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Objective: Although a heritable contribution to risk for major depressive disorder (MDD) has been established 

and neural alterations in patients have been identified through neuroimaging, it is unclear which brain 

abnormalities are related to genetic risk. Studies on brain structure of high-risk subjects – such as individuals 

carrying a familial liability for the development of MDD – can provide information on the potential usefulness 

of these measures as intermediate phenotypes of MDD. 

Methods: 63 healthy first-degree relatives of patients with MDD and 63 healthy controls underwent structural 

magnetic resonance imaging. Regional gray matter volumes were analyzed via voxel-based morphometry 

(VBM). 

Results: Whole-brain analysis revealed significantly larger gray matter volume in the bilateral amygdala in 

first-degree relatives of patients with MDD. Furthermore, relatives showed significantly larger gray matter 

volume in anatomical structures found relevant to MDD in previous literature, specifically in the bilateral 

hippocampus and amygdala as well as the left dorsolateral prefrontal cortex (DLPFC). Bilateral DLPFC volume 

correlated positively with the experience of negative affect. 

Conclusions: Larger gray matter volume in healthy relatives of MDD patients point to a possible vulnerability 

mechanism in MDD etiology and therefore extend knowledge in the field of high-risk approaches in MDD. 
c © 2014 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 
. Introduction 

In recent years, research on neurobiological risk factors for major 

epressive disorder (MDD) has increasingly identified neurobiologi- 

al contributions to disease risk. This is important since MDD is one of 

he leading causes of years lost due to disability ( World Health Orga- 

ization, 2009 ) and is associated with high mortality rates ( Palazidou, 

012 ). One of the major methodological approaches in this domain 

as been neuroimaging. Several studies in patients reported func- 

ional as well as structural brain alterations ( Drevets et al., 2008 ). 

unctional findings suggest dysregulation in neural circuits involv- 

ng the prefrontal cortex as well as limbic structures (including the 
1 Authors Romanczuk-Seiferth and P ̈ohland contributed equally to this work. 
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amygdala and hippocampus) ( Price and Drevets, 2012 ). In line with 

these findings are results from structural imaging: Meta-analyses 

have highlighted volume reductions in the bilateral anterior cingulate 

cortex (ACC), dorsomedial frontal cortex, right middle frontal gyrus 

extending into the precentral gyrus, bilateral putamen, caudate, and 

right anterior insula / inferior frontal cortex in MDD ( Bora et al., 2012 ). 

Arnone et al. (2012) described volume reductions in the frontal, or- 

bitofrontal and cingulate cortices, hippocampus and striatum. Yet, 

as has been shown in a review by Frodl et al. (2008) , some of these 

findings have been inconsistent, e.g., those concerning amygdala vol- 

umes. Diverging results might be due to methodological differences 

of study design and data analysis. Moreover, biological variables (e.g., 

age and sex) as well as psychopathological factors (e.g., age of onset, 

course of the disease and medication) might contribute to inconsis- 

tent findings ( Arnone et al., 2012 ). Even given widespread and replica- 

ble structural–functional alterations in patients compared to controls, 

it remains unclear whether such changes occur after the manifesta- 

tion of MDD symptoms, whether they represent risk factors for the 

development of MDD, or whether they are related to confounds such 
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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as comorbidity, medication use, social stress and lifestyle changes

associated with having a severe mental illness. 

Research on etiology of MDD has shown that multiple factors con-

tribute to the manifestation of the disorder. MDD etiology is linked

to interactions between genetic vulnerability – indexed not only by

familial liability, but also by heritable traits such as neuroticism –

and biographical / environmental factors such as adverse life events

( Burke et al., 2005 ). Often, risk factors are combined. For instance, pa-

tients with a family history of depression show a lower age of onset

and are more likely to have recurrent depressive phases ( Hollon et al.,

2006 ). With an overall heritability of 30–40%, MDD is less strongly

genetically determined than other severe mental illnesses, which

emphasizes the importance of gene–environment interactions. One

strategy to disentangle the complex network of influencing factors

is to focus on high-risk subjects for MDD. Healthy first-degree rela-

tives of MDD patients (H1 st R) enable the investigation of vulnerability

factors as well as resilience markers related to heritable or shared en-

vironmental (e.g., early familial) factors. While vulnerability factors

are thought to increase risk of mental illness, resilience factors are

considered to facilitate healthy functioning. Applied to quantitative,

more biologically based measures such as neuroimaging, these stud-

ies add to the search for intermediate (or “endo”-) phenotypes. One

necessary, but by no means sufficient, criterion for an endopheno-

type is that markers found in affected family members should also

be found in nonaffected family members at a rate higher than that

of the general population ( Gottesman and Gould, 2003 ). Conversely,

findings opposite in directionality between patients and their fam-

ily members in similar systems may point to resilience factors pro-

tecting healthy relatives from manifest illness despite their genetic

susceptibility. In the domain of brain structure, few manual tracing

and voxel-based morphometry (VBM) studies searching for MDD en-

dophenotypes have been published to date. Manual tracing studies

revealed smaller hippocampal but larger amygdala volume in high-

risk subjects ( Boccardi et al., 2010 ; Rao et al., 2010 ; Saleh et al., 2012 ).

The reduction in hippocampal volume in high-risk subjects compared

to healthy controls or MDD patients was confirmed by VBM ( Amico

et al., 2011 ; Baar ́e et al., 2010 ; Carballedo et al., 2012 ; Chen et al.,

2010 ; de Geus et al., 2007 ). Furthermore, VBM studies exhibited a

reduction in local gray matter in the dorsolateral prefrontal cortex

(DLPFC) ( Amico et al., 2011 ; Carballedo et al., 2012 ). Nevertheless,

the explanatory power of previous results regarding the potential

structural endophenotypes of MDD is limited due to heterogeneity

in sample sizes, studied risk populations and applied methods, e.g.

region-of-interest (ROI) based analyses only. 

To advance the data available in this field, we collected structural

magnetic resonance imaging (MRI) data from a large sample of H1 st R

and matched healthy control subjects without any familial history of

psychiatric illness (HC) and conducted a whole-brain VBM-analysis,

thereby applying a very conservative statistical threshold. For consis-

tency with the literature, we additionally tested our data for effects

in regions previously observed using small volume alpha error ad-

justment. This approach decreases the probability of false positive

as well as false negative findings and provides new insights in brain

structural correlates linked to the genetic risk for MDD. 

2. Methods and materials 

2.1. Participants 

All subjects were enrolled in a multicenter study ( Esslinger et al.,

2009 ) conducted by the Charit ́e — Universit ̈atsmedizin Berlin, the Uni-

versit ̈atsklinikum Bonn and the Zentralinstitut f ̈ur Seelische Gesund-

heit, Mannheim. The study was performed in accordance with the

latest version of the Declaration of Helsinki and approved by the local

Ethics Committees. Subjects participated in the study after providing

written informed consent. 63 H1 st R (38 females; 21 subjects from
Berlin, 21 from Bonn and 21 from Mannheim) were measured and

63 HC (38 females; 21 subjects from Berlin, 21 from Bonn and 21

from Mannheim) matched for age and sex were taken from a larger

study sample. Affected relatives of the H1 st R group (43 offspring, 17

siblings, 1 parent, 2 NA) were examined by an experienced psychia-

trist or clinical psychologist using the German version of the Struc-

tured Clinical Interview for DSM-IV (SCID-I) ( First et al., 2002 ) or had

to provide a medical report confirming a major depressive disorder.

Both the H1 st R and the HC group had no history of any neurolog-

ical disorder or lifetime psychiatric axis I disorder including drug

or alcohol dependence as verified by an interview according to the

Screening Interview for DSM-IV axis I disorders. Further, subjects in

the HC group were questioned carefully whether there is any knowl-

edge about psychiatric disorders in their family, and special empha-

sis was put on first degree relatives. Subjects with axis 1 disorders

or unclear diagnoses in their families were not included in the study

sample. Handedness was measured by the Edinburgh Handedness

Inventory ( Oldfield, 1971 ) (H1 st R: 55 right handers, 6 left handers,

2 both hander; HC: 57 right handers, 4 left handers, 2 both hander).

In addition, years of education and premorbid intelligence assessed

by the multiple choice verbal intelligence test (MWT-B) ( Lehrl, 2005 )

as well as clinical scales such as the Symptom Check List (SCL-90-R)

with the subscales Global Severity Index (SCL-GSI) and Depression

(SCL-Depr) ( Derogatis, 1983 ) were assessed. No significant difference

between the two groups were found (see Table 1 ). Furthermore, a

composite score (NegAff) comprising three self-report measures as-

sociated with the experience of negative affect was included, in de-

tail: 1) the trait form of the Spielberger State / Trait Anxiety Inventory

(STAI) ( Spielberger, 1989 ) for the assessment of feelings of tension,

fear and worry; 2) the neuroticism scale from the NEO five-factor in-

ventory ( Costa and McCrae, 1992 ) which assesses the degree to which

an individual experiences negative affects such as anger, sadness and

guilt; and 3) the harm avoidance scale of the Temperament and Char-

acter Inventory (TCI) ( Cloninger, 1994 ) which measures a personality

trait characterized by anticipatory worry, pessimism, easy fatigue and

shyness. The composite score was calculated by using the average of

the Z -scores for each individual scale as suggested previously ( Holmes

et al., 2012 ). The two groups did not differ on this scale either. 

2.2. Statistical analysis of sociodemographical, psychometrical and 

clinical data 

Statistical analyses were performed using the software package

MATLAB (MATLAB 7.8, The MathWorks Inc., Natick, MA, 2009). Due

to violation of statistical assumptions for parametrical testing (normal

distribution as assessed by the Kolmogorov–Smirnov test or the level

of measurement), the medians of age, years of education, IQ, SCL-GSI

and SCL-Depr and the composite score NegAff were tested regarding

group differences via non-parametrical Wilcoxon rank-sum test (see

Supplementary Table S1 ). 

2.3. MRI acquisition 

Structural MRI data were acquired on a 3 Tesla Siemens MAGNE-

TOM Tim Trio MRI system (Siemens, Erlangen, Germany) at all three

study sites. All subjects underwent a T1-weighted three-dimensional

magnetization prepared rapid gradient echo (MP-RAGE) sequence

with an isotropic spatial resolution of 1 mm 

3 (repetition time = 1.57 s,

echo time = 2.74 ms, flip angle = 15 ◦). Additional quality control

measurements via EPI sequences were conducted at all study sites on

every day of data collection according to a multicenter quality assur-

ance protocol ( Friedman and Glover, 2006 ), revealing stable signals

over time and comparable quality between sites. 
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Table 1 

Sociodemographical and clinical data. Abbreviations: H1 st R — healthy first-degree relatives of MDD patients; HC — healthy control subjects; MWT-B — multiple choice verbal 

intelligence test; SCL-90-R — Symptom Check List; GSI — Global Severity Index, *IQ. 

Variable 

H1 st R 

(25 / 38 ) 

HC 

(25 / 38 ) Wilcoxon 

Median 95% CI Median 95% CI z -value p -value 

Age in years 25.0 10.4 / 39.6 26.0 11.2 / 40.8 –.14 .89 

Years of education 15.5 10.8 / 20.2 15.5 11.7 / 19.3 –.54 .588 

MWT-B 30 (107*) 20.5 / 39.5 30 (107*) 25.1 / 34.9 –.76 .45 

SCL-90-R (GSI) .16 –.18 / .5 .12 –.2 / .5 –1.32 .19 

SCL-90-R 

(depression) 

.15 –.5 / 0.8 .08 –.4 / 0.6 –1.28 .202 

Composite score: 

experience of 

negative affect 

–.19 –1.9 / 1.5 –.18 –1.9 / 1.6 –.04 .965 
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.4. Voxel-based morphometry (VBM) 

MRI data processing was performed according to an estab- 

ished voxel-based morphometry protocol using the VBM8 tool- 

ox (Structural Brain Mapping Group, University of Jena, Germany; 

ttp: // dbm.neuro.uni-jena.de / vbm8 ) for the Statistical Parametric 

apping 8 Software (SPM8, Welcome Trust Centre for Neuroimag- 

ng, UCL, London, UK; http: // www.fil.ion.ucl.ac.uk / spm ). 

Before segmentation into tissue classes, images were visually in- 

pected to remove images with artefacts, manually aligned to the ori- 

ntation as defined by the used brain templates, and the origin was 

et on the anterior commissure. Afterwards, individual anatomical 

mages were classified into gray matter, white matter and cerebro- 

pinal fluid as well as three extra-cerebral tissue classes and trans- 

ormed to the stereotactical standard space as provided by the In- 

ernational Consortium for Brain Mapping (6 tissue class template; 

ttp: // www.loni.usc.edu / ICBM ) using the diffeomorphic image reg- 

stration algorithm (DARTEL) developed by Ashburner (2007) . To ac- 

ount for the local normalization degree, gray matter images were 

odulated with the nonlinear transformation parameters as com- 

uted during the normalization procedures. The resulting images 

ontain the volume proportion of probabilistically assigned gray mat- 

er tissue for each voxel. These gray matter tissue probability images 

ere again inspected visually and finally smoothed using an isotropic 

aussian kernel with a full-width at a half-maximum of 8 mm. Note 

hat each image of the regional GM volume was corrected for individ- 

al brain size, since this step is part of the VBM8 toolbox routine. 

A voxel-wise whole-brain 2 × 3 analysis of covariance (ANCOVA) 

ith the factor of interest Group (H1 st R vs. HC) was performed. The 

dditional factor scanner site allowed for detailed quality control re- 

arding possible influences of the multicenter setting: no interaction 

etween the two factors was observed ( p < .05 FWE corr.). Due to 

ts impact on brain volume, sex and the MWT-B were also used as 

ovariates. Finally, age was included as covariate of no interest. Only 

ndings that passed a significance level of p < .05 (voxel level in- 

erence), whole-brain family wise error (FWE) corrected for multiple 

omparison and a cluster size of at least 10 adjacent voxels, are re- 

orted. Gray matter regions that showed a significant group effect 

ere anatomically labeled using the probabilistic cytoarchitectonic 

natomy toolbox ( Eickhoff et al., 2005 ) as implemented in SPM8. 

ased on the maps provided by Amunts et al. (2005) (amygdala and 

ippocampus), the cytoarchitectonic probabilities for these regions 

ere computed. To test for the direction of differences in gray matter 

olume, we applied post hoc t -tests at the peak voxel positions for the 

ndividual gray matter values. 
Due to our strong hypotheses based on previous literature, we 

performed an adjustment of alpha error probabilities for the volumes 

of the following a-priori defined anatomical regions as provided by 

the Automated Anatomical Labelling (AAL) ( Tzourio-Mazoyer et al., 

2002 ) brain atlas: bilateral hippocampus (volume: right 7.6 cm 

3 , left 

7.5 cm 

3 ), amygdala (volume: right 1.9 cm 

3 , left 1.7 cm 

3 ) and DLPFC (? 

middle frontal gyrus; Brodmann areas 8, 9, 46; volume: right 37.9 cm 

3 , 

left 38.6 cm 

3 ) (see Supplementary Fig. S1 ). Only results with an ad- 

justed alpha error probability less than .05 family-wise error (FWE) 

corrected for multiple comparisons are reported. 

In order to probe whether differences in gray matter volume be- 

tween H1 st R and HC relate to subclinical depressive symptoms and 

experience of negative affect, we conducted, for both groups, voxel- 

wise correlation analyses (non-normally distributed: Spearman’s rho, 

corrected for age, sex and MWT-B) for the self-report measure SCL- 

Depr as well as the NegAff and local gray matter volume in the ROIs. 

3. Results 

3.1. Sociodemographical, psychometrical and clinical sample 

characteristics 

For results of sociodemographical, psychometrical and clinical 

data, see Table 1 . 

3.2. Voxel-wise local gray matter volume — whole-brain analysis 

VBM results revealed a main effect of Group for the amygdala 

bilateral with larger local gray matter volume for H1 st R subjects in 

the bilateral amygdala (left: x = −21, y = 2, z = −14, 278 voxels; right: 

x = 26, y = 0, z = −15, 318 voxels) compared with HC subjects (see 

Fig. 1 and Supplementary Table S2 ). In contrast, HC did not have any 

relative increases in local gray matter volume. 

3.3. Voxel-wise local gray matter volume — ROI based analyses 

Alpha error adjustment for a-priori defined ROIs revealed a larger 

local gray matter volume for H1 st R subjects in the bilateral hippocam- 

pus, bilateral amygdala and left DLPFC (see Table 2 ). 

3.4. Correlation analysis 

Correlation analysis revealed a significant positive correlation be- 

tween NegAff score and local gray matter volume in the left (Spear- 

man’s rho = .43, p < .001) and right DLPFC (Spearman’s rho = .458, 

http://dbm.neuro.uni-jena.de/vbm8
http://www.fil.ion.ucl.ac.uk/spm
http://www.loni.usc.edu/ICBM
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Fig. 1. Whole-brain FWE correctable results. Middle panel: Clusters with a significant main effect of group. Left and right panels: Box plots for local gray matter volumes of H1 st R 

( n = 63) and HC ( n = 63) at peak voxel coordinates. The dots indicate the individual gray matter volumes. Abbreviation: CI — confidence interval; H1 st R — healthy first-degree 

relatives of MDD patients; HC — healthy control subjects. 

Table 2 

Differences in local gray matter volume between H1 st R ( n = 63) and HC ( n = 63) subjects (alpha error probabilities adjusted for a-priori regions of interest). Abbreviations: CP —

cytoarchitectonic probability, H — hemisphere; DLPFC — dorsolateral prefrontal cortex; SF — superficial group; CA — cornu ammonis. 

Brain structure 

(CP) 
H Cluster size Z (peak) T (peak) p (FWE) MNI coord. (mm) 

x y z 

Amygdala (SF) L 389 5.67 6.10 < .001 –21 2 –14 

Amygdala (SF) R 379 5.42 5.80 < .001 26 0 –15 

DLPFC L 97 3.89 4.03 0.026 –32 47 28 

Hippocampus 

(CA) 

L 480 4.47 4.68 0.001 –26 –6 –17 

Hippocampus 

(CA) 

R 367 4.96 5.25 < .001 27 –4 –17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p < .001) in the H1 st R group (see Fig. 2 ). Furthermore, a trend-wise

positive correlation between the SCL-Depr score and local gray matter

volume in the right hippocampus (Spearman’s rho = .23, p = .074) and

left amygdala (Spearman’s rho = .206, p = .102) has been observed.

For HC subjects, no significant correlation was found. 

4. Discussion 

The main findings of our study are larger local gray matter vol-

umes in the bilateral amygdala in healthy relatives of MDD patients

compared to control subjects. With a statistically highly conservative

approach (whole-brain analysis FWE corrected for multiple compar-

isons) this study proves brain volume differences in high-risk subjects.

According to the literature, the evidence for volumetric differences in

limbic regions is inconsistent in MDD patients ( Bora et al., 2012 ).

While one study in pediatric MDD ( Rosso et al., 2005 ) as well as a

meta-analysis of VBM results in first-episode MDD patients ( Bora et

al., 2012 ) showed relatively reduced local gray matter volume in the

amygdala, larger amygdala volume has also been shown in samples of

medicated MDD patients ( Hamilton et al., 2008 ; Malykhin et al., 2012 )
as well as in early stages of MDD ( Frodl et al., 2003, 2002 ; Lange and

Irle, 2004 ; van Eijndhoven et al., 2009 ). In contrast, previous studies in

high-risk subjects consistently reported a larger volume in the amyg-

dala ( Boccardi et al., 2010 ; Saleh et al., 2012 ), which is in line with our

findings. Further, it is of high interest that recent studies also linked

larger amygdala volume with psychological characteristics of depres-

sion, in terms of heightened negative affect ( Holmes et al., 2012 ) and

negative memory bias ( Gerritsen et al., 2012 ), even in non-depressed

subjects. These aspects are considered to be important vulnerabil-

ity factors, e.g. frequent experience of ‘negative emotionality ’ such

as anxiety, low mood, and hostility is characteristic of the personal-

ity trait of neuroticism which is a well-known risk factor for MDD

( Kendler et al., 2004 ; Steunenberg et al., 2006 ). In line with these

findings, it has been shown that unaffected twins of MDD patients

have an increased tendency to display negative affect in response to

minor stressors in daily life ( Wichers et al., 2007 ) and show higher

stress sensitivity ( Wichers et al., 2009 ) and that unaffected relatives

differ from the standard population in terms of neural correlates of

inhibition of negative emotional information ( Lisiecka et al., 2012 ).
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Fig. 2. Correlation between SCL depression score and local gray matter volume in the left amygdala and right hippocampus as well as the negative affect composite score and 

bilateral DLPFC volume in H1 st R ( n = 63). Scatter plots between individual SCL — depression or negative affect score and gray matter volume at peak coordinate are shown. 

Additionally the post-hoc regression model ( solid line ) and its 95% confidence interval ( dotted lines ) are displayed. Abbreviations: r s – Spearman’s rho; DLPFC — dorsolateral 

prefrontal cortex; Amyg — amygdala, Hippo — hippocampus. 
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lbeit the present study did not find any significant relationship be- 

ween amygdala volume and experience of negative affect and only 

 trend-wise relation to subclinical depressive symptoms, we found 

 significant positive correlation of the experience of negative affect 

nd bilateral DLPFC volume in the H1 st R group, which was not present 

n the HC subjects. 

In non-human primates, larger DLPFC volume and thickness were 

elated to resilience to stress exposure, which in turn has been linked 

o emotional competences in humans ( Schneider et al, 2013 ). Con- 

idering the close functional relationship between the DLPFC and 

mygdala, it is of interest that also on a functional level the DLPFC 

as been well-documented to be involved in emotion regulation in 

erms of showing increased activity during, e.g. reappraisal of neg- 

tive events and suppression of negative memories ( Goldin et al., 

008 ). Thus, the amygdala–prefrontal cortex circuitry is central to the 

motional processing of biologically salient stimuli, memory forma- 

ion and response regulation ( Kim et al., 2011 ), important functions 

hat are altered in MDD ( Hamilton and Gotlib, 2008 ; Rosenblau et 

l., 2012 ). Further, fMRI studies showed that the functional relation- 

hip between the amygdala and the DLPFC is decreased in depression 

 Anand et al., 2005 ; Dannlowski et al., 2009 ; Siegle et al., 2007 ). Thus, 

he larger gray matter volume in the amygdalae and the correlation 

etween DLPFC gray matter volume and the experience of negative 

ffect might be provoked by more intense affective processes in the 

mygdala as well as more demanding top down regulation of these 

rocesses by the DLPFC. Taking the findings together, we conclude 
that the found structural brain differences in the amygdala might re- 

flect an increased vulnerability for the onset of MDD in healthy first- 

degree relatives. To further understand the role of the amygdala in the 

etiology of depression, non-MR-related findings should also be taken 

into account, like post-mortem neuromorphometric and histopatho- 

logical investigations ( Manji et al., 2001 ). 

Additionally, our region-of-interest analyses methodologically fol- 

lowed previous studies in this field and identified altered gray matter 

volumes in relatives of MDD patients in regions also highlighted by 

previous work: earlier studies found group differences in the amyg- 

dala ( Boccardi et al., 2010 ; Saleh et al., 2012 ), the hippocampus ( Amico

et al., 2011 ; Baar ́e et al., 2010 ; Carballedo et al., 2012 ; Chen et al.,

2010 ; de Geus et al., 2007 ; Rao et al., 2010 ) and the DLPFC ( Amico

et al., 2011 ; Carballedo et al., 2012 ) by means of region of interest 

VBM analyses and manual tracing methods respectively. However, 

whereas a larger amygdala volume in our H1 st R participants is in line 

with previous studies ( Boccardi et al., 2010 ; Saleh et al., 2012 ), we also 

found larger volume in the hippocampus as well as the DLPFC which 

is in contrast to the previous literature. Given the methodological 

differences in sample size and sample characteristics, like the defi- 

nition of high-risk, further studies have to specify the direction and 

the precise role of DLPFC and hippocampal volume in MDD etiology. 

On the one hand, reduced hippocampal volumes were determined 

in subjects with different risk factors related to depression ( Chen et 

al., 2010 ; Dannlowski et al., 2012 ; Teicher et al., 2012 ). On the other 

hand, pointing to state-dependent effects, reduced hippocampal vol- 

umes can be abolished by antidepressant treatment ( Arnone et al., 
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2013 ; Nordanskog et al., 2010 ; Tendolkar et al., 2013 ). 

Limitations of our study arise from the question of how struc-

tural alterations influence brain function in terms of modulating the

probability of MDD in high-risk populations. In this context, it is wor-

thy to mention that the detailed relationship between altered brain

structure and its function is not fully understood, i.e. changes in local

gray matter volume might be due to various processes. For example,

heightened gray matter volume as described might point to a more

ineffective functional state in the respective brain system. Evidence

from animal studies points to a variability in local gray matter volume

in amygdalar nuclei related to neuropathic pain and depressive symp-

toms ( Gon c ¸ alves et al., 2008 ). Further, volumetric changes might also

be related to neurochemical alterations, as discussed for MDD — like

GABAergic deficits ( Luscher et al., 2011 ), which were also linked to

chronic deficits in neurotrophic support in mice models ( Duman et

al., 2000 ). Further, we conducted a cross-sectional analysis. Longitu-

dinal analyses assessing brain volume before and after illness onset

are needed to underline the importance of neurobiological markers

of vulnerability for MDD. Moreover, we do not know whether the

studied high-risk subjects are indeed carriers of genetic risk factors

for MDD. H1 st R share approximately 50% of common genetic vari-

ants related to the disorder with their affected family members, in

addition to a degree of shared early environment. Of course we can-

not determine which specific variants the studied high-risk subjects

carry, given the limited number of genome-wide supported variants

associated with MDD, as well as we do not know the specific ratio

within our group of H1 st R subjects which develop a major depres-

sive episode in the future. Since MDD does manifest over the whole

lifespan, it is also not possible to reliably estimate the probability of

MDD manifestation in the studied sample. However, the close de-

gree of kinship of our H1 st R subjects to the affected family members

suggests a high level of genetic similarity with the MDD relatives. 

Besides these limitations, the strengths of this study include the

fact that it was conducted on a representative sample of 63 subjects

per group and is therefore less likely to be affected by biases asso-

ciated with convenience sampling or clinical populations, which is

also an important advantage of the used high-risk approach. We ad-

vanced evidence in this field by applying very conservative statistical

thresholds and reporting whole brain FWE-corrected results as well

as followed former research strategies by replicating previous studies.

Thus, it is very likely that the observed larger volume in the amyg-

dalae in healthy H1 st R subjects is a reliable and valid finding and may

represent a vulnerability factor for developing MDD. At this point, fu-

ture research has to replicate whether volumetric alterations depict

an endophenotype for MDD. 
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