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The key component in deep learning research is the availability of training data sets. With a limited number of publicly available
COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed
based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical
findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases,
which will be used as the testing data set. We used a deep learning model based on the ResNet-101 convolutional neural
network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect
abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve,
sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of
labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for
training, validation, and testing.

1. Introduction

Opacity-related findings have been detected in COVID-19
radiographic images [1]. In one study [2], bilateral and
unilateral ground-glass opacity was detected in their
patients. Among paediatric patients [3], consolidation and
ground-glass opacities were detected in 50%-60% of
COVID-19 cases, respectively. This key characteristic may
be useful in developing deep learning model to facilitate in
screening of large volumes of radiograph images for
COVID-19 suspect cases.

Deep learning has the potential to revolutionize the auto-
mation of chest radiography interpretation. More than
40,000 research articles have been published related to the

use of deep learning in this topic including the establishment
of referent data set [4], organ segmentation [5], artefact
removal [6], multilabel classification [7], data augmentation
[8], and grading of disease severity [9]. The key component
in deep learning research is the availability of training and
testing data set, whether or not it is accessible to allow repro-
ducibility and comparability of the research.

One technique that is commonly used in deep learning is
transfer learning which enables adoption of previously
trained models to be reused in a specific application [7].
Established pretrained deep neural networks have been
trained on not less than a million images to recognize thou-
sands of objects as demonstrated in the ImageNet database
[10]. The image set consists of typical and atypical objects,
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for example, pencil, animals, buildings, fabrics, and geologi-
cal formation. One method of transfer learning is to freeze
all layers except the last three layers—fully connected, soft-
max, and classification layers. The last three layers are then
trained to recognize new categories. Pretrained models have
shown promising results, in some instances, comparable with
experienced radiologists [11].

Data quality is of paramount importance for a successful
deep learning. “Garbage in, garbage out” colloquial applies as
much to a general deep learning application as it does to deep
learning in chest radiography. Previous research argues that
radiologist interpretive errors originate from internal and
external sources [12]. The examples of the former sources
are search, recognition, decision, and cognitive errors, while
the latter sources can be due to fatigue, workload, and
distraction. Inaccurate labels used to train deep learning
architecture will yield in underperforming models.

Recent research [11] has developed radiologist-
adjudicated labels for ChestX-ray14 data set [4]. These labels
are unique in the sense that they required adjudicated review
by multiple radiologists from a group of certified radiologists
with more than 3 years of general radiology experience. Four
labels were introduced, namely, pneumothorax, nodule/-
mass, airspace opacity, and fracture.

With the recent opacity-related finding as an important
characteristic in COVID-19 patients, this research is aimed
at developing a deep learning model for the prediction of
COVID-19 cases based on an existing pretrained model
which was then retrained using adjudicated data set to recog-
nize images with airspace opacity, an abnormality associated
with COVID-19.

2. Methods

Independent sets were used for each training, validation, and
testing phase. The training and validation data sets were
extracted from ChestX-ray14 [4], a representative data set
for thoracic disorders for a general population. The data set
originated from the National Institutes of Health Clinical
Centre, USA, and comprises approximately 60% of all frontal
chest X-rays in the centre. The labels were provided by a
recent research from Google Health [11]; the research was
motivated by the need of more accurate ground truth for
chest X-ray diagnosis. In this research, only one label was
used to develop the deep learning model—airspace opacity,
which is known to be associated with COVID-19 cases [1].
The COVID-19 cases in the testing data set were taken from
COVID-19 X-ray data set, curated by a group of researchers
from the University of Montreal [13]. Only frontal chest
X-rays were used in this study. To simulate a population
scenario with 2.57% prevalence rate, a total of 5828 images
of “no finding” label from ChestX-ray14 were extracted to
complement the test set. Figure 1 summarizes the data sets
used for the development and evaluation.

The depth of deep learning architecture is important for
many visual detection applications. ResNet-101, a convolu-
tional neural network with 101 layers, was adopted in this
research due to its residual learning framework advantage
that is known to have lower computational complexity than
its counterpart, without sacrificing the depth and in turn
the accuracy [14]. The network was pretrained on not less
than a million images from a public data set (http://www
.image-net.org/). Figure 2 illustrates the initial and final

Chest X-ray14
(N = 112, 120)

COVID-19 chest X-ray dataset
(N = 154)

No findings = 5,828

COVID-19 = 154

Training set Validation set Test set

(i) COVID-19 = 154
(ii) No findings = 5,828

(i) Opacity = 1,516
(ii) No opacity = 1,547

(i) Opacity = 650
(ii) No opacity = 663

Adjudicated ‘‘airspace opacity’’
labels from

Google Health
(N = 4,376)

(i) Opacity = 2,166
(ii) No opacity = 2,210

Figure 1: Flowchart of X-ray images used in this study. Training, validation, and test sets are mutually exclusive.
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layers of the network. Learning rates of all the parameters
of all layers were set to zero except new_fc, prob, and
new_classoutput, which refer to fully connected, softmax,
and classification output layers, respectively. Only these
three layers were retrained to classify chest X-ray images
with airspace opacity. The network parameters were
updated using stochastic gradient descent with momentum
using options as tabulated in Table 1.

The prob layer outputs probability assigned to each label
j = {none, COVID-19} which is defined as

p y = j ∣ xð Þ = e wT
j x+bjð Þ

∑k
j=1e

wT
j x+bjð Þ , ð1Þ

where x is the output of the new_fc layer with transposed
weights of wT and bias b. The decimal probabilities of each
instance must sum up to 1.0. For example, image A would
have a probability of 0.8 that it belongs to label none and
probability of 0.2 that it belongs to label COVID-19.

The new_classoutput layer measures the cross entropy
loss for the binary classification with the following definition:

cross entropy loss = −〠
N

i=1
〠
K

j=1
tij ln p yð Þ, ð2Þ

where N is the number of samples, K is the number of labels,
and pðyÞ is the output from the prob layer.

3. Results and Discussion

The performance of the model was evaluated using receiver
operating characteristic curve as plotted in Figure 3. The area
under the curve (AUC) was found to be 0.82, in which a value
of 1.00 indicates a perfect COVID-19 test and 0.50 (as plotted
by the blue line of no discrimination) represents a diagnostic
test that is no better than random coincidence.

The published performance of deep learning models
using radiographic images ranges from AUC = 0:82 to
0.996 [15–18]. Besides different deep learning methodologies
adopted, modality and data set used also contribute to the
variation in the performance. The study with the AUC =
0:996, for instance, used CT scan [15] as modality which gen-
erates higher resolution images compared to X-ray. Other
studies using X-ray images use small number of images in
their testing data set due to the fact that a significant portion
of images were already used in the training phase [17, 18]. In
addition, small data set can result in overfitting of the model
to limited variation of COVID-19 cases.

A confusion matrix was constructed in Figure 4 to sum-
marize the binary classification performance of the model
with the sensitivity, specificity, and accuracy of 77.3%,
71.8%, and 71.9%, respectively. Examples of true positive
and false negative of COVID-19 cases are presented in
Figures 5 and 6, respectively.

Subjective validation of the model can be done by identi-
fying the important zones in the image which contribute to
the decision of the deep learning network. Gradient-
weighted class activation mapping was used for this purpose
[19]. The method determines the final classification score
gradient with respect to the final convolutional attribute plot.
The places where this gradient is high are precisely the places
where the final score most depends on the results. Figure 7

Final ResNet-101 layers

Chest X-ray images Initial ResNet-101
layers

new_fc prob new_classoutput

Figure 2: Initial and final layers of ResNet-101 deep learning network architecture employed in this study. All images need to be resampled to
224 px × 224 px × 3 channels to accommodate the network’s input.

Table 1: Options set for the network training.

Property Options

Mini batch size 10

Maximum epochs 8

Initial learning rate 1e − 4
Shuffle Every epoch

Validation frequency Every epoch
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Figure 3: Receiver operating characteristic curve illustrating the
performance of the deep learning model in predicting COVID-19
cases.
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illustrates the important features highlighted by deep red col-
our and less relevant characteristics of the image depicted as
deep blue.

Operational efficiency in radiology can be defined in
terms of time taken to complete a task including imaging
examination duration [20]. The research work, however,
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Figure 4: Confusion matrix of the deep learning model for COVID-19 classification using the testing data set.

Figure 5: X-ray images with matched classification between deep learning model output and COVID-19 cases.
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did not include the time required for the delivery of the final
interpretive report. To estimate the operational efficiency of
this model, we define a new parameter, adopting relative
operational efficiency formula from the literature [21]:

Model Efficiency =
MPM
RPM

, ð3Þ

where MPM is the number of images that can be processed
by the model per minute and RPM is the number of images
that can be processed by a radiologist per minute. Using the
testing data set, MPM was estimated as 453 images per min-
ute run on Intel® Core™ i7-4770 CPU. RPM, on the other
hand, was estimated based on the radiologist average time
to interpret the images with various pathologies, which was
reported as 1.75 images per minute [22]. Based on these
assumptions, the model was estimated to be 258 times more
efficient than a radiologist. The model efficiency was signifi-
cantly increased by four times when a GPU was used to
accelerate computations.

A previous work [23] comparing ten convolutional neu-
ral network architecture using 1020 CT slices from 108
COVID-19 patients and 86 controls found that ResNet-101,
which was also used in this current study, could achieve
99.02% accuracy. The work, however, employed a high-
resolution CT scanner, which is not as ubiquitous as an
X-ray imaging system. While the training and testing data

Figure 6: X-ray images with mismatched classification between deep learning model output and COVID-19 cases.

Figure 7: Class activation mapping algorithm can help to identify
critical zones in the images; the deep learning model identifies
what has been described by the radiologist as “…patchy
consolidation in the right mid lung zone.”
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were split, the images were sourced from the same data set
which may lead to inaccuracy if the model is tested on
images acquired from different CT scanners.

4. Conclusion

The strength of this study lies in the use of adjudicated labels
which have strong clinical association with COVID-19 cases
and the use of mutually exclusive publicly available data for
training, validation, and testing. The results presented here
are preliminary due to the lack of images used in the testing
phase as compared to more than 1900 images in the testing
set of an established radiography data set [11]. Deep learning
models trained using actual COVID-19 cases can result in
better performance; however, until and when adequate data
are available to generalize the results of real-world data, cau-
tionary measures need to be taken when interpreting the per-
formance of the deep learning models applied in this context.

Data Availability

The data are available at https://github.com/ieee8023/covid-
chestxray-dataset and https://cloud.google.com/healthcare/
docs/resources/public-datasets/nih-chest.
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