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Abstract: Hydrogels present a great number of advantages, such as their swelling capacity or their
capability to mimic tissues, which make them very interesting biomaterials. However, one of their
main disadvantages is their lack of good mechanical properties, which could limit some of their
applications. Several strategies have been carried out to develop hydrogels with enhanced mechanical
properties, but many of the suggested synthetic pathways to improve this property are expensive
and time consuming. In this work, we studied an easy synthetic path to produce tough hydrogels
based on different maleic anhydride copolymers crosslinked with polyethylenglycol. The effect of
the comonomers in the mechanical properties has been studied, their excellent mechanical properties,
good swelling behavior and thermal stability being remarkable. In addition, in order to evaluate
their possible applications as scaffolds or in wound healing applications, microsized fibers have been
fabricated by electrospinning.

Keywords: hydrogel nanofiber; electrospinning; maleic anhydride; tough hydrogels

1. Introduction

Among the polymeric materials, hydrogels are one of the most widely studied and
used biomaterials due to their versatility and swelling capability, in addition to their
tailorable structures and properties that make them very attractive candidates for many
applications, such as drug delivery, tissue engineering and wound dressing [1–4]. However,
among the main drawbacks of this kind of materials is their poor mechanical properties,
present in both synthetic and natural hydrogels. Indeed, the synthesis of new hydrogels or
the modification of the existing ones to improve their mechanical properties have become
an important study field in recent years [5,6]. Until now, several strategies have been
described for the development of strong mechanical hydrogels, the main ones including:
composite hydrogels [7,8] and double network hydrogels [9,10]. Nonetheless, the synthesis
of mechanical tough hydrogels often requires complex synthetic pathways and it could
be considered expensive and time consuming, reducing the potential application of these
materials [11]. In this work, hydrogels with excellent compression properties have been
developed based on the crosslinking of different copolymers of maleic anhydride by an
esterification reaction with polyethylene glycol (PEG).

As mentioned above, maleic anhydride has been used as the main material for the
development of hydrogels. Several maleic anhydride-based materials have been reported
to date, many of them being used as adhesives, biomedical devices and drug delivery
systems [12–14]. As an example, Singh et al. [15] analyzed the influence of poly(ethylene
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glycol) (PEG) on the physicochemical properties of the hydrogels prepared from Gantrez®

AN-139, a copolymer of methyl vinyl ether and maleic anhydride. The authors described
tailored drug delivery by varying the crosslinking of the hydrogels by the incorporation of
PEG with different molecular weights. Similarly, Caló et al. [16] reported a Gantrez® and
poly(vinyl alcohol)-based hydrogel, which presented good antibacterial and mechanical
properties. These properties added to their good adhesion to porcine skin, making them
highly suitable for wound dressing applications.

It is also important to highlight its biocompatibility and low cytotoxicity that makes
the maleic anhydride derivatives excellent biomaterials [17,18]. One interesting approach
for wound dressing applications is based on nanofiber mats that present high porosity and
a large surface area. These properties allow the proliferation and migration of cells involved
in the wound healing process [19]. One of the most used methodologies to develop this
kind of structure is electrospinning, due to its cost-effectiveness compared to other time-
consuming and expensive techniques employed in the development of highly porous
polymeric structures [20,21]. As an example, Yang et al. [22] fabricated a gelatin/dextran–
maleic anhydride-based hydrogel by electrospinning. In this study, the polymer blend
fibers were formed by electrospinning, and then crosslinked by photocrosslinking reaction.
These materials presented a good biocompatibility and the in vitro studies showed that they
were able to support cell proliferation and adhesion, making them highly suitable materials
for tissue engineering and wound dressing applications. In addition to wound healing
applications, these fiber mats could be used as drug delivery systems. Varshosaz et al. [23]
reported the preparation of nanofiber mats by poly(methyl vinyl ether-co-maleic acid) as a
drug delivery system exploiting the large surface area as a fast dissolving carrier.

The aim of this work was the synthesis of maleic anhydride-based hydrogels with
high mechanical strength, and good swelling capability by an easy synthetic procedure.
This synthetic path could be considered as an efficient procedure, compared to other
time-consuming process such as double network fabrication commonly employed in the
development of tough hydrogels. In addition, this highly versatile process was employed
for the fabrication of micrometric-sized anhydride maleic-based hydrogel fibers by electro-
spinning. It is important to notice that the crosslinking process was successfully carried out
without losing their mat structure and surface area after crosslinking as it is often described
for those systems in which the crosslinking is performed after the fibers formation. The
excellent mechanical properties of the maleic anhydride-based hydrogels obtained in this
study added to their good swelling capacity and their fiber formation capability make them
excellent candidates for several biomedical applications such as wound healing, tissue
engineering and drug delivery.

2. Experimental
2.1. Materials

Poly(ethylene glycol) (PEG, Mn = 200 g/mol), poly(ethylene-alt-maleic anhydride)
(Et-MA, Mw = 10,000–500,000 g/mol), poly(isobutylene-alt-maleic anhydride) iBu-MA
(Mw = 6000–12,200 g/mol), poly(methyl vinyl ether-alt-maleic anhydride) (MVE-MA,
Mw = 216,000 g/mol) and acetone were obtained from Sigma-Aldrich (Darmstadt, Ger-
many), N,N-dimethyl formamide (DMF) from Macron Fine Chemicals (Deventer, The
Netherlands).

2.2. Synthesis of the Hydrogels

In order to synthetize the hydrogels, 35% wt. of each copolymers and 10% wt. of
polyethylene glycol, as a crosslinker, were solved in (2:1) (v/v) acetone/DMF mixture. The
mixtures were places in a round mold and allowed to react for 3 days.

2.3. Hydrogel Fibers Fabrication by Electrospinning

Hydrogel nanofibers were prepared using the electrospinning method. Copolymer
solutions (30% w/v of the corresponding copolymer mixed with 10% (w/w) (weight percent
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to copolymers) of PEG in acetone/DMF mixture 2:1 v/v) were prepared and loaded in a
30 mL plastic syringe. The syringe with a 0.7 mm inner diameter needle (gauge 20) was
attached to the pump (200 series, KD Scientific Inc., Holliston, MA, USA). The parameters
used for the electrospinning of these materials were previously optimized parameters for
these systems, the distance to the aluminum foil collector being fixed at 27 cm, with a
voltage of 18 KV and flow rate 0.002 mL h−1. Copolymer nanofibers membranes were put
in an oven at 100 ◦C for 10 min to complete the crosslinking reaction and dried at 50 ◦C
under vacuum to remove residual solvent.

2.4. Materials Characterization
2.4.1. Fourier-Transform Infrared Spectroscopy (FTIR)

Nicolet Nexus FTIR (Thermo Scientific, Loughborough, UK) spectrometer analysis
was used to evaluate the crosslinking of the hydrogels. All the experiments were carried
out by KBr pellets, at a resolution of 4 cm−1 and 32 scans per spectrum.

Thermogravimetric Analyses (TGA)

The thermal stability of the hydrogels was analyzed using a DTG-60 Shimadzu Ther-
mobalance (Kyoto, Japan). The samples (around 10 mg) were heated in an alumina pan
from room temperature to 700 ◦C at 10 ◦C·min−1, and all the measurements were carried
out under nitrogen atmosphere (20 mL/min). The initial degradation temperature, Ti, was
determined from the intersection between the tangent to the baseline and the inflection
point in the thermogram.

2.4.2. Compressive Stress/Strain Study

The compressive strength of the hydrogels was measured by universal testing machine
(Ibertest, Madrid, Spain), equipped with a 10 kN load cell. Five samples of each hydrogel
were prepared in cylinder form (diameter 25 mm and height 10 mm) and placed in parallel
plates with a distance between them equal to the height of the hydrogel. The test strain rate
was of 50 mm/min. The Young’s modulus was calculated between 10–20% compressive
strains in the fixed displacement mode. Each measurement was repeated three times.

2.4.3. Viscosity Measurements

The viscosity is an important parameter for the electrospinning. The viscosity of the
different samples was measured by a Brookfield programmable DV2-T (Brookfield Inc.,
Middleboro, MA, USA) viscometer at room temperature.

2.4.4. Swelling Degree

The swelling experiments were performed by the immersion in distilled water of
previously dried hydrogels at room temperature and weighting over time. The swelling
degree (w/w) was calculated according to the Equation (1), where Ms is the mass of the
swelled hydrogel at time t and Md the mass of the dry hydrogel. (N = 3 for each data point):

Swelling degree =
Ms −Md

Md
× 100 (1)

2.4.5. Morphology of Hydrogel Nanofibers

The morphology was observed by scanning electron microscopy SEM (S-4800), with
an acceleration voltage of 5 kV. The pore size of hydrogels and elecrospun hydrogels
nanofibers was determined by image analyzer Fiji.

3. Result and Discussion
3.1. Maleic Anhydride-Based Hydrogels

Three different maleic anhydride-based copolymers were used for the hydrogel syn-
thesis. The selected alternating copolymers present comonomers of different natures or
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size, which allow the study of the influence of the comonomer in the properties of the final
hydrogels. These comonomers were ethylene, isobutylene and methyl vinyl ether. The
hydrogels were obtained by the opening of maleic anhydride ring and the subsequent
esterification of the carboxylic acid with the hydroxyl groups of PEG molecules (Figure 1).
The magenta color of the MVE-MA-PEG hydrogel is related to the DMF solvent, similarly
to that observed by Zhao et al. [24], who described the solvatochromic properties of the
poly(maleic anhydride-alt-vinyl acetate)].
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Figure 1. (A) Scheme of the general synthetic pathway for hydrogel formation; (B) chemical structures
of the hydrogels prepared by maleic anhydride-based copolymers crosslinking with PEG.

Once the hydrogels were formed, their chemical structure was evaluated by FTIR spec-
troscopy. The Figure 2 shows the FTIR spectra of the copolymers and the obtained hydro-
gels. The copolymers presented typical anhydride group bands around 1770–1850 cm−1,
ascribed to C=O symmetric and asymmetric stretching, respectively [25]. After crosslinking,
most of the anhydride groups reacted during esterification or remained as free carboxylic
groups after being partially hydrolyzed [26,27]. The anhydride ring opening and the
carboxylic acid formation could be observed with the disappearance of the band around
1850 cm−1 for all the copolymers (blue rectangle at Figure 2). As could be observed, there
was a shift in the characteristic peaks due to the carboxylic acid formation and the subse-
quent esterification reaction with the reaction with the hydroxyl groups present on the PEG.
The symmetric C=O band slightly shifted due to the free carboxylic acid formation around
1780 cm−1. However, this band was still close to the asymmetric C=O band of the anhy-
dride. On the other hand, the esterification reaction between the carboxylic acid groups
derived from the ring opening and the hydroxyls groups of the PEG were confirmed by the
presence of the ester C=O stretching band at 1730 cm−1 (red arrows at Figure 2) [25–27]. In
addition, the presence of free carboxylic acids of the hydrogels and free hydroxyl of PEG is
confirmed by a broad band of the OH stretching vibration around 3500 cm−1.
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Finally, it could be noticed that the ester band observed at 1730 cm−1 presented
significant intensity variations depending on the copolymer (red arrows at Figure 2). The
Et-MA-PEG hydrogel presented a clear C=O ester peak, while, for the iBU-MA-PEG and
MVE-MA-PEG hydrogels, the band ascribed to ester could be observed as a shoulder at
1730 cm−1. This divergence could be related to the steric hindrance of the comonomer that
could complicate the esterification reaction.

3.2. Swelling Ratio of Hydrogels

The swelling capability could be a very useful property for many of potential ap-
plications such as drug delivery, among others. In Figure 3, the swelling degree of the
hydrogels formed with the different maleic anhydride copolymers are depictured. As it
can be observed, the maximum swelling was observed for MVE-MA-PEG hydrogel with
a swelling equilibrium of 250%, which is consistent with the swelling results described
by Singh et al. [15] for different formulations of this system. On the other hand, both
ethylene and isobutylene comonomers are alkyl monomer with high hydrophobicity, so
their presence could reduce the water uptake capacity of their hydrogels as it could be
observed in Figure 3. The higher mobility and lower steric hindrance of the Et-MA-PEG
could induce its higher swelling, maximum swelling of 150%, compared to iBu-MA-PEG.
That is, the –CH2–CH2– structure of the ethylene eases the mobility of the net and enhances
its swelling compared to the iBu-MA-PEG. On the other hand, the iBu comonomer presents
lower mobility and higher hydrophobicity, which reduces the swelling capacity of the
hydrogel, being the swelling equilibrium for iBu-MA-PEG hydrogels, 45%, the lowest of
this study. This swelling behavior was similar to the one observed by other authors for
polystyrene-maleic anhydride-based hydrogel (around 40%), which similarly to the iBu,
presents a highly hydrophobic and voluminous comonomer [2].
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3.3. Thermal Stability of Hydrogels

The thermal stability of copolymers and hydrogels was evaluated by thermogravimet-
ric analysis (Figure 4). The TGA thermograms of the copolymers (Figure 4A) showed very
similar degradation paths for all copolymers, being the Ti of Et-MA, iBu-MA and MVE-MA
at 290, 270 and 260 ◦C, respectively. Several authors relate the first degradation step of
the copolymers with the degradation of the maleic anhydride monomer, a step which
may vary slightly depending on the comonomer [28,29]. The second degradation step
could be assigned to the comonomer degradation, the less the ones presenting voluminous
side groups, iBu and MVE. The similarity between the copolymers with the higher steric
hindrance could be related to the scission of the voluminous groups during the degradation
process [30].
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On the other hand, the thermal degradation of the hydrogels significantly changes due
to the incorporation of the PEG and their higher water affinity (Figure 4B). In the case of Et-
MA–PEG, even if the samples where dried before the TGA, water molecules remain inside
the material, being exhausted in the first degradation step from 25 to 110 ◦C. In addition,
during the hydrogel synthesis, carboxylic groups are formed due to the anhydride ring
opening, subsequently reacting some of these groups with PEG in the esterification process,
while others remain in the polymer chain without reacting. Considering this, the first
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degradation step for iBU-MA-PEG and MVE-MA-PEG, and the second for the Et-MA–PEG
could correspond to the –COOH degradation which, usually, is located around 180 ◦C for
similar polymers such as poly(acrylic acid) or poly(methacrylic acid) [31,32]. In this case,
the Ti for this step is 177, 140, 155 ◦C for Et-MA–PEG, iBu-M-PEG and MVE-MA-PEG,
respectively. The last degradation step, similarly to the copolymers (Figure 4A), could be
ascribed to the degradation of the comonomers (Et, iBu and MVE).

3.4. Mechanical Properties of Hydrogels

Compression test of the freshly prepared hydrogels were performed by using universal
testing machine, and the resultant compressive strain–stress curves are depictured at
Figure 5. The hydrogel with most steric hindrance, iBu-MA-PEG, presents the lower
deformation of the studied systems, breaking at 40% and 0.79 MPa, that could be associated
with less mobility of the comonomer that make it more brittle. On the other hand, the
compressive stress increases significantly in the other two systems, being the strain at
break of 74% and 95% for Et-MA-PEG and MVE-MA-PEG, respectively, and the stress of
1.61 MPa for both of them, reaching the maximum of the loading cell. These results are
correlated with the swelling capacity of these hydrogels, so it could be considered that the
chain mobility of these hydrogel not only eases the water uptake, but also improves their
mechanical properties. Considering the maximum stress obtained for hydrogels with the
Et and MVE comonomers, these hydrogels with enhanced mechanical properties could be
considered close to tough hydrogels. Usually, this toughness commonly achieved in double
network hydrogels, designed for increasing the mechanical properties of the hydrogels, but
at the same time they present a restricted swelling capacity that could reduce their usability
in biomedical applications [33,34]. It is important to notice that soft tissues (cartilage,
tendons . . . ) present a high-water content and fracture resistance; for example, cartilage
exhibits a nominal compressive modulus of 0.1–1.0 MPa [35].
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3.5. Maleic Anhydride-Based Hydrogel Fibers

In order to study the potential application of these materials for wound healing
and/or tissue engineering, micrometric size fiber mats were obtained by using electrospin-
ning [36,37]. It is important to highlight that some studies have reported good cytotoxicity
and biocompatibility for some of these copolymers, so the potential usability of hydrogels
based on these copolymers could be an important alternative [38,39]. The mats were ob-
tained by using the electrospinning technique, once the process was optimized the most
adequate conditions for these materials were: needle of gauge 20 (0.7 mm inner diameter),
distance to the collector of 27 cm, voltage of 18 KV and a flow rate of 0.002 mL h−1.

The viscosity of the copolymers at 30 w/v% was 3053 ± 307.3 cP, 26,530 ± 6062 cP,
1328 ± 852.9 cP, for the Et-MA, iBu-MA and MVE-MA, respectively. In addition, the
viscosity of the formulations with PEG, previously to gel formation, was also measured,
980.8 ± 5.15 cP, 43,670 ± 6.54 cP, and 187.5 ± 4.52 cP for Et-MA/PEG, iBu-MA/PEG and
MVE-MA/PEG mixtures, respectively. As could be observed, the incorporation of PEG has
a different influence on the viscosity, while in Et and MVE, the viscosity decreases, in the
case of the higher hindrance copolymer the viscosity increases. This effect could be ascribed
to the interaction between the copolymers and the PEG when the esterification process
begins, which induces an increase in the density within the molecular coil that could result
in a smaller hydrodynamic volume and viscosity. This effect was also described by other
authors during an esterification process to form another hydrogel [40].

In this study, first, the fiber mats of pure copolymers were fabricated to comparatively
evaluate their structure with the hydrogel fibers. The hydrogel fibers were obtained by
electrospinning the copolymer/PEG mixtures and their subsequent heating at 140 ◦C for
10 min in order to promote the complete crosslinking process. The success of this process
was corroborated by FTIR.

In Figure 6, SEM images of Et-MA and its hydrogel, and the fibers’ size are depictured.
Micrometric size and well-defined fibers were obtained for both systems. However, the
analysis of the fibers’ diameter showed that homogeneous size fibers are present for the
pure copolymer (3.50 ± 0.84 µm), whereas in the hydrogels, the morphology changes
slightly, leading to two different fiber diameters: 3.23 ± 0.69 µm and 5.26 ± 0.69 µm. In
addition, Figure 6C shows the FITR spectra of the bulk Et-MA-PEG hydrogel and the
hydrogel obtained after the electrospinning process. As it could be observed, the same
characteristic peaks are present in both spectra, confirming the hydrogel formation. In this
case, the C=O peak of the ester at 1730 cm−1 (green arrows, Figure 6C) corresponding to
the crosslinking process could be observed as a shoulder in the fiber spectra, confirming
the crosslinking with PEG. However, this process could be less efficient compared to the
bulk process, since bulk hydrogel presents a clear peak 1730 cm−1, so the number of chain
segments involved in the esterification seems to be higher than that in fibers. It is important
to notice that the hydrogel has formed without modifying the fibers’ morphology. In a
similar system, starch/Et-MA was fabricated by Oktay et al. [41] and in this case, when the
hydrogel was formed, the mat fibers merged, losing part of their surface area and reducing
their potential application.



Polymers 2021, 13, 972 9 of 13

Polymers 2021, 13, x  9 of 14 
 

 

to two different fiber diameters: 3.23 ± 0.69 µm and 5.26 ± 0.69 µm. In addition, Figure 6C 
shows the FITR spectra of the bulk Et-MA-PEG hydrogel and the hydrogel obtained after the 
electrospinning process. As it could be observed, the same characteristic peaks are present in 
both spectra, confirming the hydrogel formation. In this case, the C=O peak of the ester at 1730 
cm−1 (green arrows, Figure 6C) corresponding to the crosslinking process could be observed 
as a shoulder in the fiber spectra, confirming the crosslinking with PEG. However, this process 
could be less efficient compared to the bulk process, since bulk hydrogel presents a clear peak 
1730 cm−1, so the number of chain segments involved in the esterification seems to be higher 
than that in fibers. It is important to notice that the hydrogel has formed without modifying 
the fibers’ morphology. In a similar system, starch/Et-MA was fabricated by Oktay et al. [41] 
and in this case, when the hydrogel was formed, the mat fibers merged, losing part of their 
surface area and reducing their potential application. 

 
Figure 6. SEM images and fiber diameter of (A) the Et-MA copolymer; and (B) the Et-MA-PEG hydrogel. (C) FTIR spectra 
of bulk and fiber hydrogels. 

Figure 6. SEM images and fiber diameter of (A) the Et-MA copolymer; and (B) the Et-MA-PEG hydrogel. (C) FTIR spectra
of bulk and fiber hydrogels.

On the other hand, in accordance with the results reported in previous experiments,
iBu-MA-PEG presented a significantly different behavior. In this case, the steric hindrance
and the hydrophobicity of the isobutylene groups seems to prevent the formation of fibers
by this technique. As could be observed in Figure 7, nano- and microparticles of copolymer
(A) and hydrogel (B) were obtained from this material. It could be noticed that hydrogel
nanoparticles (Figure 7B) presented a more homogeneous surface than its corresponding
copolymer, an effect which could be related to the crosslinking process that could improve
the particle shape of the hydrogel. Nevertheless, even if fibers were not obtained, the hy-
drogel nanoparticles were successfully formed, confirmed the characteristic ester formation
(green arrows) being confirmed at 1730 cm−1 in the FTIR spectra (Figure 7C).
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Finally, the MVE-MA-based fibers were evaluated (Figure 8). Taking into account
the results obtained for the iBu-MA system, in this case, the role of the C–O bonds, being
more hydrophilic and with greater mobility of the polymer chain than the iBu side groups,
seem to facilitate the formation of fibers. These fibers are similar to those obtained for the
Et-MA system, presenting a regular micro-size for both pure homopolymer (Figure 7A) and
hydrogel (Figure 8B). The fiber diameters of both systems were quite similar, being slightly
lower for hydrogel fiber, 2.73± 0.61 µm in comparison with pure copolymer 2.28± 0.69 µm.
As it could be observed in the size distribution diagrams, the hydrogel presents a narrower
size distribution; this could be ascribed to the crosslinking process that homogenized the
fibers. It could also highlight that the hydrogel fiber mats do not show any fiber merge as a
result of the crosslinking process, but they are less linear than copolymer fibers, showing
certain curvature compared to the copolymer fiber, likely induced by the crosslinking.
This result is a highly interesting point since the fibers do not lose their high surface as a
consequence of the hydrogel forming process. The effective formation of this hydrogel was
also confirmed by shoulders at 1730 cm−1 (green arrows) on the FITR spectra, Figure 8C.
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4. Conclusions

In this work, ethylene-co-maleic anhydride, isobutylene-co-maleic anhydride and
methyl vinyl ether-co-maleic anhydride hydrogels were synthesized by crosslinking with
PEG in acetone/DMF solution. The crosslinking process was carried out by an esterification
reaction between the hydroxyl groups of the polyethylene glycol and the carboxylic acid
formed in the anhydride ring opening. The experimental results proved the successful
crosslinking by the presence of the ester characteristic peaks on the FTIR spectra and some
carboxylic acid moieties. The main properties of the hydrogels were highly dependent
on the comonomer present. The maximum swelling behavior was achieved for methyl
vinyl ether-substituted hydrogel, the reduction in the swelling capacity being ascribed
to the hydrophobicity for ethylene comonomer and hydrophonicity and steric hindrance
for isobutyl comonomer. The thermal stability and the mechanical properties were also
affected by the properties of the comonomers, presenting methyl vinyl ether substituted
hydrogel the higher thermal stability and being significantly tougher than isobutyl hydro-
gel, resulting in a maximum stress of 1.61 MPa in compression and the strain break at 95%.
In addition, the iBu-MA-PEG presents the lower mechanical properties due to the lower
mobility of the isobutylene groups that makes this hydrogel brittle. On the other hand, the
fiber preparation by using electrospinning was evaluated in order to explore other possible
applications of these materials in tissue engineering or wound healing applications. In
this case, it could be noticed that the best candidate for these hydrogel fibers could be
MVE-MA–PEG system. These fibers present highly regular fiber diameters, both of the
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copolymer and the hydrogel, compared to the other two systems. Overall, these materials
present good mechanical properties, which it is a common drawback for hydrogels, in
addition to a good ability to be manufactured as fiber mats by electrospinning, which could
increase the potential use of these materials in drug delivery, wound healing and tissue
engineering applications.
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