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Background: Major depressive disorder (MDD) is a common and severe psychiatric

disorder with a heavy burden on the individual and society. However, the prevalence

varies significantly owing to the lack of auxiliary diagnostic biomarkers. To identify the

shared differential expression genes (DEGs) with potential diagnostic value in both the

hippocampus and whole blood, a systematic and integrated bioinformatics analysis was

carried out.

Methods: Two datasets from the Gene Expression Omnibus database (GSE53987 and

GSE98793) were downloaded and analyzed separately. A weighted gene co-expression

network analysis was performed to construct the co-expression gene network of DEGs

from GSE53987, and the most disease-related module was extracted. The shared

DEGs from the module and GSE98793 were identified using a Venn diagram. Functional

pathway prediction was used to identify the most disease-related DEGs. Finally, several

DEGs were chosen, and their potential diagnostic value was determined by receiver

operating characteristic curve analysis.

Results: After weighted gene co-expression network analysis, the most MDD-related

module (MEgrey) was identified, and 623 DEGs were extracted from this module.

The intersection between MEgrey and GSE98793 was calculated, and 163 common

DEGs were identified. The co-expression network of 163 DEGs from these was then

reconstructed. All hub genes were identified based on the connective degree of the

reconstructed co-expression network. Based on the results of functional pathway

enrichment, 17 candidate hub genes were identified. Finally, logistic regression and

receiver operating characteristic curves showed that three candidate hub genes

(CEP350,SMAD5, andHSPG2) had relatively high auxiliary value in the diagnosis of MDD.

Conclusion: Our results showed that the combination ofCEP350, SMAD5, andHSPG2

has a relatively high diagnostic value for MDD. Pathway enrichment analysis also showed
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that these genes may play an important role in the pathogenesis of MDD. These results

suggest a potentially important role for this gene combination in clinical practice.

Keywords: major depressive disorder (MDD), bioinformatical analysis, differentially expressed genes (DEG),

integrated analysis, diagnostic model

INTRODUCTION

Major depressive disorder (MDD) is a common mental disorder
characterized by the presence of a set of depressed symptoms
for at least 2 weeks (1). MDD places a heavy burden on
medical systems worldwide (2, 3); however, the prevalence of this
disorder varies geographically. In China, 3.02% of the population
suffers from MDD (4). Smith argued that this relatively low
morbidity may be due to different diagnostic criteria used in
China (4). The diagnosis of major depression is based on clinical
symptoms. Thus, it is difficult to reach a consensus on the
symptoms due to the varied recognition of symptoms among
individual clinicians and in different cultures. In addition, the
lack of biomarkers contributes to regional differences in MDD
diagnosis. Consequently, it is critical to identify biomarkers with
reference values to assist in objective clinical identification.

The mechanisms underlying MDD remain unclear, and many
hypotheses have been controversial. Historically, the monoamine
hypothesis has been the most acceptable (5, 6); however, Boku
et al. (7) argued that neuroplasticity and neurogenesis hypotheses
should also be considered. In addition, a growing body of
evidence suggests that inflammatory mechanisms also play a
crucial role in the pathophysiological processes of MDD (8, 9).
It has also been reported that there are some differences in gene
expression between patients with MDD and normal individuals
(10). Indeed, the impact of genes on the development of this
disease has also been emphasized (11–13). Despite these various
hypotheses, these studies have failed to provide specific or stable
biomarkers that could be used for the diagnosis of MDD.

According to Mahajan et al. (14), compared to psychiatrically

normal control subjects, some neuro-inflammatory genes in

the hippocampus of MDD patients are differentially expressed.

A recent study found that the gene expression pattern of
Brodmann’s area 9 (424 genes), 10 (52 genes), and 33 (59

genes) is altered between MDD and non-affected controls (15).

Moreover, Mamdani et al. found that interferon regulatory
factor 7 (IRF7) was upregulated by citalopram treatment via
comparing the individuals with or without good response to
the treatment (16). Thus, it has been shown that the different
gene expression pattern in brain areas may have potential to
distinguish MDD and psychiatrically-normal subjects and even
the antidepressant response. However, these results are with few
values in application to clinic practice because of the difficulty
and immorality in obtaining brain samples from alive MDD
patients. Therefore, the differences of gene expression pattern
betweenMDD patients and non-psychiatric persons in periphery
blood seems valuable for psychiatrists and the researchers of
this field. Leday et al. (9) also identified that gene expression
in the whole blood of MDD patients was different from that in
non-psychotic individuals. Recently, a quantitative review has

revealed that the transcriptional changes between MDD and
non-affected controls were significantly different, especially in
innate immune-related genes (17). Besides, a growing body of
studies also showed that some peripheral miRNAsmay potentials
act as biomarkers for major depression and antidepressant
treatment response (18). Consequently, it can be proposed that
the differences of peripheral transcription betweenMDDpatients
and non-psychotic individuals may be a sign of diagnostic and
treatment response markers. Despite numerous studies reporting
that gene expression is altered in people with MDD, few studies
have attempted to identify consistent differentially expressed
genes (DEGs) between different tissues, especially between the
peripheral blood and the brain.

In this study, we aimed to identify the shared DEGs
with potential diagnostic value in both the hippocampus
and the whole blood using a systematic and integrated
bioinformatics analysis.

MATERIALS AND METHODS

Data Source
We downloaded two datasets (GSE53987 and GSE98793) from
the Gene Expression Omnibus database. Both datasets were
based on the Affymetrix Human Genome U133A array. There
were a total of 17 samples of post-mortem hippocampal tissue
from MDD patients in GSE53987. In addition, 18 post-mortem
hippocampal tissue samples from healthy controls were included
in this dataset. The GSE98793 dataset comprised 64 controls and
128 MDD patients. The MDD patients included those with and
without generalized anxiety disorder (64 patients in each group).
We analyzed data from MDD patients and those who were free
of anxiety disorders.

Identification of DEGs and Construction of
Co-expression Network
The online tool, GEO2R, was used to analyze the two datasets.
This tool is based on R language investigation (19). After defining
the control and MDD groups, we compared the two groups.
The combination of P-value and |logFC| are a typical method
which is utilized by many studies (20, 21). Besides, because of the
high heterogeneity between hippocampus and periphery blood,
a relatively broaden threshold is needed to find more probable
consistent DEGs. Thus, we defined significant up-regulation
genes as those with LogFC > 0 and P < 0.05. On the contrary,
significant down-regulated genes were defined as those with
LogFC < 0 and P < 0.05. In other words, we artificially defined
a value < 0.05, and |LogFC| > 0 as the cutoff criteria to judge
the DEGs. The WGCNA package in R platform (22) was used to
construct the co-expression network of the DEGs in GSE53987.
The preservation of the constructed modules was judged by
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FIGURE 1 | Construction of a weighted gene co-expression network analysis. (A) Selection of soft threshold; (B) Co-expression network of differential expressed

genes from GSE53987; (C) Disease-related module: the words at the top of every module refer to the correlation index, and the words in brackets refer to the p-value;

(D) The heatmap of the correlationship between modules of the selected genes; (E) The clustered gene expression heatmap of MEgrey module.
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TABLE 1 | List of gene hubs based on pathway enrichment.

Gene Degree Pathway enrichment log P

PARP10 25 Regulation of protein ubiquitination −2.39345

Regulation of protein modification by small protein

conjugation or removal

−2.21863

CDC14B 20 Cytokinesis −5.15621

Cilium assembly −4.36233

Cilium organization −4.24352

Cell division −3.49007

Plasma membrane bounded cell projection

assembly

−3.42927

Regulation of cytokinesis −3.42001

Cell projection assembly −3.37753

Peptidyl-tyrosine dephosphorylation −3.23627

Protein dephosphorylation −2.77948

Regulation of cell division −2.61501

Dephosphorylation −2.14304

LOXL2 17 Stem cell population maintenance −4.09643

Maintenance of cell number −4.07354

Skeletal system development −3.98426

Cartilage development −3.70054

Connective tissue development −3.23858

Chondrocyte differentiation −3.23627

Blood vessel morphogenesis −2.39957

Blood vessel development −2.20376

Vasculature development −2.12934

Endothelial cell migration −2.02071

PTPRF 15 Peptidyl-tyrosine dephosphorylation −3.23627

Protein dephosphorylation −2.77948

Dephosphorylation −2.14304

Synapse organization −2.41323

Cell-cell adhesion via plasma-membrane adhesion

molecules

−2.04193

SMAD5 15 Skeletal system development −3.98426

Cartilage development −3.70054

Connective tissue development −3.23858

Signaling pathways regulating pluripotency of stem

cells

−2.87165

Signaling pathways regulating pluripotency of stem

cells

−2.75235

Homeostasis of number of cells −2.15487

Urogenital system development −2.804

Germ cell development −2.1037

Kidney development −2.01651

SDCCAG3 13 Cytokinesis −5.15621

Cilium assembly −4.36233

Cilium organization −4.24352

Cell division −3.49007

Plasma membrane bounded cell projection

assembly

−3.42927

Regulation of cytokinesis −3.42001

Cell projection assembly −3.37753

Regulation of cell division −2.61501

HSPG2 13 Blood vessel morphogenesis −2.39957

(Continued)

TABLE 1 | Continued

Gene Degree Pathway enrichment log P

Blood vessel development −2.20376

CEP350 11 Cilium assembly −4.36233

Cilium organization −4.24352

Plasma membrane bounded cell projection

assembly

−3.42927

Cell projection assembly −3.37753

RIF1 10 Stem cell population maintenance −4.09643

Maintenance of cell number −4.07354

Signaling pathways regulating pluripotency of stem

cells

−2.87165

Signaling pathways regulating pluripotency of stem

cells

−2.75235

SEPTIN11 10 Cytokinesis −5.15621

Cell division −3.49007

Synapse organization −2.41323

SEPTIN6 8 Cytokinesis −5.15621

Cilium assembly −4.36233

Cilium organization −4.24352

Cell division −3.49007

Plasma membrane bounded cell projection

assembly

−3.42927

Regulation of cytokinesis −3.42001

Cell projection assembly −3.37753

SOX4 7 Stem cell population maintenance −4.09643

Maintenance of cell number −4.07354

Skeletal system development −3.98426

Blood vessel morphogenesis −2.39957

Blood vessel development −2.20376

Homeostasis of number of cells −2.15487

Vasculature development −2.12934

Signal transduction in response to DNA damage −2.94568

DNA damage checkpoint −2.79357

DNA integrity checkpoint −2.7283

Regulation of protein ubiquitination −2.39345

Cell cycle checkpoint −2.37003

Cell cycle arrest −2.22369

Regulation of protein modification by small protein

conjugation or removal

−2.21863

Urogenital system development −2.804

Kidney development −2.01651

ANGPT2 6 Blood vessel morphogenesis −2.39957

Blood vessel development −2.20376

Vasculature development −2.12934

Endothelial cell migration −2.02071

Response to radiation −2.28481

Urogenital system development −2.804

Germ cell development −2.1037

Kidney development −2.01651

MAPK14 6 Skeletal system development −3.98426

Cartilage development −3.70054

Connective tissue development −3.23858

Chondrocyte differentiation −3.23627

(Continued)
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TABLE 1 | Continued

Gene Degree Pathway enrichment log P

Signaling pathways regulating pluripotency of stem

cells

−2.87165

Signaling pathways regulating pluripotency of stem

cells

−2.75235

Blood vessel morphogenesis −2.39957

Blood vessel development −2.20376

Homeostasis of number of cells −2.15487

Vasculature development −2.12934

Endothelial cell migration −2.02071

Response to radiation −2.28481

Signal transduction in response to DNA damage −2.94568

DNA damage checkpoint −2.79357

DNA integrity checkpoint −2.7283

Cell cycle checkpoint −2.37003

Synapse organization −2.41323

Cell-cell adhesion via plasma-membrane adhesion

molecules

−2.04193

Glucose metabolic process −2.36425

Hexose metabolic process −2.15487

Monosaccharide metabolic process −2.05487

DIS3L2 5 Cell division −3.49007

Stem cell population maintenance −4.09643

Maintenance of cell number −4.07354

CDC14A 4 Cytokinesis −5.15621

Cilium assembly −4.36233

Cilium organization −4.24352

Cell division −3.49007

Plasma membrane bounded cell projection

assembly

−3.42927

Regulation of cytokinesis −3.42001

Cell projection assembly −3.37753

Peptidyl-tyrosine dephosphorylation −3.23627

Protein dephosphorylation −2.77948

Regulation of cell division −2.61501

Dephosphorylation −2.14304

Cell cycle arrest −2.22369

SDK2 4 Synapse organization −2.41323

Cell-cell adhesion via plasma-membrane adhesion

molecules

−2.04193

Z-summary which was shown in a previous study (23). After
calculating and filtering, disease-related modules were loaded.
Then, by scanning and comparing the correlation coefficients, the
most relevant MDDmodule was extracted.

Identification of the Shared DEGs and
Reconstruction of the Co-expression
Network
To find the shared DEGs between the most MDD-related
modules and GSE98793, an online Venn diagram tool was used
(http://www.ehbio.com/test/venn/).We then obtained the shared

DEGs and extracted the co-expression network based on the
selected module. Next, we used an application named Cytoscape
(version 3.7.1) to reconstruct the co-expression network. A
Cytoscape plugin known as cytoHubba was used to select
DEGs with a relatively high degree of connectivity (defined
as hub genes) from the complex network (24). CytoHubba
plugin includes 12 algorisms, only degree algorism was used in
this process.

Pathway Enrichment Analysis and
Screening Out the Candidate Genes Used
for the Diagnosis of MDD
Kyoto Encyclopedia of Genes and Genomes pathway enrichment
and Gene Ontology analysis were performed to explore the
potential molecular mechanisms of the DEGs in the extracted
module in the neuropsychiatric process. These two analytical
tools are available on the website (https://metascape.org/gp/
index.html). The Gene Ontology project contains three clusters:
biological processes (such as metabolic processes and immune
system processes), cellular components (for example, synapse
and protein-containing complex), and molecular function (the
genes biological activities, such as structural activity and
transporter activity). The Kyoto Encyclopedia of Genes and
Genomes project is used for enrichment of genes in diseases and
organismal systems. Finally, DEGs enriched in the pathway of
interest were included in further processing.

Potential Diagnostic Value Identification of
the Candidate Hub Genes
The expression submatrix was obtained from two datasets. To
explore the potential diagnostic value of selected candidate
hub genes, a series of statistical analysis was used. Firstly, to
construct an eligible combination model, logistic regression
analysis was performed based on the expression selected hub
genes in both datasets. After acquiring the optimal model,
receiver operating character (ROC) curve was used to evaluate
the potential diagnostic efficiency of it in both datasets.
Finally, nomogram analysis and calibration curve were applied
for identify prediction accuracy and risk evaluation of the
combination model.

Statistical Analysis
To draw the receiver operator characteristic (ROC) curve, we
downloaded the submatrices of the two datasets. The expression
of DEGs was used to identify potential diagnostic values. All
statistical analyses were performed using the R software (version
4.1.0; R Foundation for Statistical Computing, Vienna, Austria).
The pROC package (version 1.17.0.1) was used to calculate
the potential diagnostic value of the shared hub genes in both
datasets. Statistical tests resulting in a p-value < 0.05 were
considered statistically significant.
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RESULTS

DEGs Common to Whole Blood and
Hippocampus Samples
The gene chip, GSE53987, contains the gene expression of
three regions of post-mortem brain tissue samples from patients
with MDD and non-psychiatric individuals. Gene expression
profiles from the hippocampus were extracted. A total of
45,783 genes were tested using GEO2R. After scanning and
filtering those without matched gene symbols, 1,280 genes were
identified as DEGs. Another Gene Expression Omnibus dataset,
GSE98793, consisted of gene expression profiles from the whole
blood of 128 persons, including 64 MDD patients and 64
healthy controls. Using the same tool and criteria, 3864 DEGs
were identified.

To identify the most disease-related DEGs from GSE53987,
we performed a weighted gene co-expression network (Figure 1)
analysis to construct the co-expression network. The module-
trait analysis showed that the MEgrey module was most
related to MDD (r2 = 0.91, p < 0.001). Furthermore, there
was a significant negative correlation between this module
and the healthy controls. Thus, this module has the greatest
potential to distinguish patients with MDD from healthy
controls. The preservation test of modules also showed that
MEgrey was a high preserved module with a Z-summary
score > 20 (data was shown in Supplementary Figure S1).

After extracting the MEgrey module, 623 DEGs were studied
further. To find the DEGs in common between the hippocampus
and whole blood, online Venn diagrams were constructed.
In addition, 163 DEGs were identified in both datasets
(Figure 2A).

Reconstruction of the Co-expression
Network of the Common DEGs and
Identification of Candidate Genes
The co-expression network of the shared 163 DEGs was
reconstructed using the MEgrey module. Then, the network was
introduced to Cytoscape and genes with a connective degree
≥ 4 were defined as hub genes utilizing the cytoHubba
plugin. In addition, igraph and ggraph mapping were
performed to optimize the reconstructed co-expression
network (Figure 2B). And the separated edges and nodes
were deleted. Pathway enrichment analysis was used to
identify candidate DEGs. The results showed that the hub
genes were enriched in cytokinesis, synapse organization,
skeletal system development, and so on. After comparing the
literature and existing theories, the hub genes enriched in
the neuropsychiatric pathway were identified (Figure 3). A
total of 17 candidate genes were included in the evaluation of
potential diagnostic value. The details of these genes are listed in
Table 1.

FIGURE 2 | The differential expressed gene intersection between MEgrey and GSE98793. (A) The calculation progression of intersection between MEgrey and

GSE98793; (B) The reconstruction of the co-expression differential expressed gene network from MEgrey module.
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FIGURE 3 | Functional pathway enrichment of hub genes. (A) The interested pathway. (B) All of the enrichment pathway terms of hub genes.

Establishment of the Signature of the
DEGs for MDD Diagnosis
We used logistic regression to screen 17 candidate genes from

the GSE53987. After that, three significant genes were screened

out (p > 0.05). To validate the diagnostic role of these three

gene signatures, the combination gene risk score was calculated

as follows: the combination gene panel = (−0.010 × expression

value of CEP350) + (−0.007 × expression value of SMAD5) +

(0.022 × expression value of HSPG2) + 0.571. The ROC curve

was used to evaluate the diagnostic value of single genes and

combined genes inMDD (Figure 4A). The results showed that all

three single genes had diagnostic value, and the combination gene
significantly improved the diagnostic value of MDD (Figure 4B).
The AUC value of the combined gene was the highest at 0.9542.

In order to verify the diagnostic value of the screened genes
in MDD, we used the same method in the GSE98793 dataset.
The combination gene risk score was calculated as follows:
the combination gene panel = (−0.446 × expression value of
CEP350) + (−0.139 × expression value of SMAD5) + (0.248×
expression value of HSPG2) + 3.999. The results also showed
that the combined gene had a relatively high diagnostic value for
MDD (Figure 4B). The AUC value of the combined gene was the
largest at 0.6919.
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FIGURE 4 | The receiver operator characteristic curves and area under the curve of the candidate genes in two datasets. (A) Receiver operator characteristic curves

and area under the curve of the candidate genes of GSE53987; (B) Receiver operator characteristic curves and area under the curve of the candidate genes of

GSE98793.

To validate the prediction accuracy and risk evaluation of
the combination genes, we draw the nomogram and calibration
curve based on the expression of them. In the nomograms, each
variable axis presented the value of a patient. The number of
points received for the respective variable values was calculated
based on an upward line. The total points axis represented the
sum of the relevant numbers. And the consistency between the
nomogram and the observed value was confirmed by calibration
curve and Hosmer-Lemeshow test. Our calibration curves of the
nomogram for risk of MDD demonstrated the prediction value
is in accord with observation value in GSE53987 and GSE98793
dataset (Figures 5, 6). Hosmer-Lemeshow Test shown that p =

0.596 for the GSE 53987, and p= 0.134 for the GSE 98793, which
suggested that there was no departure from perfect fit. Finally,
the C-index was derived on the basis of the analysis. The C-index
for the prediction nomogram was 0.961 (95% CI, 0.902–1.019)
for the GSE 53987, and 0.691 (95% CI, 0.600–0.782) for the GSE
98793. These results showed a consensus with the ROC test.

DISCUSSION

MDD is a severe mental disorder, with a high recurrence rate
(∼80% of patients will have at least one recurrence in their
lifetime), which places a heavy burden on individuals and on
society (25). According to a global burden survey of diseases,
depressive disorder ranks as the third leading cause of years
lived with disability for both sexes (26). Moreover, the resistance

to antidepressants is common among 30–50% of patients (18,
27, 28) with MDD (18, 27, 28). It has been found that the
cure rate and prognosis of MDD partly depend on the stage.
Early detection and treatment are often associated with a better
response rate and prognosis (29). Moreover, a high misdiagnosis
rate due to the limited knowledge of etiology and auxiliary
diagnostic markers also contributes to poor recovery of patients
with MDD (30, 31). Fortunately, a growing number of studies
have reported that there are many alterations in gene expression
between MDD patients and healthy controls in both brain and
peripheral tissues (32). However, few studies have focused on the
commonality of DEGs in the brain and peripheral tissues. Thus,
the present study was conducted to identify the shared DEGs
between the brain and peripheral blood of patients with MDD
and explore their potential diagnostic value.

In the current study, DEGs from the hippocampus and whole
blood of patients with MDD were analyzed. We performed a
weighted gene co-expression network analysis to construct the
correlation networks. The most disease-related modules were
extracted. The common DEGs in both the hippocampus and
peripheral blood were included after the comparison between
the extracted module and the other dataset. A total of 163
common DEGs were reanalyzed from the co-expression network
to identify hub genes for further study. Then, 66 hub genes
based on the degree of connectivity were selected for pathway
enrichment analysis. Our data showed that these hub genes
were enriched in the following functional pathways: cytokinesis,
cilium assembly, and cell division. These pathways have been

Frontiers in Psychiatry | www.frontiersin.org 8 December 2021 | Volume 12 | Article 762683

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Long et al. A Diagnostic Model for MDD

FIGURE 5 | The nomogram and calibration of combination of three hub genes (CEP350, SMAD5, HSPG2) in GSE53987. (A) Nomogram of three hub genes: the

value in points line is matched with the value in lines of the genes based on their expression. Total points line refers to the sum of the matched points of these genes.

And the risk range line is matched with the corresponding range in total points line; (B) Calibration of combination of the three genes: the apparent line is along with

ideal line, and Hosmer-Lemeshow Test showed that there is no significant difference between ideal line and apparent line.

reported to be closely related to neuropsychiatric disorders, such
as dephosphorylation (33), regulation of protein ubiquitination
(34), and synapse organization (35). Based on previous studies,
the pathways of interest were selected and the enriched DEGs
included in them were collected for the next step. After logistic
regression was performed and ROC curve was calculated,
three DEGs (CEP350, SMAD5, and HSPG2) with potential
diagnostic value were identified as auxiliary diagnostic markers.
Furthermore, the calibration curves and nomogram analysis
also displayed an applicable possibility of the combination of
these DEGs.

CEP350 (centrosomal protein 350) is a key regulator of
cell polarity (36) and is involved in many biological processes.
It has been reported that defective ciliogenesis may result in
malformations of cortical development (37). Intriguingly, a
previous study showed that CEP350 plays a role in ciliogenesis
(38). Our analysis also found that CEP350 was enriched in
the cilium assembly and organization pathways. In addition, a
previous study has shown that 15% of brain-expressed cilia genes
were significantly different between patients with MDD and
controls (39). Indeed, a genome-wide by environment interaction
study with stressful life events revealed that a single nucleotide
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FIGURE 6 | The nomogram and calibration of combination of three hub genes (CEP350, SMAD5, HSPG2) in GSE98793. (A) Nomogram of three hub genes: the

value in points line is matched with the value in lines of the genes based on their expression. Total points line refers to the sum of the matched points of these genes.

And the risk range line is matched with the corresponding range in total points line; (B) Calibration of combination of the three genes: the apparent line is along with

ideal line, and Hosmer-Lemeshow Test showed that there is no significant difference between ideal line and apparent line.

polymorphism near CEP350 was associated with depressive
symptoms in African Americans (40). Based on these findings,
CEP350may be involved in the development of the brain and the
pathogenesis of MDD.

SMAD5 (SMAD family member 5) is well-known for its
regulatory function in osteogenesis (41). The role of SMAD5
in developmental disorders has also been revealed in recent
decades. It is located at chromosome 5q31, and has been
regarded as a key region associated with development. Deletion
or duplication of this region results in many developmental
disorders, such as developmental delay, intellectual disability,

and dysmorphic features (42). Moreover, SMAD5 has been
identified as a transcription factor that participates in brain
development. For instance, it plays an essential role in neuronal
and glial development, and its knockdown may lead to
exencephaly (43). Interestingly, it has been demonstrated that
the dysregulation of brain development is strongly related to
multiple psychiatric disorders, like schizophrenia (SCZ), bipolar
disorder, and MDD. This suggests that SMAD5 is potentially
involved in the pathogenesis of mental diseases. Indeed, in recent
studies, whole-exome sequencing has revealed that SMAD5 is
one of the candidate genes of SCZ (44) and another study
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showed that SMAD5 was associated with cognitive deficits in
SCZ patients (45). Thus, SMAD5 plays an important role in
neuropsychiatric disorders.

HSPG2 (heparan sulfate proteoglycan 2) is located at
chromosome 1p36, which has been identified as an essential
chromosome for brain development. Multiple developmental
disorders of the brain emerge with the deletion of this region,
such as seizures, vision problems, hearing loss, and brain
anomalies (46). Moreover, a growing number of studies have
found that HSPG2 is closely associated with tardive dyskinesia
(47, 48), which is a common side effect of antipsychotics.
Recent studies have also shown that HSPG2 is closely related
to neuropsychiatric disorders, and Clement et al. found that
a single nucleotide polymorphism of HSPG2 was positively
associated with tardive dyskinesia occurrence in SCZ patients
(49) and another study showed that a decreasing expression
of HSPG2 was observed in both frontotemporal dementia and
amyotrophic lateral sclerosis (50). Moreover, HSPG2 has been
reported as a critical regulator in the maintenance and repair
of the blood-brain barrier (BBB) (51). An increasing body of
research has reported that BBB injuries are associated with many
mental disorders, such as SCZ (52), bipolar disorder (53), and
depressive disorders (54). Furthermore, it has been revealed that
both chronic stress and impaired glutamate function in mouse
models showed a depressive-like phenotype with downregulation
of HSPG2 (55). Therefore, HSPG2 plays an important role in the
pathogenesis of MDD.

Based on the above studies and our results, these three DEGs
may have important functions in the mechanism of MDD. As
mentioned in the previous section, we explored the potential
diagnostic value of the three DEGs. It was shown that the
combination of these three DEGs has a relatively high reference
value in the diagnosis of MDD in both the hippocampus and
peripheral blood.

There were some limitations to the present study. First,
the filtration and calculation of the genes was based on
bioinformatics analysis. Although these systematic methods
avoid the bias of artificial selection to a certain extent, the
deficiency of clinical samples and a series of experimental
validations have limited their application in MDD patients.
Besides, there is limited samples and insufficient datasets
to find any other suitable independent cohort that can
be utilized to validate our results. The specific functions
of these DEGs that underpin the pathophysiological
process of MDD need to be further studied in in vitro and
in vivomodels.

In conclusion, our results showed that the combination of
three DEGs (CEP350, SMAD5, and HSPG2) has a relatively
high reference auxiliary diagnostic value for MDD. Pathway
enrichment analysis also revealed that these three DEGs
may play a role in the pathogenesis of MDD. Thus, this
combination diagnostic model of the three genes may have
potential applications in the clinical practice concerning patients
with MDD.
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