstrual age from 18 of the original
subjects were also analyzed (n=18 samples). As shown in Table 4, lower miR-29b CT values
and higher transcript levels in these samples were associated with 1\VVH for cases with
(mean=4.27, SD=3.27) compared to cases without (mean=8.19, SD=1.56) (Kruskal-Wallis
rank sum test, X2:4.00, p=0.04). No other morbidities tested were associated with miR-29
levels at this time point, including bronchopulmonary dysplasia

DISCUSSION

More than 50% of deliveries at <30 weeks gestation are associated with intrauterine or
maternal inflammation (30). In addition, these infants are at risk for increased incidence of
neonatal morbidities and poor long-term outcomes (31-33). Those who survive beyond
infancy are at greatest risk for developing adult disease, in fact, infection-related PTB has
been associated with the development of early onset sepsis and neonatal morbidities
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including necrotizing enterocolitis, retinopathy of prematurity, intraventricular hemorrhage,
periventricular leukomalacia, cerebral palsy, and bronchopulmonary dysplasia (34-36)

Previous studies to identify epigenetic changes that occur due to prematurity and/or
inflammation have found an association between miR-29b levels and development of
bronchopulmonary dysplasia in human neonates. Specifically, decreased circulating
miR-29b levels from plasma in the first week of life are found in those infants who are
subsequently diagnosed with BPD at 36-weeks corrected gestational age. A significant
inverse association was demonstrated between BPD severity and miR-29b level shortly after
birth, suggesting that decreased miR-29b early in life may predict or contribute to disease
severity (4). Similar findings were recapitulated in animal models (4, 12)

This current investigation was designed to identify whether cord blood miR-29b levels were
associated with perinatal/neonatal inflammation and thus increased risk for neonatal
morbidities. Using measures of Hp&HpRP and IL-6, infants were designated as “exposed”
vs “non-exposed’ to antenatal inflammation as described in prior studies from our group (22,
24, 37). This current study identified a negative correlation with miR-29b levels and exposed
infants. Similarly, we observed a negative correlation between miR-29b levels and births
classified as spontaneous preterm birth. Both criteria, “exposed” status and spontaneous
nature of preterm birth, have been linked to intrauterine inflammation and agree with our
previous findings of decreased miR-29b in response to inflammation (4).

Prior studies have reported correlations between amniotic fluid or blood levels of IL-6 and
the relative severity of intrauterine inflammation (37). Negative correlations were identified
between miR-29b and IL-6 levels in the infant cord blood and clinical inflammatory
conditions including funisitis. Buhimschi et al. has reported associations between maternal
funisitis and infant sepsis (38). Our findings further support the hypothesis that miR-29b
levels are suppressed by intrauterine inflammation and early suppression may be involved in
altering developmental pathways.

Our earlier publication reported a strong association between decreased miR-29b levels and
development of BPD in infant blood samples obtained during the first week of life (4). We
did not observe a similar correlation in cord blood samples. This may be due to the timing of
development of BPD, as BPD is not clinically diagnosed until 36 weeks postmenstrual age.
Moreover, postnatal rather than antenatal factors may be important determinants of risk for
BPD than for neurological abnormalities (39). We did observe associations between
miR-29b levels in cord blood and neurological morbidities, specifically cerebral palsy. In
addition, miR-29b levels in the older infants (~36—40 weeks postmenstrual age) were also
associated with diagnosis of neurological morbidities, specifically intraventricular
hemorrhage. The vast majority of intraventricular hemorrhages occur in the first three days
of life, so the increased miR-29b levels at 36— 40 weeks post menstrual age do not play a
role in diagnosis of IVH, but may represent a biomarker of previous injury (40). A previous
study revealed elevated plasma levels of miR-29b in patients diagnosed with intracerebral
hemorrhage, compared to controls (41).
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MiR-based therapies are being explored as novel approaches to treatment for other diseases,
including metabolic disorders, cardiovascular disease, cancer, and infections (42, 43). Using
our murine model of perinatal inflammation, we demonstrated improved alveolarization and
attenuated defects in matrix protein expression and localization by supplementing miR-29b
on postnatal day 3 (4). Our data indicate that miR-29b is associated with inflammation in the
infants, and that further investigation of the pathways associated with miR-29b may provide
an avenue for therapeutic development.

CONCLUSION

Lower miR-29b levels in cord blood correlate with clinical and biochemical markers of
inflammation including I1L-6 and haptoglobin. We found an association between miR-29b
levels with neurologic morbidities, including IVVH and cerebral palsy. There was no
significant association between miR-29b levels and BPD at the time points tested. These
data provide promising results that further investigation of miR-29b in the fetus and neonate
will allow for early diagnosis or therapeutic intervention for those at highest risk for
morbidities.
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Impact:
. Decreases in miR-29b are associated with intra-uterine inflammation
. Hp&HPpRP increases may be associated with decreased miR-29b

. MiR-29b may be an additional biomarker for neonatal outcomes and a
potential therapeutic target for intra-uterine inflammation.

Informed consent was obtained from the mother of the infants included in this study.
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Table 1.

Demographics and clinical variables of the newborns.

Variable Mean (SD) or N (%)
Gestational age (weeks) 27.3(1.7)
Birth weight (grams) 1023.8 (265.8)
Race

Caucasian 68 (73.9%)

African American 18 (19.6%)

Asian 1(1.1%)

Other 4 (4.3%)
Male sex 51 (55.4%)
Clinical characteristics

Maternal GBS positive 27 (29.3%)

Maternal intrapartum antibiotics

59 (64.1%)

Full course of antenatal corticosteroids

83 (90.2%%)

Multiple gestation

13 (14.1%)

PPROM 34 (36.9%)
SGA 3(3.3%)
Cesarean delivery 61 (66.3%)
Spontaneous PTB 66 (71.7%)
Medically-indicated PTB 26 (28.3%)
Pre-eclampsia 19 (20.7%)
Preterm labor 40 (43.5%)

N=92

Abbreviation: GBS, group B Streptococcus; PPROM, preterm prelabor rupture of membranes; SGA; small for gestational age (below 10th

percentile); PTB, preterm birth
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Table 2.
Exposed status and neonatal clinical outcomes.
Non-Exposed Exposed P-value
(n=54) (n=38)
Placental pathology
Placenta weight (grams) 240.5 (172.0) 219.5 (62.1) 0.59
Funisitis 3 (5.6%) 17 (44.7%) <0.001
Chorioamnionitis 13 (24.1%) 32 (84.2%) <0.001
Abruption 1(1.9%) 3 (7.9%) 0.25
Neonatal Outcomes

Male sex 30 (55.6%) 21 (55.3%) >0.99
Birth weight (grams) 1002.9 (273.1) | 1053.6 (255.8) | 0.33
Gestational age (weeks) 275 (1.7) 27.1(1.6) 0.33
Small for gestational age 3(5.6%) 1(2.6%) 0.68
Early-onset neonatal sepsis 12 (22.2%) 1(2.6%) 0.01
Necrotizing enterocolitis 5(9.3%) 5 (13.2%) 0.66
Retinopathy of prematurity 23 (42.6%) 22 (57.9%) 0.14
Intraventricular hemorrhage 21 (38.9%) 14 (36.8%) 0.80
Periventricular leukomalacia | 6 (11.1%) 9 (23.7%) 0.11
Cerebral palsy 4 (7.4%) 3(7.9%) 0.98
Bronchopulmonary dysplasia | 24 (44.4%) 17 (44.7%) 0.95

Mean (SD) or n (%). P values in bold font are considered statistically significant at p<0.05.
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Cord blood miR-29b CT values and clinical outcomes total sample.

Table 3.

Clinical Outcomes

Present

Not present

Placental pathology*

Funisitis

11.79 (1.16, n=19)

10.80 (2.17, n=69)

p=0.04

Chorioamnionitis

11.26 (1.67, n=44)

10.78 (2.30, n=44)

p=0.36

Fetal/neonatal Outcomes?

Small for gestational age

8.00 (3.67, n=4)

11.15 (1.80, n=88)

p=0.01

Necrotizing enterocolitis

11.08 (1.25, n=9)

11.06 (2.08, n=83)

p=0.93

Retinopathy of prematurity

10.90 (2.33, n=44)

11.14 (1.68, n=42)

p=0.94

Intraventricular hemorrhage

10.95 (2.21, n=33)

11.14 (2.04, n=59)

p=0.51

Periventricular leukomalacia

10.54 (2.59, n=14)

11.13 (1.89, n=74)

p=0.40

Cerebral palsy

11.93 (0.57, n=7)

10.92 (2.12, n=77)

p=0.02

Bronchopulmonary dysplasia

10.91 (2.25, n=40)

11.12 (1.83, n=47)

p=0.70

Mean (SD, n).P values in bold font are considered statistically significant at p<0.05.

*
n=88; four placentas were not sent for pathology

the n’s that don’t add up to 92 are due to transfer or death before time to diagnose or due to inadequate follow up after discharge
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Table 4.

CT values and neonatal outcomes at 36 weeks.

Neonatal Clinical Outcomes

Present

Not present

Necrotizing enterocolitis

8.22 (n/a, n=2)

5.92 (3.18, n=16)

p=0.66

Retinopathy of prematurity

10.90 (2.33, n=9)

6.61 (2.99, n=9)

p=0.58

Intraventricular hemorrhage

4.27 (3.27, n=7)

8.19 (1.56, n=11)

p=0.04

Periventricular leukomalacia

1.7 (n/a, n=3)

6.51 (2.91, n=15)

p=0.31

Cerebral palsy

4,67 (5.02, n=3)

6.40 (2.90, n=15)

p=0.39

Bronchopulmonary dysplasia

5.59 (3.39, n=12)

7.65 (1.53, n=6)

p=0.52

All comparisons using Kruskal-Wallis test. P values in bold font are considered statistically significant at p<0.05.
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