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ABSTRACT The bacterial and fungal community involved in ambrosia beetle fungi-
culture remains poorly studied compared to the famous fungus-farming ants and
termites. Here we studied microbial community dynamics of laboratory nests, adults,
and brood during the life cycle of the sugarcane shot hole borer, Xyleborus affinis.
We identified a total of 40 fungal and 428 bacterial operational taxonomic units
(OTUs), from which only five fungi (a Raffaelea fungus and four ascomycete yeasts)
and four bacterial genera (Stenotrophomonas, Enterobacter, Burkholderia, and Ochro-
bactrum) can be considered the core community playing the most relevant symbi-
otic role. Both the fungal and bacterial populations varied significantly during the
beetle’s life cycle. While the ascomycete yeasts were the main colonizers of the gal-
lery early on, the Raffaelea and other filamentous fungi appeared after day 10, at
the time when larval hatching happened. Regarding bacteria, Stenotrophomonas and
Enterobacter dominated overall but decreased in foundresses and brood with age.
Finally, inferred analyses of the putative metabolic capabilities of the bacterial micro-
biome revealed that they are involved in (i) degradation of fungal and plant poly-
mers, (ii) fixation of atmospheric nitrogen, and (iii) essential amino acid, cofactor,
and vitamin provisioning. Overall, our results suggest that yeasts and bacteria are
more strongly involved in supporting the beetle-fungus farming symbiosis than pre-
viously thought.

IMPORTANCE Ambrosia beetles farm their own food fungi within tunnel systems in
wood and are among the three insect lineages performing agriculture (the others
are fungus-farming ants and termites). In ambrosia beetles, primary ambrosia fungus
cultivars have been regarded essential, whereas other microbes have been more or
less ignored. Our KEGG analyses suggest so far unknown roles of yeasts and bacte-
rial symbionts, by preparing the tunnel walls for the primary ambrosia fungi. This
preparation includes enzymatic degradation of wood, essential amino acid produc-
tion, and nitrogen fixation. The latter is especially exciting because if it turns out to
be present in vivo in ambrosia beetles, all farming animals (including humans) are
dependent on atmospheric nitrogen fertilization of their crops. As previous internal
transcribed spacer (ITS) metabarcoding approaches failed on covering the primary
ambrosia fungi, our 185 metabarcoding approach can also serve as a template for
future studies on the ambrosia beetle-fungus symbiosis.
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any arthropods, especially insects and mites, engage in symbiotic mutualisms

with fungi (1). Only three insect lineages have convergently evolved to farm fungi
for nutritional purposes (i.e., advanced fungiculture): fungus-farming termites, attine
ants, and ambrosia beetles (1, 2). Farming involves the selection of beneficial fungi over
less beneficial (or antagonistic) fungi, a task that is more easily managed by groups of
individuals exhibiting division of labor (3). For ants and termites, it has been shown that
bacteria play a prominent role in the farming practices (4), in particular by defending
the fungal crops against pathogens (5, 6) but also by nitrogen fertilization of fungus
cultivars (7, 8) as well as the enzymatic degradation of plant biomass (9, 10) and plant
defenses (11).

Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are a polyphyletic
group of at least 11 independently evolved wood-boring weevil lineages and are
defined by an obligate nutritional dependency on fungi (“ambrosia fungi”), farmed in
self-bored tunnels within the xylem of trees (12). The most species-rich lineage of
ambrosia beetles belong to the scolytine tribe Xyleborini, with several thousand species
(12). Species in this lineage are all haplodiploid, and mating is almost exclusively
through inbreeding in the natal nest. Some Xyleborini species are among the most
advanced fungus farmers, reflected by cooperative breeding found in these species (13,
14). Cooperative breeding in Xyleborini is characterized by division of labor between
mothers (= nest foundresses), adult females, and larval offspring. Adults engage in nest
protection and brood and fungus care, whereas larvae take over nest cleaning and
expansion (13, 15, 16). Many of these behaviors might involve the application of
“bacterial helpers” that might fertilize gardens (e.g., by nitrogen fixation), assist the
fungal crops with detoxification of plant defensive compounds and degradation of
plant cell walls (e.g., by enzyme production) or defense against pathogens (e.g., by
antibiotic production). All these functions have been found to be undertaken by
bacterial symbionts in related, phloem-feeding bark beetles (4, 17-21).

Ambrosia beetles bore tunnel systems (= galleries) in the xylem of unhealthy or
recently dead trees. On their tunnel walls, they cultivate monocultures of mutualistic
ambrosia fungi that grow among a background microbiota of other filamentous fungi,
yeasts, and bacteria. Visually (both macro- and microscopically), ambrosia fungi dom-
inate in occupied and active nests and the beetles seem to pick out unwanted fungi
and keep the ambrosia cultures pure (22-25). All the other microorganisms in the
background are more subtle and almost always ignored by researchers except to
mention that they “take over” when the farms are abandoned (13, 15, 23). Whereas
ambrosia fungi are transmitted from the natal nest to new nests by nest foundresses in
specialized spore-carrying organs, termed mycetangia, and only rarely within the gut
(26-28), other microbial associates are found only rarely in mycetangia but are instead
transmitted in the gut or on the beetle’s surface. Environmental acquisition from the
substrate is also possible (but not in the laboratory assay used in this study). The roles
of the symbionts are poorly understood, but symbiont communities certainly comprise
beetle mutualists and antagonists. Proven nutritional mutualists are the so-called
ambrosia fungi in the ascomycete orders Ophiostomatales (e.g., genus Raffaelea),
Microascales (e.g., genus Ambrosiella), and less frequently, Hypocreales (1, 12, 25). Each
genus of ambrosia fungi is typically associated with a specific lineage of beetles and a
specific type of mycetangia (29-31). Within these lineages, some beetle species can
exchange their primary ambrosia fungi (32, 33), whereas others do appear to have
species-specific mutualisms (e.g., reference 29). Saccharomycete yeasts have been
found in species-specific relationships with scolytine ambrosia beetles of the genus
Xyleborus (including our study species X. affinis), a genus that often shows only
unspecific relationships with Raffaelea ambrosia fungi (32). Therefore, a coevolved
mutualistic or parasitic role for these yeasts is possible in Xyleborus ambrosia beetles
but currently unproven.
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Previous studies have indicated that fungal communities of ambrosia beetles are
dynamic, both spatially within their galleries and temporally throughout development
with the relative abundances of the different symbionts changing over time (34-38). A
succession of different fungal (and bacterial) species should be expected, because as
the gallery matures, the surrounding wood substrate dries out and is probably de-
graded by fungal enzymes (39). Larvae may depend on different symbionts than adults,
and control over symbionts in their nests and within their bodies (i.e., mycetangium) is
particularly important for nest-founding females just prior to emergence, as they need
to transmit the beneficial “starter cultures” from the natal nest. Whether the beetles are
able to influence symbiont communities and their succession within galleries is un-
known, but some evidence suggests that they can. Both larvae and adults have been
shown to (i) hinder the spread of experimentally introduced fungal antagonists (13, 15)
and (ii) promote the growth of fungal mutualists (40, 41). The mechanisms by which
beetles are able to affect fungal growth are still unknown, but they may involve
mechanical removal, oral secretions, and the application of mutualistic bacteria (15, 20,
42). Symbiont communities within their bodies and particularly mycetangial symbionts
can certainly be influenced by the beetles, as adult females prior to dispersal are known
to activate their mycetangia, which are more or less selective for particular ambrosia
fungus taxa (43, 44).

There is a long history of studying fungal and bacterial associates in ambrosia
beetles, e.g., by using traditional culturing techniques (32, 34, 36-38, 45) or culture-
independent approaches (4, 27, 46, 47). Some of these studies have monitored fungal
symbionts over time (37, 38, 48-50). Nevertheless, no study has monitored the fungal
and bacterial communities associated with all the offspring’s life stages and throughout
the development of a beetle gallery using metabarcoding. This kind of study has
revealed roles of specific and apparently essential symbionts in leaf-cutter ants, for
example (11). In ambrosia beetles, dynamics of symbionts are poorly known, and
therefore, we can currently only make guesses about the roles of specific symbionts
and their interactions in the development of the beetles.

Here we report the first fungal and bacterial metabarcoding study of the symbiont
communities of galleries, gallery foundresses, and offspring of all life stages in the
sugarcane shot hole borer, Xyleborus affinis Eichhoff. Despite its abundance and pest
status (51, 52), microbial symbionts of X. affinis remain poorly studied, and the main
ambrosia-fungus mutualist(s) have not been determined for this species, even though
several candidates like Raffaelea arxii, a Candida sp., and an Ambrosiozyma sp. have
been discussed as potential mutualists (32). We used a laboratory rearing technique
(53) that allows tracking the development of the beetles and collecting samples of
specimen and galleries at specific time points, from particular life stages and from the
beetle’s oral mycetangia (Fig. 1). Finally, we predict metabolic functions of the microbial
communities by using public metabolic databases.

RESULTS

After quality and chimeric sequence filtering, 5,084,456 bacterial reads and
8,009,205 fungal reads were obtained, with a mean (*+ standard deviation [SD]) of
181,587 = 229,231 bacterial and 29,970 * 21,813 fungal reads per sample (see Table S1
at https://doi.org/10.6084/m9.figshare.12477593). The reads were grouped into 428
bacterial operational taxonomic units (OTUs) (97% homology) and 40 fungal OTUs (99%
homology).

The 428 bacterial OTUs belonged to eight different phyla (Acidobacteria [0.23%],
Actinobacteria [8.88%], Bacteroidetes [10.51%)], Chloroflexi [0.23%], Firmicutes [13.79%],
Proteobacteria [64.49%], Tenericutes [0.23%], and TM7 [0.93%)]) (Fig. S1). Bacterial taxo-
nomic cladograms differed between the types of the samples (galleries, foundresses,
offspring) (Fig. S1). While Gammaproteobacteria (Enterobacter and Stenotrophomonas)
predominated in galleries, Betaproteobacteria (Burkholderiaceae, Alcaligenaceae, and
Comamonadaceae), Alphaproteobacteria (Sphingomonadaceae and Brucellaceae), Sphin-
gobacteria (Sphingobacterium), Bacteroidetes (Chryseobacterium), and Actinobacteria
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FIG 1 Sample collection and experimental procedure. Six colonies were dissected every 5 days. Samples from the galleries, foundresses, and all offspring at
the life stages available at specific time points were collected. The abdomen (A) and thorax-head (TH) were processed independently.

(Mycobacteriaceae, Gordoniacea, and Tsukamurellaceae) made up the bacteriome of
foundresses and offspring, with Actinobacteria being the most abundant and diverse in
foundresses (Fig. S1).

The fungal OTUs were classified in six orders (Mucorales [5%], Hypocreales [10%],
Saccharomycetales [32.5%)], Microascales [5%], Ophiostomatales [15%)], and Eurotiales
[2.5%]) (Fig. S2). The relative abundance of the different taxa in the fungal microbiome
also varied between the types of samples (galleries, foundresses, and offspring). While
only a few taxa in the Saccharomycetales (Candida and Saccharomycopsis), Ophios-
tomatales (Raffaelea), Eurotiales (Talaromyces), Hypocreales (Fusarium), and Mucorales
predominated in the galleries, additional Saccharomycetales (plus Cyberlindnera and
Meyerozyma) and Microascales (Graphium) dominated in the foundresses and offspring
(Fig. S2). Relative abundance measures based on 165/18S amplicon sequencing anal-
yses have to be treated with care, however, because relative abundances based on
ribosomal genes do not directly translate to physical abundance of the specific mi-
crobes (54). Semiquantitative comparisons between samples are possible, however.

Overall, both fungal and bacterial OTU richness and diversity varied between
samples and throughout beetle development (for details, see Fig. S3 to S8 at https://
doi.org/10.6084/m9.figshare.12477593).

Structure of fungal and bacterial communities throughout beetle develop-
ment. The abundance of bacterial and fungal OTUs was strongly biased toward certain
taxa (Fig. 2 and 3). Forty-six bacterial OTUs had an abundance of >1% (Fig. 2). Only five
of these OTUs were relatively abundant in all the samples: a Stenotrophomonas (OTU
815480; mean = SD of 23.9% =+ 16.1%), an Enterobacter (OTU 922761; 6.42% = 5.8%),
an Ochrobacter (OTU 2458172; 5.21% * 4.12%), a Chryseobacterium (OTU 573326;
4.07% = 4.92%) and a Sphingobacterium (OTU 891031; 4.07% = 4.97%). The two most
abundant OTUs, an Enterobacter and a Stenotrophomonas, dominated communities of
galleries (37.4% = 15.9% and 30.8% = 9.2%; see Fig. S9 at https://doi.org/10.6084/m9
figshare.12477593), heads (22.11% = 36.93% and 9.76% = 6.31%), and abdomens of
foundresses (20.74% = 32.48% and 26.9% = 23.77%; see Fig. S10 at the figshare URL
above), as well as eggs (29.24% and 20.16%) and first/second larval instars
(12.49 = 1.98% and 28.50 = 11.45%) (see Fig. S11 at the figshare URL above). Both, but
in particular Enterobacter, changed in frequency along with the beetle’s life stages. They
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FIG 2 Relative abundances of the 46 most abundant (>0.1%) bacterial OTUs per sample within galleries, foundresses, and offspring
of different life stages of X. affinis. The predominant bacterial symbionts (abundance of >20% across samples), an Ochrobactrum OTU,
an Enterobacter OTU, a Stenotrophomonas OTU, and a Burkholderia OTU, are given in bold type. Six samples from each gallery (Gal),
foundress (adult female [Af]), and offspring life stage (adult male [Am], teneral female [young adult female {YAF}], teneral male [young
adult male {YAM}], pupa, larva first to third instar [L1 to L3], egg; mycetangium [head], abdomen [Abdo]) were pooled and collected
between 5 and 30 days after gallery foundation. The dendrogram on the left side shows the 16S phylogenetic relationship between
the OTUs.

were rare in third instar larvae, pupae, and young males, in which a Burkholderia (OTU
826544; 23.99% = 15.94%) and a Mycobacterium (OTU 688993; 10.07 = 6.15%) OTU
predominated. Enterobacter was especially abundant within eggs, larvae, and found-
resses from young nests.

The relative abundances of the fungal OTUs varied along with the development
of galleries and beetle life stages (Fig. 3). Three yeasts (NCR.OTU26209,
NCR.OTU14050, and AB054883.1.1755) and two Raffaelea OTUs (GenBank accession
no. AY497519.1.1318 and JF327799) were widely distributed throughout gallery and
beetle samples. Along with gallery development, a Candida OTU (AB054883.1.1755)
started with a relative abundance of 52.2% at day 5 and decreased down to 1.6% by day
30 (see Fig. S12 at https://doi.org/10.6084/m9.figshare.12477593). In contrast, a Raffa-
elea OTU (AY497519.1.1318) was absent in galleries at day 5, reached 19.5% at day 10,
and then kept an abundance of around 40%. An unknown Saccharomycetales yeast
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FIG 3 Relative abundance of fungal OTUs per sample within galleries, foundresses, and offspring of the different life stages of X. affinis. The predominant fungal
symbionts (abundance of >20% across samples), a Raffaelea OTU and four OTUs of ascomycete yeasts, are given in bold type. Six samples from each gallery
(Gal), foundress (adult female [Af]) and offspring life stages (adult male [Am], teneral female [YAF], teneral male [YAM], larva first to third instar [L1 to L3];
mycetangium [head], abdomen [Abdo]) were pooled and collected between 5 and 30 days after gallery foundation. The dendrogram on the left side shows
the 18S phylogenetic relationship between the OTUs. An asterisk shows that these OTUs could not be classified and were automatically assigned to “fungi,”
but given their phylogenetic placement, we assigned them to Saccharomycetales.

(NCR.OTU26209) was abundant throughout gallery development (30.82% = 11.37%)
and may serve as larval food (see below).

A Raffaelea OTU (AY497519.1.1318) growing abundantly in galleries was also com-
monly found in foundresses (15.31% * 12.45%) and mostly in their heads
(22.89% = 12.92%), suggesting that it colonizes the oral mycetangia (see Fig. S13 at
https://doi.org/10.6084/m9.figshare.12477593). In contrast, larvae mostly lacked this
Raffaelea OTU (3.10% =+ 1.40%) but instead contained a Saccharomycopsis OTU
(NCR.OTU14050; 36.17% = 19.10%) and the unknown Saccharomycetales yeast
(NCR.OTU26209; 32.14% = 12.20%) (see Fig. S14 at the figshare URL above). In addition
to the Raffaelea OTU (AY497519.1.1318), the heads and abdomens of foundresses were
dominated by two yeasts, a Candida OTU (AB054883.1.1755) and the larval Saccharo-
mycopsis OTU (NCR.OTU14050), both of which relative dominances within foundress
samples fluctuated over time (see Fig. S13 at the figshare URL above).

Microscopic analyses. Dynamics of the microbial communities were also visualized
using gallery samples for scanning electron microscopy (SEM) and light microscopy
(LM) (Fig. 4 and 5; see Fig. S15 to S17 at https://doi.org/10.6084/m9.figshare.12477593).
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FIG 4 Scanning electron microscopy images of X. affinis galleries (1,000 X magnification, lateral view). (A)
Hyphae and yeast-like cells (possibly Candida) on day 3, (B to G) mycelium from yeast and ambrosia fungi
on (B) day 5, (C) day 10, detached conidium (co), (D) day 15 (bacteria cells, 30,000X magpnification), (E)
day 20 (conidia and conidiophores, 2,500X magnification), (F) day 25 (bacteria cells, 30,000X magnifi-
cation), and (G) day 30 (bacteria cells, 30,000X magnification). See also Fig. S15, S16, and S17 at
https://doi.org/10.6084/m9.figshare.12477593.

Shortly, after gallery foundation, between days 5 and 10, both SEM and LM revealed the
establishment of filamentous yeast and bacterial communities on gallery walls (Fig. 4A
to C and Fig. 5A and B; see Fig. S15A to E at the figshare URL above). Between days 5
and 10, the yeast mycelium grew from 94.06 (£4.49) um by SEM and 95.6 (£5.63) um
by LM to its maximum lengths of 379.39 (+10.46) um by SEM and 221.07 (+6.89) um
by LM. On day 10, a transition from yeast-like to hyphal growth was observed (see Fig.
S15F at the figshare URL above), and the first fungal conidiophores and conidia
appeared, resembling those of Raffaelea and Fusarium species (see Fig. S15D and E at
the figshare URL above). On day 15, the bacterial abundance increased along with the
production of exopolysaccharides (biofilm) (Fig. 4D and 5C; see Fig. S16A at the figshare
URL above). Three different bacterial morphotypes could be observed (Fig. 4D, inset).
On day 20, Raffaelea conidiophores proliferated on the surfaces of the galleries (Fig. 4E;
see Fig. S16B and C and Fig. S17A at the figshare URL above). On day 25, only one
bacterial morphotype was detected, and the number of Raffaelea conidiophores de-
creased again (Fig. 4F; see Fig. S16D and E, and Fig. S17B at the figshare URL above).
On day 30, signs of mycelial degradation and only one bacterial morphotype were seen
(Fig. 4G; see Fig. S16F and Fig. S17B at the figshare URL above). Interestingly, transverse
sections of galleries (from both SEM and LM; Fig. 4 and 5; see Fig. S17 at the figshare
URL above) revealed that the microbial community on gallery walls is composed of
three layers: at the bottom are bacteria, and yeasts, then fungal filaments, and on top,
Raffaelea conidiophores and conidia that can be also seen in the images taken from the
top (Fig. 4; see Fig. S16 at the figshare URL above).

September/October 2020 Volume 5 Issue 5 e00541-20

msystems.asm.org 7


https://doi.org/10.6084/m9.figshare.12477593
https://msystems.asm.org

Ibarra-Juarez et al.

FIG 5 Light microscopy images of transversal sections of tunnel walls through gallery development. (A)
Day 5, (B) day 10, (C) day 15. Bacteria (ba), yeast cells (ye), and conidia (co) (possibly Raffaelea) are
indicated. Magnification, 40X.

Putative metabolic function of the microbiota over time. To further investigate
the bacterial metabolic shift over time, we predicted the metabolic profile of the
samples using PICRUSt software. On the basis of permutational multivariate analysis of
variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS) analyses, we
found that time (days 5, 10, 15, 20, 25, and 30) and sample type (adult beetles [=
foundresses and nonsclerotized offspringl, galleries, and immature offspring [= eggs,
larvae, and pupae]) determined the metabolic profile of the bacterial community. The
PERMANOVA of KEGG functional orthologs (KOs) (F,, 55, = 12.03, R2 = 0.32931, P =
0.001) and of L3 KEGG level (F,, 55y = 5.08, R? = 0.20227, P = 0.001) showed significant
differences among sample types and also among timing of sampling (for KOs, F, 55, =
5.74, R? = 0.39233, P = 0.001; for L3, F,, 55, = 4.36, R2 = 0.4336, P = 0.001) (see Fig.
S18 and details in the supplemental material posted at https://doi.org/10.6084/m9
figshare.12477593).

(i) Degradation of the fungal and plant cell wall. The bacterial symbionts
together can possibly degrade all the major plant and fungal polymers like chitin,
glucan, mannan, cellulose, hemicellulose, pectin, lignin, arabinose, and rhamnose
(Fig. 6). A few bacterial OTUs can degrade specific compounds on their own: chitin
(Enterobacter and Citrobacter), glucan (Pseudomonas), and pectin (Serratia). Cellulose,
hemicellulose, lignin, arabinose, and rhamnose can be degraded by many OTUs. The
four predominating bacterial taxa possibly have the capabilities to fully degrade all
polymers except glucan, mannan, and pectin.

The enzymatic capabilities of the fungal symbionts appear less complete (Fig. 7).
Only glucan and mannan can by fully degraded by the joint activity of the fungi. Glucan
can be degraded by all fungi, but apart from a Fusarium (a relatively uncommon OTU)
that possibly has all the genes required for mannan degradation, none of the other
symbionts is able to degrade a polymer completely on its own. Among the dominant
players, Raffaelea is possibly the most potent degrader of plant cells (i.e., cellulose,
partly hemicellulose) (Fig. 7).

If putative enzymatic capabilities of OTUs are mapped against sampling time (days
5 to 30) and sample type (adult beetles [= foundresses and nonsclerotized offspring],
galleries, and immature offspring [= eggs, larvae, and pupael), the following pattern
appears: cellulose-, hemicellulose-, mannan-, and rhamnose-degrading bacterial sym-
bionts are relatively more abundant during the first half of gallery development (until
day 15), whereas symbionts degrading lignin are more abundant during the second
half (see Fig. S20 at https://doi.org/10.6084/m9.figshare.12477593). During the second
half of gallery development, cellulose, hemicellulose, and rhamnose degradation ca-
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zymes in the bacterial community found

in this study. We display only the OTUs present in the Greengenes database and with a relative frequency of >1% in at least one sample. The
predominant bacterial symbionts (abundance of >20% across samples), an Ochrobactrum OTU, an Enterobacter OTU, a Stenotrophomonas OTU,
and a Burkholderia OTU, are given in bold type. The heatmap shows the presence (dark purple) or absence (light purple) of the catabolic enzymes
required for the degradation of a given cell wall component. Every column stands for an individual enzyme required to degrade the respective

compound (for details, see Fig. S35 and Table S6 at https://doi.org/10.6084/m9.figshare.12477593). The
16S phylogenetic relationship between the OTUs.

pabilities are highest on day 30. Cellulose-, hemicellulose-, and mannan-degrading
capabilities are more common in symbionts within galleries than in symbionts of adults
and immature offspring; the reverse pattern appears for lignin and glucan (see Fig. S21
at the figshare URL above). The dominant genera Enterobacter, Stenotrophomonas, and
Ochrobactrum as well as the relatively abundant Sphingobacterium, probably play the
main role in the degradation of complex sugars (see Fig. S22 and S23 at the figshare
URL above).

(ii) Nitrogen fixation and biosynthesis of amino acids, cofactors, and vitamins.
Atmospheric nitrogen fixation is only known from bacteria, not fungi. Among the
predominant bacterial symbionts, an Enterobacter can possibly fix nitrogen. Addition-
ally, there might be nitrogen fixation by a Sphingobacterium, a Sphingomonas, and a
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FIG 7 Presence or absence of genes, inferred from fungal genome comparisons, coding for cell wall-degrading
enzymes for a subset of the fungal community found in this study. The predominant fungal symbionts (abundance
of >20% across samples), a Raffaelea strain, a Saccharomycopsis strain, and a Candida strain, are given in bold type.
The heatmap shows the presence (dark purple) or absence (light purple) of the specific enzymes required for the
degradation of a given cell wall component. Every column stands for an individual enzyme required to degrade the
respective compound (for details, see Fig. S36 and Table S6 at https://doi.org/10.6084/m9.figshare.12477593).

Methylobacterium, but all these were uncommon within the microbiome (Fig. 8).
Altogether, these taxa were relatively more abundant in galleries than in adults and
immature offspring, and immediately after nest foundation, their abundance decreased
(see Fig. S24 and S25 at https://doi.org/10.6084/m9.figshare.12477593).

Regarding essential amino acids, almost all bacterial OTUs can possibly synthesize
them except for histidine, which can be only synthetized by 13 OTUs and only two of
the most abundant bacterial OTUs (Enterobacter and Stenotrophomonas) (Fig. 8).

The fungal symbionts altogether are likely not able to synthesize methionine (either
EC 2.3.1.46 or EC 2.3.1.31 is absent). Fungal OTUs with capabilities for synthesis of
isoleucine, valine, leucine, and threonine increased in abundance along with the
progression of the beetle’s life cycle and were generally higher in adults and in
immature offspring than in gallery samples (see Fig. S24 and S25 at https://doi.org/10
.6084/m9.figshare.12477593). In contrast, OTUs with the capability to produce trypto-
phan and methionine decreased with development of galleries and were also less
common in adults and immature offspring than in gallery samples.

The core fungi Raffaelea, Saccharomycopsis, and Candida possibly lack the genes
encoding components needed to synthesize tryptophan, riboflavin, pantothenate,
biotin, and folate (Fig. 9). Overall, the nine dominant bacterial and fungal symbionts
may jointly synthesize 14 out of the 16 cofactors and vitamins (except riboflavin and
menaquinone).

Maximum synthesis of thiamine, vitamin B6, coenzyme A (CoA), biotin, lipoic acid,
folate, and the one-carbon pool by folate, siroheme, and heme appears to occur around
the first half of gallery development (until day 15) and on day 30, with the exception
of siroheme (see Fig. S26 and S27 at https://doi.org/10.6084/m9.figshare.12477593).
The biosynthesis of nicotinate and nicotinamide peaked on day 5 and day 30, mainly
in galleries for nicotinamide and in adult beetles (foundresses and nonsclerotized
offspring) for nicotinate (see Fig. S26 and S27 at the figshare URL above). Pantothenate
biosynthesis peaked in adult beetles on day 25. The biosynthesis of uroporphyrinogen
Il increased as the beetles completed their life cycle, exhibiting a peak on day 30 in the
immature offspring samples. Enterobacter, Stenotrophomonas, Mycobacterium, Ochro-
bactrum, and Sphingobacterium probably played the main role in the amino acid
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FIG 8 Presence or absence of genes inferred from the KEGG database coding for nitrogen-fixing enzymes, essential
amino acids, cofactors, and vitamin biosynthesis pathways in the bacterial community identified in this study. The
predominant bacterial symbionts (abundance of >20% across samples), an Ochrobactrum OTU, an Enterobacter
OTU, a Stenotrophomonas OTU, and a Burkholderia OTU, are given in bold type. The first column shows the presence
(dark yellow) or absence (light yellow) of nifDKH genes (nitrogenase enzyme complex to fix atmospheric nitrogen).
The left heatmap panel shows the amino acid biosynthesis pathways and the right heatmap panel shows cofactors
and vitamins biosynthesis pathways (dark blue for complete pathway; light blue for incomplete pathway).
Metabolites with an asterisk are not encoded by any bacterial OTU in the microbiome (riboflavin, ubiquinone, and
menaquinone). Every column stands for an individual enzyme required to synthesize the molecule. For more
details, see Table S6 at https://doi.org/10.6084/m9.figshare.12477593. The dendrogram on the left shows the
phylogenetic relationships between the OTUs.

synthesis (see Fig. S28 and S29 at the figshare URL above). While Enterobacter and
Stenotrophomonas were highly abundant in all the samples, Mycobacterium was present
only in adult samples (see Fig. S5 at the figshare URL above).

(iii) Quorum sensing and biofilm production. The analysis of putative quorum-
sensing genes in the bacterial symbionts revealed the presence of four complete
systems: Escherichia coli (luxS/Al-2 [autoinducer 2]), primarily associated with biofilm
production, Xanthomonas campestris (rpfB/rpfF/DSF [diffusible signal factor]), which is
associated with virulence and antibiotic resistance and known to induce Candida
albicans hypha formation (55), Enterococcus faecalis (fsrD/GBAP [gelatinase bio-
synthesis-activating pheromone]) that controls the expression of pathogenicity (56),
and enterohemorrhagic E. coli (EHEC) (gseC/Al-3) known to facilitate the invasion of
intestinal epithelia (57) (see Fig. S30 at https://doi.org/10.6084/m9.figshare.12477593).
The luxS/Al-2 system is probably carried by the dominant Enterobacter and a few other
more uncommon genera (Serratia, Microbacterium, Citrobacter, Enterococcus, Strepto-
coccus, and Prevotella). Only Enterobacter may contain the sensing proteins (see Fig. S30
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FIG 9 Presence or absence of genes, inferred from fungal genome comparisons, coding for components of biosynthesis pathways of essential
amino acids, cofactors, and vitamins in the fungal community identified in this study. The predominant fungal symbionts (abundance of >20%
across samples), a Raffaelea strain, a Saccharomycopsis strain, and a Candida strain, are given in bold type. The left heatmap panel shows the amino
acid biosynthesis pathways, and the right heatmap panel shows cofactors and vitamins biosynthesis pathways (dark blue for complete pathway;
light blue for incomplete pathway). Metabolites with an asterisk lack an enzyme that is not encoded by any fungal OTU in the microbiome
(methionine and siroheme). Every column stands for a specific enzyme required to synthesize the molecule. For more details, see Table S6 at
https://doi.org/10.6084/m9.figshare.12477593. The dendrogram on the left shows the phylogenetic relationships between the OTUs.

at the figshare URL above). Its relative frequency decreased as the beetles completed
their life cycle (showing a peak on day 5) and was highest within the galleries (see Fig.
S31 at the figshare URL above). While the synthesis of DSF (rpfB/rpfF/DSF system) could
be achieved by 35 out of 39 OTUs, only Strenothrophomonas may had the sensing
proteins (see Fig. S34 at the figshare URL above). The relative frequency of this OTU
increased during the beetles’ life cycle, exhibiting a peak in galleries by day 30 (see Fig.
S31 at the figshare URL above). The synthesis of GBAP (fsrD/GBAP system) could be
accomplished by Enterococcus, and the sensing proteins might have been present in
Enterococcus and Streptococcus (see Fig. S30 at the figshare URL above), although both
were not part of the core bacterial community. The QseC/Al-3 system showed a peak
on day 10 in eggs (see Fig. S31 at the figshare URL above)—possibly as a result of the
predominant Enterobacter. Overall, analyses of the genes involved in biofilm production
indicated that their relative frequencies increased toward the end of the beetles’ life
cycle, while the relative frequencies of the genes related to the planktonic stage
decreased (see Fig. S32 at the figshare URL above).

DISCUSSION

We characterized the fungal and bacterial symbionts associated with X. affinis during
its life cycle using a metabarcoding approach (for an overview, see Fig. 10). Even
though bacteria and yeasts are long known to be common in ambrosia beetle galleries
(22, 23), the filamentous fungal symbionts, in particular Raffaelea and Ambrosiella
ambrosia fungi, are regarded as the main source of nutrition for both adults and larvae
(1, 25). The role of the rest of the microbial community is relatively unclear, even
though positive effects of secondary compounds produced by bacteria or yeasts on
bark and ambrosia beetles or their fungal mutualists, respectively, have been found
(e.g., references 19, 42, 58, and 59). It has never been investigated in ambrosia beetles,
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FIG 10 Schematic model of the life cycle of X. affinis (center) and the dominant bacterial taxa (top) as well as fungal taxa (bottom) ring the life stages (5-day
sampling intervals) and their potential, KEGG- and fungal genome-inferred, metabolic roles. The colored boxes next to the names of the microbes indicate the
different metabolic functions that may be carried out by the respective taxa. The symbols for gallery, larvae, and adults above these colored boxes indicate
in what sample the respective metabolic functions were probably most prevalent given the microbial OTUs found and their inferred metabolic functions.
Multiple boxes of the same color would indicate that a specific function is possibly present in several of the microbes. The lengths of the vertical lines have

no specific meaning.

however, whether symbiotic bacteria and yeasts may help to degrade plant polymers,
fix atmospheric nitrogen, and supplement the beetles and their primary fungi with
other essential amino acids, cofactors, and vitamins. Such essential roles of symbionts
have been found in the other fungus-farming systems of ants and termites, however
(6-10).

The bacterial community. The microbiome of X. affinis consisted of a total of 428
bacterial OTUs (100 genera) and 40 fungal OTUs (8 genera) with only 46 bacterial OTUs
(35 genera) with a relative abundance of >1%. Out of these OTUs, only four bacterial
and five fungal OTUs had a relative abundance of >20%. This small number of the most
frequent OTUs agrees with observations on bark beetles (71) and other specialist
insects like bees (60) and disagrees with previous studies on ambrosia beetles that
found much higher diversities (e.g., on X. affinis) (47, 61, 62). However, there are two
major problems with the latter studies. First, they used field-collected ambrosia beetles
caught in traps, where the specimens sat together for some time in collection liquids
that were possibly contaminated with microbes from the environment and other
caught insects. Second, their metabarcoding methods were inadequate for the ambro-
sia beetles that we focus on, because their models are associated with Ophiostomatales
fungi for which internal transcribed spacer (ITS) metabarcoding does not work (63-65).
In contrast, our 18S metabarcoding approach delivered results that are consistent with
a previous isolation study, which has shown a lower abundance of OTUs in lab-reared
ambrosia beetles than in wild-reared ambrosia beetles (46).

The most abundant and widely distributed bacterial genera were Enterobacter and
Stenotrophomonas. Both genera have been isolated from other bark and ambrosia
beetles (4, 27, 46, 66-70). Their relative abundance negatively correlated with the
diversity of bacteria, suggesting that they might be able to structure (i.e., dominate) the
bacterial communities, possibly by secondary metabolites (see Fig. 33 at https://doi
.org/10.6084/m9.figshare.12477593).
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The fungal community. Forty fungal OTUs composed the fungal community, with
Saccharomycetales and Ophiostomatales (both Ascomycota) as the most abundant
orders. Among these OTUs, the five most abundant OTUs belonged to the genera
Saccharomycopsis, Candida, and Raffaelea. These results correspond with the culturing
results from other bark and ambrosia beetles (25, 38, 46, 71). Both our metabarcoding
and SEM visualizations showed that the yeasts are dominant in young galleries, after
which filamentous Raffaelea species follow. This is a surprising finding, because the
filamentous ambrosia fungi (in the Raffaelea and Ambrosiella genus) are usually re-
garded as the main food fungi of ambrosia beetles (12, 25). Yeasts are common
associates of bark and ambrosia beetles, even though their role is poorly understood
(18, 58). A recent study found, however, species-specific associations of yeasts with
Raffaelea-farming scolytine ambrosia beetles (32), which suggests mutualistic (or par-
asitic) coevolution. Interestingly, this study reported a Candida berthetii isolate to be
specific to our study species, X. affinis, which we also determined as one of the most
abundant yeasts in our samples (32). In our study, the relative abundance of C. berthetti
peaked in the heads of adult female offspring on day 30, when these females are about
to leave the nest. This may suggest that this yeast is vertically transmitted to new nests
in oral mycetangia of nest foundresses. The presence of C. berthettii within the
mycetangia of X. affinis has also been reported by the culturing study mentioned above
(32). All these findings agree with an old hypothesis of yeasts being pioneer colonizers
that assist with the preparation of the niche for the growth of the filamentous Raffaelea
ambrosia fungi (23, 72).

Both our LM and SEM images and the molecular data confirmed that Raffaelea fungi
appeared within galleries after the hatching of eggs (day 10 versus day 5), which
indicates that yeasts are the primary food source at least for the early instars of larvae
and possibly also for the egg-laying mother. Furthermore, our molecular data showed
that both yeasts were common in the larvae and abdomens of surface-cleaned found-
resses, in particular from young nests. This finding is new for scolytine ambrosia beetles,
because all previous studies described the filamentous Raffaelea or Ambrosiella fungi as
the principal food source for both larval and adult ambrosia beetles (37, 38, 53, 73). It
confirms findings from a culturing study on the platypodine ambrosia beetle, Platypus
cylindrus, however, in which galleries a yeast, Endomycopsis platypodis, established
before the primary Raffaelea fungus (74). The Raffaelea fungi probably serve as a food
source after 10 to 15 days. Between days 25 and 30, our SEM pictures showed many
cropped conidiospores of Raffaelea, which might suggest that the reproduction of
conidia declines around that time. This also coincides with the time when the
preemerging females load their mycetangia with fungal propagules (likely yeasts and
Raffaelea conidia) that they transmit to newly founded galleries (24, 43, 44). At that
time, yeasts and bacteria were found in layers at the bottom below the Raffaelea
conidiophores (Fig. 5), possibly suggesting some metabolic division of labor in enzy-
matic degradation of the wood between the different microbes.

Putative metabolic functions. Ambrosia beetles obviously farm primary ambrosia
fungi such as Raffaelea and possibly yeasts (see above), which have been thought to
degrade the wood surrounding the beetle galleries (e.g., references 39 and 75). Our
KEGG analysis allowed us to predict the metabolic functions of about 60% of the
bacterial OTUs. Most importantly, this analysis and the fungal genome comparisons
included all the core bacterial and fungal OTUs, so it is likely that our analysis covers the
most important metabolic functions. Overall, it suggested that the bacterial micro-
biome may be able to assist in wood and fungal biomass degradation. This is indicated
by the four most abundant bacterial OTUs being jointly capable to fully degrade all the
fungal and plant polymers except glucan, mannan, and pectin, whereas the five most
abundant fungi can fully degrade only glucan and cellulose and partly degrade
hemicellulose (Fig. 6 and 7). Whether the degradation of these polymers by bacteria
plays an important nutritional role for the ambrosia beetles needs to be determined in
future studies.

September/October 2020 Volume 5 Issue 5 e00541-20

mSystems’

msystems.asm.org 14


https://msystems.asm.org

Symbiont Dynamics in an Ambrosia Beetle

The bacterial genera Enterobacter and Stenotrophomonas are particularly abundant
during the first days of gallery development, followed by the yeasts and the Raffaelea
ambrosia fungi. We hypothesize that plant cell wall degradation is carried out initially
by the bacterial and yeast microbiome, supplementing carbohydrates for the Raffaelea
fungi. After day 10, this function is performed jointly by the filamentous fungi, yeasts,
and bacteria. The latter are found particularly along the woody surface of the wall, at
the bottom of the Raffaelea fungus layer that covers the gallery walls (Fig. 5). The
breakdown of complex sugars like cellulose, hemicellulose, and pectin first peaked
around days 10 to 15, which coincides with a high energy demand of the growing fungi
and a strong increase in the number of larvae. A second peak of sugar breakdown was
observed around day 30, coinciding with the emergence of the F1 generation. Energy
demands around that time are probably very high because preemerging adult female
offspring fill their mycetangia (43, 75), build up fat reserves for dispersal (76), and
produce juvenile hormone (77). The bacterial genera Enterobacter and Stenotrophomo-
nas are particularly abundant during the first days of gallery development, followed by
the yeasts and Raffaelea ambrosia fungi. We hypothesize that plant cell wall degrada-
tion is carried out initially by the bacterial and yeast microbiome, supplementing
carbohydrates for the Raffaelea fungi. After day 10, this function is performed jointly by
the fungal and bacterial microbiomes. The highest KO degradation relative frequency
picks of the complex sugars (cellulose, hemicellulose, and pectin) took place around
day 10 and day 15, when the fungal community and the larval population increased,
which would lead to a larger demand of energy. In addition, at day 30, an increase in
the abundance of genes involved in wood degradation was observed again; this
concurred with the emergence of the F1 generation from the galleries, raising again the
energy requirements due to flight and the unknown time in which the F1 females are
in starvation mode after leaving the colonies. Li and collaborators (109) established the
mycetangia dynamics in Xylosandrus species, finding that new females fill their myc-
etangia with the fungal symbionts right before dispersal (109). Accordingly, the fungal
population increases during this period. This feeding behavior results in the increase of
the fat content (76) required for the development of the exoskeleton, reproductive
organs, and wing muscles (110) and in the stimulation of juvenile hormone production
(78) and other pheromones (111, 112), as well as allowing the female to survive during
the starvation period. Simple sugars resulting from the degradation of complex sugars
on day 30 in preemergence females would be subsequently degraded in the initial
stages of the new colony, as observed in day 5 in foundress females.

Wood is a poor source of nitrogen and nitrogenous compounds such as essential
amino acids, cofactors, and vitamins. The latter act as cofactors needed for all kind of
enzymatic functions (78). Hence, wood-feeding insects generally need to establish a
mutualism with microorganisms to supply them with nitrogen, amino acids, and
vitamins (79). Currently, it is believed that bark and ambrosia beetles associate with
fungi that supply them with all essential compounds (24), for example, by translocation
and concentration of nitrogen and other trace elements from within the wood toward
the beetle galleries (80). On the basis of our results, it is possible, however, that in
addition to the potential translocation of nutrients by the fungi, atmospheric nitrogen
fixation may be present within galleries, most likely by a predominant Enterobacter OTU
and possibly by other less common bacteria. These bacteria might be the ones
observed at the bottom of the Raffaelea layers, which might ensure anoxic conditions,
which are essential for nitrogen fixation to take place. Enterobacter dominates galleries,
particularly during the establishment of the colony and might boost nitrogen supply for
both fungi and beetles in this nitrogen-poor environment. Putative nitrogen-fixing
bacteria have been also isolated from other bark beetles (81-83). If this hypothesis can
be confirmed in future studies, it would show that all cases of fungal agriculture in
nature (humans, ants, and termites) are dependent on nitrogen-fixing bacteria (7, 8).

Given the nitrogen supply, the core bacterial players are possibly able to produce all
the amino acids. They may thus provide methionine to fungi and beetles that they are
unable to produce it themselves. All the other amino acids could be synthesized by
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either the core bacterial or core fungal symbionts. Many of the OTUs that can possibly
synthesize essential amino acids increased in abundance during beetle development
and were higher within adults and immature offspring than in galleries. This suggests
that they are present as gut symbionts and play a nutritional role that increases in
importance during development. Furthermore, the core bacteria may supply the beetle
diet with several cofactors and vitamins that the core fungi cannot produce (e.g.,
pantothenate, biotin, and folate).

Quorum sensing is a communication system that enables bacteria to regulate gene
expression in response to cell population densities, resulting in phenotypes and
physiological responses that allow bacteria to thrive under different conditions. Our
analyses suggest that it is possibly present in some of the bacterial symbionts and may
induce the yeasts and Raffaelea fungi to switch from mycelial to yeast-like growth
(Fig. 4). The proximate mechanisms underlying the nutritionally essential induction of
yeast-like “ambrosial growth” in ambrosia fungi (40, 41) is one of the major open
questions in the ambrosia beetle-fungus mutualism. Other Ophiostomatales fungi are
known to switch growth form due to environmental stimuli (84-86), but it is also
possible that the OTUs of quorum-sensing bacteria like the Enterobacter or the
Stenotrophomonas may act as triggers (see Fig. S30, S31, and S32 at https://doi.org/10
.6084/m9.figshare.12477593). It would be worth isolating these bacteria and testing
them in interaction assays with the Raffaelea ambrosia fungi.

Conclusion. Studies on the ambrosia beetle-fungus symbiosis usually focus on the
beetles and their filamentous fungal associates but largely neglect other microbes such
as yeasts and bacteria (1, 18, 25). Here we show that yeasts and bacteria are particularly
common in young galleries, at the bottom of Raffaelea growth, and within the bodies
of foundresses and offspring. We also show that these yeasts and bacteria have
capabilities in degrading plant polymers, in fixation of atmospheric nitrogen, and in the
production of amino acids, cofactors, and vitamins that the filamentous fungi miss. This
suggests that yeasts and bacteria have an underappreciated role for ambrosia beetles
and their Raffaelea fungal mutualists to assist their growth, especially early in gallery
development. These findings are corroborated by a recent study that showed species-
specific associations between ambrosia fungi and yeasts (including Candida and X.
affinis [32]). Experiments testing the roles of specific yeasts and bacteria can be
expected to provide promising results. Overall, it is very likely that the ambrosia
beetle-fungus mutualism will soon turn out to be a multipartite symbiosis with addi-
tional yeast and bacterial players. This study lists a few candidate microorganisms
whose capabilities and interactions with the beetles and the Raffaelea ambrosia fungi
need to be studied and tested experimentally.

MATERIALS AND METHODS

Study species. Xyleborus affinis Eichhoff is native to the tropical and subtropical Americas and widely
distributed in the southeastern United States (87, 88). It was introduced into Africa, Asia, Australia,
Europe, and the Pacific Islands, including Hawaii (89, 90). X. dffinis is extremely polyphagous using a wide
variety of host plants (248 species), including angiosperms as well as gymnosperms (90). Similar to other
ambrosia beetles in the subtribe Xyleborini, X. affinis displays sib-mating, haplodiploidy, sexual dimor-
phism, and strongly female-biased sex ratios (90). Fertilized females disperse from their natal nest and
bore a branching tunnel system in the xylem of dead or unhealthy hosts. Tunnel walls they inseminate
with symbionts they transmit in oral mycetangia or their guts (91). X. affinis may inhabit and expand the
same gallery for multiple generations over several years and is regarded among the most social beetles
(90). They exhibit a cooperatively breeding social system, defined by some adult daughters staying and
engaging as temporal workers in the maternal nest, which may cobreed and overtake the nest (14). Quite
uniquely also, larvae engage in social hygienic tasks (39). Adult males are flightless, and their only
function is to fertilize their sisters (92).

Medium preparation, beetle, rearing, and sample collection. Beetle rearing medium was pre-
pared by the method of Biedermann et al. (53), using Persea schiedeana (Chinini) sawdust. Thirty-six adult
female foundresses were individually introduced into rearing tubes. Six colonies (tubes) were dissected
every 5 days, i.e., at 5, 10, 15, 20, 25, and 30 days after the initiation of the colony. This captures the whole
life cycle of X. affinis within artificial rearing tubes, from a single mother that needs to feed on the
microbial layers covering the gallery walls to her laying eggs (day 5), the development of first larval
instars (day 10), second and third larval instars (days 15 and 20), pupae and adult sons (day 25), and adult
daughters (day 30) (Fig. 9). Foundresses and offspring of all life stages (larvae, pupae, not fully sclerotized
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(= teneral) males and females, adult males) were counted, and if available, six individuals were pooled
and used for microbiome sequencing. The heads and abdomens of foundresses were processed
separately to consider variation between gut and oral mycetangia contents. We focused the study on
females, because females are the ones that found new galleries and transmit starter cultures of microbes
in oral mycetangia. Therefore, it is particularly interesting what microbes are found in the heads of
foundresses immediately after gallery foundation (i.e., day 5) and right before adult female emergence
(i.e., day 30). A section of the gallery tunnels was collected for microbiome sequencing at each sampling
time to cover the development of the microbiome throughout gallery development and beetle life
stages. For an overview of the whole sampling scheme, see Fig. 1.

DNA extraction library construction and metabarcoding. DNA extraction was performed follow-
ing the protocol described by Latorre et al. (93). Sequencing was conducted at FISABIO Service of
Sequencing and Bioinformatics (Valencia, Spain). Amplicons of the 16S rDNA V3 region and the 185 rDNA
region were generated to determine bacterial and fungal diversity. 18S rDNA region primers were
SSUfungiF (5'-TGGAGGGCAAGTCTGGTG-3’) and SSUFungiR (5'-TCGGCATAGTTTATGGTTAAG-3’). DNA
libraries were constructed using Nextera XT adapters (Illumina Inc.) and Kappa polymerase (Kappa HiFi
Hotstart Ready Mix [catalog no. KK2602; Kappa Biosystems]), and purified using Agencourt Ampure XP
magnetic beads (catalog no. A63881; Beckman Coulter). Libraries were pooled to an equimolar concen-
tration and sequenced by MiSeq (reagent kit V3, 600 cycles). The raw data were deposited in NCBI's SRA
archive under BioProject accession number PRJINA561207.

Sequence assembly and taxonomic annotation. A total of 8,650,891 paired reads were obtained
from 28 high-quality sample libraries for the 16S rRNA marker and 2,691,294 paired reads from 27
high-quality libraries for the 18S rRNA marker (see Table S1 at https://doi.org/10.6084/m9.figshare
.12477593). PRINSEQ-lite 0.20.4 (94) was used to trim the 3’ ends of the raw reads and remove positions
with a quality score of <20; reads with a mean quality score of =20 and a length of =50 nucleotides
were kept. Paired reads with overlapping ends were joined using the default parameters of the fastg-join
tool of the ea-utils package, release 1.1.2-537 (95). Detection and removal of chimeric sequences were
done with mothur v.1.25.0 (96), using the Greengenes database (v13_8_99) as the template for the
16S marker (https://greengenes.secondgenome.com/?prefix=downloads/greengenes_database/gg_13
_5/); for the 18S rDNA marker, a self-modified version of the QIIME release of the SILVA database v128
was used (97, 98). The modification consisted of clustering 60 new Raffaelea sequences extracted from
the SILVA repository (https://www.arb-silva.de/search/) together with the 16 Raffaelea sequences present
in the SILVA database. Clustering was performed using the default parameters of vsearch (v2.3.4) (99,
100) and an identity threshold of 0.99. Consensus sequences obtained from each cluster were added to
the SILVA database after removing the original Raffaelea sequences.

Operational taxonomic units (OTUs) were picked by open-reference command and defined by
clustering at 3% divergence (97% similarity) using the Greengenes database (101) and suppressing the
lane mask filter step. The resulting OTU table was converted into a .tsv format with Python’s biom-format
package (v. 2.1.5) (102) to filter OTUs from chloroplast, archaeal, mitochondrial, and cyanobacterial
sequences and remove those with low abundance (five reads or less per sample). To distinguish each
OTU in all analyses performed, a unique identifier (ID) was assigned. This unique identifier was defined
by an increasing number followed by the OTU ID and the taxonomic annotation (see Table S4 at
https://doi.org/10.6084/m9.figshare.12477593).

Alpha-diversity analysis and phylogenetic-tree construction. Rarefactions were produced from
the filtered OTUs by running the multiple_rarefactions.py script (QIIME v 1.8.0) with the following
parameters: x = 1,500, m = 10, s = 5, and n = 10. Diversity indexes (observed OTUs, Shannon, Chao1,
and Simpson) were calculated, collated, and plotted with scripts of QIIME (v. 1.8.0) (see Fig. S34 and 35
at https://doi.org/10.6084/m9.figshare.12477593). The alpha-diversity index and OTU richness were
plotted by “vegan” and “stats,” and an analysis of variance (ANOVA) and Tukey test were performed to
detect significant differences between the diversity indexes across days, body parts, and sample types
using R (v.3.3.1).

The visualizations of the bacterial and fungal microbiomes were conducted with the software
Graphical Phylogenetic Analysis (GraPhlAn) (103). The relative taxonomic abundances of the samples
were displayed with collapsed histograms plotted by “RColorBrewer” and “ggplot2” libraries in R (v.3.3.1).
Phylogenetic trees of bacterial and fungal OTUs were constructed using FastTree 2.1.3. (104), by using the
script make_phylogeny.py of QIIME 1 (100). The phylogenetic trees were pruned, removing all the OTUs
with a relative frequency of <0.1% by the “filter_tree.py” script of Qiimel. The resulting trees were
transformed to dendrograms using “ape v5.3" in R (v.3.3.1). To visualize the relative abundances of the
most frequent OTUs, we constructed a heatmap for every sample type. We displayed the OTUs using the
scripts “ape,” “vegan,” and “RColorBrewer” in R (v.3.3.1).

Visualization of galleries through microscopy. Samples from the gallery walls were collected for
visualization by scanning electron microscopy (SEM) from three galleries, each at days 3, 5, 10, 15, 20, 25,
and 30 and for light microscopy (LM) from three galleries, each at days 5, 10, 15, 20, 25, and 30. SEM was
done on a FEI Quanta 250 FEG microscope after samples were prepared following the protocol described
by Hermida-Montero et al. (105). Light microscopy was done on a DMI 6000B Leica inverted microscope
and prepared following the protocol of Guillen et al. (106). Samples from the gallery walls were collected
for visualization by scanning electron microscopy (SEM) from 3 galleries each at an age of 3, 5, 10, 15,
20, 25 and 30days and for light microscopy from 3 galleries each at an age of 5, 10, 15, 20, 25 and
30 days. SEM was done on a FEI Quanta 250 FEG microscope after samples were prepared following the
protocol described in Hermida-Montero and collaborators (105). Samples for light microscopy (LM) was
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done on DMI 6000B LEICA Inverted Microscope were prepared following the protocol of Guillén and
collaborators (106).

Functional metabolic prediction of the bacterial and fungal OTUs. Functional annotations of the
bacterial microbiome were conducted with Phylogenetic Investigation of Communities by Reconstruc-
tion of Unobserved States (PICRUSt) (version 1.1.3) (107), which allows us to predict bacterial metabolic
functions based on 16S rRNA sequences using the Greengenes database of reference genomes. The
enrichment analysis of pathways was performed based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. We performed the PICRUSt normalization, which is selective for OTUs within
the Greengenes database, thus inferring the metabolic profile of 267 bacterial OTUs (with a median of
60,837 reads per sample). This means that a putative metabolic profile could be assigned to about 60%
of the bacterial OTUs in our samples.

To illustrate dissimilarities based on KEGG Orthologies (KOs) and L3 KEGG level categories, nonmetric
multidimensional scaling (NMDS) across the samples was carried out using the Bray-Curtis distance
matrix. The effects of the factors sample type and sampling time on KEGG functional categories were
evaluated with a permutational multivariate analysis of variance (PERMANOVA) using a Bray-Curtis
dissimilarity matrix that was previously calculated considering the relative abundances of functional
categories in all samples. The significance threshold for the PERMANOVA was set at P < 0.001. When the
PERMANOVA was significant, differences between samples were determined with multiple pairwise
comparisons using a Wilcoxon test with Bonferroni correction set at P < 0.01. All the analyses were
performed using “vegan” and “mass” in R (v.3.3.1). To visualize shared and private KOs between adults,
offspring of different life stages, and galleries across development (days 5, 10, 15, 20, 25, and 30), we
constructed an UpSet plot using the R package UpsetR (108).

To gain insights into the metabolic potential of the fungi associated with the ambrosia beetles,
available genomes of the phylogenetically most closely related fungi (n = 33 genomes; see Table S5 at
https://doi.org/10.6084/m9.figshare.12477593) were selected, and the core genome and their metabolic
profile were determined following the methodology reported by Ibarra-Juarez et al. (46). Additionally,
the presence of genes and specific metabolic pathways (degradation of plant and fungal cell wall
components; biosynthesis of essential amino acids, cofactors and vitamins; nitrogen fixation; quorum
sensing and biofilm production) were analyzed and plotted in a heatmap using “ggplot2” and “vegan”
for R (v.3.3.1). The main components of the plant cell wall are cellulose, hemicellulose (1,4-B-p-xylan),
pectin [poly(1,4-a-p-galacturonide)], lignin (3,4-dihydroxybenzoate), and the simple-sugar components
of pectin and hemicellulose, arabinose, and rhamnose. The fungal cell wall consists of chitin (N-
acetylglucosamine), glucan (1,3-B-glucan), and mannan (1,4-B-mannan). The metabolic pathways for the
degradation of these components are given in Fig. S36 at https://doi.org/10.6084/m9.figshare.12477593.

To infer the metabolic capability of the bacterial microbiome in specific pathways, the relative
frequencies of all genes involved in these pathways were calculated per sample. A boxplot for the
sampling times (5, 10, 15, 20, 25, and 30 days) and the type of sample was generated using “ggplot2” and
“vegan” in R (v.3.3.1). To analyze the bacterial contribution to the different steps of the selected
pathways, we ran the script metagenome_contributions.py of PICRUSt (107). This script generates the
relative frequency of the KO present in the sample by a specific OTU. We built a stack histogram using
the sum of the averages of these relative frequencies of all KOs involved in a metabolic pathway from
a specific OTU.

To analyze the capability of the microbiome to produce biofilm, we calculated the relative frequen-
cies per sample of the genes involved in biofilm production and the genes involved in planktonic stage,
based on the KOs predicted by PICRUSt. We consider the KOs K00688, K00694, K00703, K00975, KO1991,
K03087, K03566, K04333, K04334, K04335, K04336, K04761, K06204, KO7173, K07638, K07659, K07676,
K07677, K07678, K0O7687, K07689, KO7781, K0O7782, K11531, K11931, K11935, K11936, K11937, and K14051
to be involved in biofilm production and the KOs K02398, K02402, K02403, K02405, K02425, K02777,
K03563, K03567, K05851, K07648, KO7773, and K10914 to be involved in planktonic stage.

Data availability. The raw data were deposited in NCBI's SRA archive under BioProject accession
number PRINA561207.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 0.8 MB.
FIG S2, TIF file, 0.4 MB.
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