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Abstract Learning the spatial organization of the environment is essential for most animals’
survival. This requires the animal to derive allocentric spatial information from egocentric sensory
and motor experience. The neural mechanisms underlying this transformation are mostly unknown.
We addressed this problem in electric fish, which can precisely navigate in complete darkness and
whose brain circuitry is relatively simple. We conducted the first neural recordings in the
preglomerular complex, the thalamic region exclusively connecting the optic tectum with the
spatial learning circuits in the dorsolateral pallium. While tectal topographic information was mostly
eliminated in preglomerular neurons, the time-intervals between object encounters were precisely
encoded. We show that this reliable temporal information, combined with a speed signal, can
permit accurate estimation of the distance between encounters, a necessary component of path-
integration that enables computing allocentric spatial relations. Our results suggest that similar
mechanisms are involved in sequential spatial learning in all vertebrates.

DOI: https://doi.org/10.7554/eLife.36769.001

Introduction

Learning to navigate within the spatial organization of different habitats is essential for animals’ sur-
vival (Geva-Sagiv et al., 2015). Electric fish, for example, occupied a lucrative ecological niche by
evolving the ability to navigate and localize food sources in complete darkness using short-range
electrosensation (Jun et al., 2016). The spatial acuity that they exhibit, along with their reliance on
learned landmark positions, strongly suggest that they memorize the relative arrangement of the
landmarks and the environmental borders. The information animals use to generate such allocentric
knowledge include sensory experiences collected during object encounters (Jun et al., 2016;
Petreanu et al., 2012; Save et al., 1998) and motor actions (heading changes and distance trav-
eled) executed between such encounters; utilization of these motor variables in spatial learning and
navigation is termed path integration (Collett and Graham, 2004; Etienne and Jeffery, 2004). This
acquired information, however, is always egocentric in nature. Fittingly, the primary brain regions
dedicated to sensory and motor processing, such as the optic tectum (OT) of all vertebrates and
many cortical regions in mammals are topographically organized along an egocentric coordinate sys-
tem (Knudsen, 1982; Sparks and Nelson, 1987, Stein, 1992). Unravelling the neural operations
underlying the transformation of egocentric sensory and motor information streams into an allocen-
tric representation of the environment has been a central theme in studies of spatial learning and
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elLife digest Finding their way around is an essential part of survival for many animals and helps
them to locate food, mates and shelter. Animals have evolved the ability to form a ‘map’ or
representation of their surroundings. For example, the electric fish Apteronotus leptorhynchus, is
able to precisely learn the location of food and navigate there. It can do this in complete darkness
by generating a weak electric field. As it swims, every object it encounters generates an ‘electric
image’ that is detected on the skin and processed in the brain.

However, all the cues the fish comes across are from its own point of view — the information
about its environment is processed with respect to its location. And yet, the map that it generates
needs to be independent of the fish’'s position — it has to work regardless of where the animal is.
The way animals translate ‘self-centered’ experiences to form a general representation of their
surroundings is not yet fully understood.

Now, Wallach et al. studied how internal brain maps are generated in A. leptorhynchus.
Information about the fish’'s environment passes through a structure in the brain called the
preglomerular complex. Measuring the activity of this region revealed that the preglomerular
complex does not process much self-centered information. Instead, whenever the fish passed any
object - regardless of where it was in relation to the fish — the event triggered a brief burst of
preglomerular activity. The intensity of the activity depended on how recently the fish had
encountered another object. This information, combined with the dynamics of the fish’s movement,
could be what allows the fish to convert a sequence of encounters into a general spatial map.

These findings could help to inform research on learning and navigation. Further research could
also reveal whether other species, including humans, generate their mental maps in a similar way.
This may be relevant for people suffering from diseases such as Alzheimer's, in which a sense of
orientation has become impaired.

DOI: https://doi.org/10.7554/elife.36769.002

navigation. Recent studies in the mouse (Peyrache et al., 2017) have suggested that the key compu-
tations include vestibular input that defines the animal’s head direction (head direction cells, egocen-
tric) and external sensory input that signals the presence of stable environmental features (i.e.,
landmarks). Linking the head directions that orient the animal to different environmental features are
then hypothesized to generate an allocentric representation of those features. The neural circuits
that have been hypothesized to implement these computations are, however, exceedingly compli-
cated and include thalamic (head direction) and cortical (external sensory) input to the hippocampal
formation. The proposed wiring diagrams are highly speculative and very far from providing a well-
defined mechanistic model of how spatial maps are created.

Equivalent computations appear to be carried out in Drosophila (Seelig and Jayaraman, 2015).
Visual orientation to landmarks and body direction via path integration are combined in the ellipsoid
body with dynamics suggestive of a ring attractor. While these studies in the simpler nervous system
of the fly are now closer to providing a mechanistic explanation of how egocentric and external
(visual) inputs are combined, it is not clear if the fly has a full representation of the allocentric rela-
tions of different environmental features. It is also not at all clear that the dynamics of the ellipsoid
body can be mapped onto the cortical and hippocampal circuitry of mammals.

Teleost fish offer an attractive model for studying this question, as their related brain circuitry is
relatively tractable: lesion studies point to the dorsolateral pallium (DL) as the key telencephalic
region required for allocentric spatial learning (Broglio et al., 2010; Duran et al., 2010;
Rodriguez et al., 2002), similarly to the medial cortex in reptiles and the hippocampus in mammals
(see Discussion). DL has strong excitatory recurrent connectivity (Elliott et al., 2017; Giassi et al.,
2012b). Importantly, DL receives sensory and motor information related to electrosensory and visual
object motion from OT (Bastian, 1982) via a single structure — the diencephalic preglomerular com-
plex (PG, Giassi et al., 2012b, Figure 1A). The tectal recipient portion of PG projects solely to DL
(Giassi et al., 2012a) in agreement with the lesion studies. Importantly, PG receives very little feed-
back from areas associated with DL (Giassi et al., 2012b) and therefore functions as an exclusive
feed-forward bottleneck between OT and the pallium. DL in turn projects to the central pallium

Wallach et al. eLife 2018;7:€36769. DOI: https://doi.org/10.7554/eLife.36769 20f 23


https://doi.org/10.7554/eLife.36769.002
https://doi.org/10.7554/eLife.36769

e LI FE Research article

Neuroscience

A

EA

Cerebellum

Hindbrain

1mm

Midbrain

Dorsal 1
Caudal Rostral
0.8+
3 004
S w06
3 S
g o003
S
[ 04+t
0.02
0.01 021
0 0 !
1071 10° 10" 102 103 0 025 050.75
ISI (ms) Burst fraction

Figure 1. Neural recordings in PG. (A) Electrosensory pathways from periphery to telencephalon. EA, Electrosensory afferents; ELL, electrosensory lobe;
TS, Torus semicircularis (similar to the inferior colliculus); OT, optic tectum (homolog of the superior colliculus); PG, preglomerular complex; DL,
dorsolateral pallium. (B) Interspike-interval (ISI) distribution in an example PG cell. Note peak around 2 ms due to thalamic-like bursting. Inset:
extracellular voltage example depicting two units (red and yellow markers); scale-bar, 5 ms. (C) Cumulative distribution function of burst fraction (see
Materials and methods) for all PG single-units; median = 0.24.

DOI: https://doi.org/10.7554/eLife.36769.003

The following figure supplements are available for figure 1:

Figure supplement 1. T-type Ca”* channel expression profiles support PG thalamic homology.
DOI: https://doi.org/10.7554/eLife.36769.004

Figure supplement 2. Dataset summary.

DOI: https://doi.org/10.7554/eLife.36769.005

Figure supplement 3. Spike sorting example.

DOI: https://doi.org/10.7554/eLife.36769.006

Figure supplement 4. Localization of recorded units.

DOV https://doi.org/10.7554/elife.36769.007

(DC, Giassi et al., 2012b); DL also has reciprocal connections with the dorsal pallium (DD) and DD
itself has strong recurrent connectivity. DC is the only route by which DL can control motor activity
and it does so solely via its projections to the OT (Giassi et al., 2012b). We hypothesize that ego-
centric object-related information (OT) conveyed by PG to DL, is converted to a learned allocentric
spatial map by the recurrent circuitry of DL, DD and DC; DC, in turn, then controls the fish’s spatial
behavior via its projections to OT.

Results

In what follows we describe the first electrophysiological recordings conducted in PG of any fish spe-
cies. PG has been considered part of the fish thalamus, based on simple anatomical criteria
(Giassi et al., 2012a; Ishikawa et al., 2007; Mueller, 2012). Our recordings provided an additional
functional correspondence in that PG cells emit rapid spike bursts likely mediated by the T-type
Ca?* channels (Figure 1B,C and Figure 1—figure supplement 1) characteristic of the OT targets in
thalamic regions of other vertebrates (Ramcharan et al., 2005, Reches and Gutfreund, 2009). In
this contribution, we show a radical conversion of the topographic spatial representation in OT into
a reliable non-topographic temporal representation of encounter sequences. We then use a compu-
tational model to demonstrate that this temporal information is readily accessible for decoding and
that it is sufficiently accurate to account for spatial precision during naturalistic behavior (Jun et al.,
2016).
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We characterized the responses of 84 electrosensory PG cells of the weakly electric fish Aptero-
notus leptorhynchus to moving objects; several motion protocols were used and the sample size for
each protocol is mentioned in context (Figure 1—figure supplement 2). Neuronal activity was
recorded extracellularly (Figure 1—figure supplement 3) in immobilized fish while objects (brass or
plastic spheres) were moved relative to the skin using a linear motor (Methods). Cells responding to
this stimulation were predominantly found in the lateral nucleus of the PG complex, PGI (Figure 1—
figure supplement 4).

Topographic spatial information is abolished in PG

We first examined the spatial representation in PG cells by measuring their receptive fields (RFs;
measured in 27 cells). The OT electrosensory cells driving PG have spatially-restricted, topographi-
cally organized RFs (Bastian, 1982), and thus provide labeled-line information on the egocentric
position of objects. In PG, by contrast, only 11% of the cells (3/27) were topographic with a spatially
restricted RF (Figure 2A); the majority of PG cells (89%, 24/27) responded across most or all of the
fish's body (Figure 2B and Figure 2—figure supplement 1). Therefore, PG activity does not convey
a topographic ‘labeled-line’ code of object position. We also checked whether object location is
encoded by the firing-rate of PG neurons (i.e., a rate code). The firing-rate was significantly corre-
lated with object position only in one non-topographic cell (4%, 1/24 neurons; p < 0.05, random-per-
mutations test, Figure 2C). Similarly, mutual information between object position and firing-rate was
significant only in two non-topographic cells (8%, 2/24 neurons; p < 0.05, random-permutations test,
Figure 2D). Therefore, almost all PG cells have whole-body RFs and lack topographic spatial infor-
mation— the hallmark of all electrosensory regions from the sensory periphery up to OT. We
attempted to systematically sample throughout the full extent of PG. However, we cannot absolutely
determine whether the subset of topographic cells represent a small distinct sub-nucleus or are
sparsely distributed throughout the PG complex.

PG cells respond to object encounters

Next, we checked what information PG neurons convey about object motion. OT cells, which drive
PG, respond to an object moved parallel to the fish (longitudinal motion) while the object traverses
their RFs (Bastian, 1982). Only a minority of recorded PG units (26%, 7 out of 27 tested with longitu-
dinal motion) responded in this manner (Figure 3A). Rather, the majority of PG units (78%, 20/27)
exhibited a strikingly different behavior, emitting a brief burst response confined to the onset (and
sometimes to the offset) of object motion, but not during motion itself (Figure 3B). This is further
demonstrated when motion in each direction was broken into four segments separated by wait peri-
ods (Figure 3C), evoking responses at the onset (yellow arrowheads) and offset (red arrows) of each
segment across the entire body. Interestingly, we have encountered several lateral-line responsive
PG units that, unlike most of their electrosensory counterparts, did respond persistently throughout
(and even after) object motion (Figure 3—figure supplement 1).

We next applied transverse motion, which mimics an object looming/receding (incoming/outgo-
ing) into/from the electrosensory receptive field (tested in 40 cells). Three types of responses to such
motion were identified: proximity detection, encounter detection, and motion-change detection;
50% (20/40) displayed more than one type of response. Proximity detectors (75%, 30/40) responded
when an object was encountered very close to the skin (< 2 cm, Figure 3D); encounter detectors
(32%, 13/40) responded when an object either entered to or departed from their electroreceptive
range (~4 cm, Figure 3E); lastly, motion-change detectors (57.5%, 32/40) displayed a response simi-
lar to that observed in longitudinal motion, firing at the onset/offset of motion (i.e., when the object
accelerated/decelerated, Figure 3F); remarkably, this type of response was relatively distance-invari-
ant, yielding comparable responses both very close to (0.5 cm) and very far from (5.5 cm) the skin
despite the drastic effects of distance on both the magnitude and spread of the object’s electrical
image (Figure 2—figure supplement 1, see Chen et al., 2005). This discrete, nearly stereotypic
response stands in contrast to the finely-tuned rate code of object distance previously reported in
the primary electrosensory cells in ELL (Clarke et al., 2014; Clarke and Maler, 2017). Taken
together, the variety of PG response-types mentioned above may constitute a distributed represen-
tation of object proximity. Unlike the loss of egocentric topographic mapping discussed in the
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Figure 2. PG cells lack egocentric spatial information. (A) Example of an ‘atypical’ topographic PG cell with a restricted receptive field (RF) at the head.
Looming-receding motions were performed at different locations. Top: object distance from skin vs. time; middle: spike raster plot, arranged according
to object location (H = head, T = tail); bottom: PSTH within the RF (dark blue) and outside of it (light blue). (B) Example of a "typical’ non-topographic
PG cell, responding to stimulation across the entire body. Bottom: PSTH of front (dark red) and rear (light red) halves of fish. RF extended beyond the
sampled range. (C) Circles: Pearson correlation between normalized egocentric location and firing-rate for all units, in ascending order; box-plots:
distribution of correlations obtained by random permutations of locations (control). Only one non-topographic cell had correlations that statistically
differed significantly from those in the randomized boxes (**). (D) Circles: normalized mutual information (MI) between egocentric location and firing-
rate for all units, in ascending order; box plots, distribution of Ml obtained by random permutations of locations (control). Only two non-topographic
cells had Ml that statistically differed significantly from those in the randomized boxes (* and ***). Blue arrowheads in (C) and (D) mark the cell depicted
in (A); Red arrows mark the cell depicted in (B). P values obtained using permutation test: *', p < 0.05; "**', p < 0.01; "***', p < 0.001.

DOI: https://doi.org/10.7554/eLife.36769.008
The following figure supplement is available for figure 2:

Figure supplement 1. Receptive fields across the PG population.
DOV https://doi.org/10.7554/eLife.36769.009
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Figure 3. PG cells respond to motion novelty. (A-C) Longitudinal motion. Top: object location (distance from the tip of the nose); middle: spike raster;
bottom: PSTH. (A) 'Atypical’ PG cell responding uni-directionally, throughout the motion toward the head. 43% (3/7) of atypical PG cells responded
during forward motion only, while 57% (4/7) responded in both directions. (B) ‘Typical’ PG cell responding to motion-onset at the head during
backward motion and to motion-onset at the tail during forward motion. 75% (15/20) of these motion novelty cells respond bi-directionally, 10% (2/20)
only during forward motion and 15% (3/20) only during backward motion. (C) PG cell responding to motion onset (yellow arrowheads) and to motion
offset (red arrows) in intermittent-motion protocol. (D-F) Responses to transverse (looming-receding) motion. All PG cells recorded with transverse-
motion (40/40) responded to object looming, while only 40% (16/40) responded to receding. Top: object distance from skin; middle: spike raster;
bottom: PSTH. Grey shadings mark acceleration/deceleration. (D) Proximity detector cell. Note that the response starts prior to the deceleration
(shaded). (E) Encounter detector cell. (F) Motion change detector cell, responding when objects accelerated/decelerated (shaded, 10 em/s? in this
example) similarly to the response observed to longitudinal motion (panels B and C).

DOV https://doi.org/10.7554/eLife.36769.010

The following figure supplements are available for figure 3:

Figure supplement 1. PG lateral-line responses.

DOV https://doi.org/10.7554/eLife.36769.011

Figure supplement 2. The amplitude (left ordinate, log scale) and spread (right ordinate, linear scale) of the object’s electric image on the skin, as
functions of distance, based on a previously published model of electric fields in this fish (Chen et al., 2005).

DOI: https://doi.org/10.7554/elife.36769.012

previous section, this representation does provide DL with coarse-grained, non-directional egocen-
tric information. The possible role(s) of this information was not further considered in our analyses.
We conclude that PG electrosensory cells predominantly respond to novelty: onset/offset of
object motion within their receptive field or the introduction/removal of objects into/from this recep-
tive field; we use the term object encounters to designate all such events. Most PG cells responded
both to conductive and non-conductive objects (Figure 4) and would therefore not discriminate
between different object types, for example, plants versus rocks. We can, therefore, infer that during
active exploration of the environment, PG reports to the dorsal pallium whenever the fish encounters
or leaves a prey or a landmark (e.g., root mass or rock) or alters its swimming trajectory near a

landmark.
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Figure 4. PG response to conductive/non-conductive objects. (A-C) Top: object location (distance from the tip of the nose) during longitudinal object
motion; middle: spike raster; bottom: PSTH. Red: conductive object (brass sphere, mimicking plants and animals); Blue: non-conductive object (plastic
sphere, mimicking rocks). (A) Example cell responding to both brass and plastic spheres (such responses were found in 57% of the cells, 24/42). (B)
Example cell responding primarily to plastic, with a very faint response to brass (5% of the cells, 2/42). (C) Example cell responding to brass only (38% of
the cells, 16/42). The predominance of cells responding to both brass and plastic spheres or to brass-only spheres is likely inherited from OT

(Bastian, 1982).

DOI: https://doi.org/10.7554/eLife.36769.013

PG cells display history-independent, spatially non-specific adaptation
While topographic egocentric information was scarce in PG, temporal information was prevalent.
Many of the PG cells exhibited pronounced adaptation to repeated motion (45%, 15/33 neurons
tested with repeated-motion protocol; Figure 5—figure supplement 1). We delivered a sequence
of object encounters (motions in and out of the RF, Figure 5A); time-intervals between sequential
encounters were drawn randomly and independently (in the range of 1-30 s). The response intensity
(number of spikes within an individually determined time window) of these adapting cells to each
encounter was strongly correlated with the time-interval immediately prior to that encounter
(Figure 5B). By contrast, there was no significant correlation with intervals prior to the last one (inset
of Figure 5B and Figure 5C). Thus, a large subset of PG cells encoded the duration of the time-
interval preceding the last encounter - but did not convey information about the intervals prior to
that. We term this history-independent adaptation. Interestingly, similar behavior was also found in
visually-responsive cells (ventral PG, Figure 5—figure supplement 2). This result contrasts with
many studies in the mammalian cortex, where adaptation is incremental and responses depend on
multiple preceding intervals (Lampl and Katz, 2017; Ulanovsky et al., 2004). Moreover, a spatial
‘oddball’ experiment (Methods), which we conducted on 14 neurons (6 of which were adapting)
revealed that this adaptation is also spatially non-specific — that is, encounters at one body location
adapt the response to encounters at all other locations (Figure 3D-F). Therefore, this thalamic adap-
tation mechanism enables neurons to encode the time between the two most recent successive stim-
uli, without contamination by prior encounter history and irrespective of the objects’ egocentric
position.

PG cells convey readily accessible temporal information

Can the sequence of time intervals between encounters be accurately decoded from the activity of
the adapting PG cells? To answer this question, we first constructed a simple model to describe the
cells’ response dynamics. This model assumes each cell’s responsiveness is governed by a resource
variable x which is depleted following each encounter and recovers exponentially between encoun-
ters (Tsodyks and Markram, 1997). A parameter 3 indicates the fraction of the resource remaining
after depletion, while a time-constant 1 sets the speed of recovery. The resource variable x is con-
verted into a firing rate variable A using static rectification with a gain parameter a and baseline
activity parameter c. Finally, each encounter generates a spike count according to a Poisson
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Figure 5. History-independent, spatially non-specific adaptation of PG cells. (A) Random interval protocol. Object motions toward- and away-from-skin
generated responses {R, }, measured by spike count within individually determined time-window. Motions were interleaved by random time intervals

{Ty} (1-30 s). (B) Response versus the preceding time-interval (log scale) for an example neuron (circles). Model fitted to the data-points is depicted by
response rate (solid blue line) and spike count distribution (background shading); correlation of data to model = 0.56 (p < 107%, random permutations).

Figure 5 continued on next page
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Figure 5 continued

Inset: same data-points plotted as function of penultimate intervals; grey line: linear regression to log(T) (correlation = 0.15, p = 0.136, random
permutations). (C) Correlations between responses and time-intervals (last interval and one-, two- or three-before-last), normalized to the 10, 5 and 1
top percentiles of correlations generated by random permutations of the data, for each of the 15 adapting cells tested (thin colored lines; thick blue
line: mean across population). For most cells, the response was significantly correlated only with the last interval. (D) Spatial oddball protocol. A
sequence of N standard stimuli at one location (N = 5-9) was followed by one oddball stimulus at a different location. (E) Response of example cell
(normalized to non-adapted response) to oddball protocol (dotted lines: individual tirals, N = 10; thick line and shaded area: mean + standard
deviation). Response to the oddball was significantly weaker than the non-adapted response (p < 107*, bootstrap) and not significantly different from
the response to the last standard stimulus (p = 0.45, bootstrap). (F) Normalized response of all adapting cells tested with the spatial oddball protocol
(dashed lines: individual cells, N = 6; thick line and shaded area: mean + standard deviation). Population response to the oddball was significantly
weaker than the non-adapted response (p = 0.001, bootstrap) and not significantly different from response to the last standard stimulus (p = 0.2,
bootstrap). **', p < 0.01; ***', p < 0.001; n.s., not significant.

DOI: https://doi.org/10.7554/eLife.36769.014

The following figure supplements are available for figure 5:

Figure supplement 1. Response adaptation to periodic motion.

DOI: https://doi.org/10.7554/eLife.36769.015

Figure supplement 2. PG Visual responses.

DOI: https://doi.org/10.7554/eLife.36769.016

distribution with the current value of the rate parameter A (Figure 6A). The parameter 8 determines
the extent to which past intervals in the sequence affect the current state (Figure 6B). For instance,
B=0 signifies complete exhaustion of the resource at each and every encounter. For such a cell,
therefore, the firing rate increases monotonically as a function of the last time interval (with the
dependence taking the form of a saturating exponential function) regardless of past intervals. In
other words, B =0 indicates a completely history-independent cell, as defined above. As
B approaches unity the memory of past intervals becomes more dominant, for example, a succession
of short intervals will yield progressively weaker responses.

All 15 adapting cells had statistically significant correlations between the responses and the fitted
rate parameter {T,} (p < 0.05, random permutations, see Figure 6—figure supplement 1A, B).
Consistent with the results in the previous section, most adapting cells had an extremely low value
of B (see parameter distributions in Figure 6—figure supplement 1); 33% of the cells (5/15) were
best fitted with B8 = 0 (see example in Figure 5B), the median 8 was 0.12 and only 13% (2/15)
had B> 0.5. Hence, most cells were indeed predominantly affected only by the very last time interval.
The fitted recovery time-scales were in the range 2.6-25.3s (see Figure 6—figure supplement 1C).
Note, however, that this largely reflects the range explored with our stimulation protocol (1-30s
intervals); it is quite probable that PG contains faster cells (i.e., with 1< 1s) that appear to be 'non-
adapting’ under this protocol, as well as slower cells (i.e., with T>30s) that quickly cease responding
and were therefore not recorded from.

Using this model, we simulated the response of a population of adapting PG cells to random
interval sequences. A Maximum-Likelihood Estimator (MLE, see Materials and methods) was used to
decode the most recent interval from the population response to each encounter. To demonstrate
this approach, we used a homogeneous population of identical memoryless neurons (8 = 0). At
intervals shorter than the cells’ adaptation time-constant T the MLE was approximately unbiased
(Figure 6C) and saturated the Cramér-Rao lower error bound (CRLB, Figure 6D). The error
increased with the decoded time interval T and baseline spontaneous activity c and decreased with
population size N and response gain a (Figure 6E-G). Finally, we checked the effect of non-zero
adaptation memory (8>0) while still using the same memoryless MLE decoder (constructed by fit-
ting a memoryless model to the simulated responses). The estimation error and bias were nearly
unchanged up to B = 0.2 (Figure 6H). We conclude that the response of the majority of PG adapting
cells to an encounter can be used to estimate the time interval elapsed prior to that encounter, using
a simple, memoryless decoder.

It is important to note that the population model mentioned above assumes that the responses
of individual cells are statistically independent given the interval sequence. This assumption may not
hold in certain scenarios, such as the existence of a latent state variable (e.g. arousal) modulating
the overall population responsiveness. Such correlations across the population, if not taken into
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Figure 6. Adaptation model and Maximum Likelihood Estimation of time inteval (A) Block diagram of adaptation model, which includes three stages: a
dynamic latent state variable x with memory parameter B and exponential recovery with time-constant 7; a static non-negative mapping from state x to
firing parameter A, with gain parameter a and baseline parameter ¢; and a stochastic spike-count generator (Poisson random variable with

parameter A). (B) Examples of state variable dynamics due to a random encounter sequence, for different values of 8. Note that when B = 0, each
encounter entails complete reset of x to 0, thus generating the history independence property. (C) MLE of time interval with a homogeneous
population. Grey circles: individual estimations; blue curve: mean; black line: identity diagonal. Inset: estimation bias. (D) Blue: root-mean-squared
estimation error (RMSE, log scale) vs. time interval. Red: Cramér-Rao Lower Bound (CRLB). (E) RMSE vs baseline activity c. (F) RMSE (log scale) vs.
response gain a. (G) RMSE(log scale) vs. population size N. (H) RMSE for different values of B. Inset: estimation bias. In all simulations

B=0, T=10s, a=10, ¢ =0, N =500, T = 5 unless stated otherwise.

DOI: https://doi.org/10.7554/eLife.36769.017

The following figure supplement is available for figure 6:

Figure supplement 1. Empirical distributions of model parameters.
DOI: https://doi.org/10.7554/eLife.36769.018

account in the decoding algorithm, would degrade the estimation accuracy. One possible solution
to this could be based on the population of non-adapting cells (55%, 18/33) which, by definition, are
not significantly affected by the temporal pattern of stimulation but might be affected by such
global modulations. Thus, this population may convey sufficient information to enable estimation of
such confounding variables and correct the temporal estimation accordingly.
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PG activity corresponds to observed path integration acuity

Can PG activity be used to explain features of spatial behavior in freely-swimming electric fish? To
check this possibility, we must first measure the time-intervals being memorized by fish conducting a
spatial learning task, as well as the error in the fish’s estimation of these intervals. To this end we
used previously published data from spatial learning experiments conducted in our lab (Jun et al.,
2016). In these experiments fish were trained to find food in a specific location in complete dark-
ness. This was performed either with or without the aid of landmarks. Since only the short-range
electrosense was available to the fish, they had to use path-integration from the encountered objects
to the food location. In other words, the fish had to memorize the intervals/distances between these
encounters in order to improve its behavioral performance and find the food more efficiently. There-
fore, we measured the time-interval and the distance traveled by the trained fish from the last
encounter with an object (tank wall or landmark) to the food in each trial, either with (Figure 7A) or
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Figure 7. Path integration accuracy measured in behaving fish. (A) Fish navigating to food placed at designated location (white '+’ sign) with the aid of
landmarks (black silhouettes). Orange line: cruising distance from the last encounter (3 cm from landmark or 6 cm from wall, white contours) to the
detection of the food (3 cm from food, black contour around white '+’ sign). (B) Same as A in an experiment with no landmarks. Note the increase in
traveled path. (C) Cumulative distribution functions (CDF) of the distances from last encounter to food, with (blue) and without (red) landmarks. Inset:
CDFs of time elapsed from last encounter to food. (D) Fish searching for missing food in a probe trial with landmarks. Heat map: visit histogram;
colored ovals: 2-D Gaussian fitting of histogram; the spatial error is the distance from fitted Gaussian center (white 'x’) to the memorized food location
(white '+). (E) Probe trial without landmarks. Note the increase in error compared with panel D. (F) Cumulative distribution functions (CDF) of the fish’s
spatial errors, with (blue) and without (red) landmarks. Inset: CDFs of the temporal errors, obtained by dividing the spatial errors by the fish’s average
velocity.

DOV https://doi.org/10.7554/eLife.36769.019
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without landmarks (Figure 7B). As one might expect, these intervals were longer in the absence of
landmarks (Figure 7C).

Next, in order to estimate the fish’s temporal accuracy, we randomly performed ‘probe’ trials in
which no food was present in the arena. In these trials the fish vigorously searched for the missing
food around its estimated position. We measured the distance between the center of the searched
area and the designated food location to obtain the fish’s spatial error (Figure 7D, with landmarks;
Figure 7E, without landmarks). This error increased in the absence of landmarks as well (Figure 7F).
Dividing this error by the median velocity in each trial yielded the temporal error, that is the error in
the fish’s estimation of the time elapsed between object encounters and the estimated food location
(Figure 7F, inset). Thus, this behavioral analysis yielded the relation between the memorized time-
intervals and the estimation error of this variable in two different scenarios.

PG is the only source of sensory information for the dorsolateral pallium (DL), the likely site of
spatial memory (Rodriguez et al., 2002). Therefore, we hypothesized that the history-independent
adapting PG cells provide DL with one necessary component for path integration: the temporal
sequence of object encounters (the two other components are heading-direction and linear velocity).
How many adapting PG cells are required to achieve the behavioral temporal acuity observed as
described above? We constructed a heterogeneous population model using the empirically
obtained parameters (8 was set to O for all neurons to simplify the simulations). This model was then
stimulated at random time-intervals, which were then decoded from the population response using
MLE. This estimation was approximately unbiased across the entire range tested (Figure 8A). We
compared the simulated estimation error, as well as the analytically computed CRLB for the hetero-
geneous population, to the behavioral temporal results obtained with and without landmarks
(Figure 8B). We also performed the comparison in spatial terms by using the fishes' average velocity
to convert the model’s results into units of distance (Figure 8C). The simulated PG population
yielded temporal and spatial estimation errors comparable to those displayed in behavior (boxplots
in Figure 8B, C), both with and without landmarks, using only ~500 adapting cells. The lateral subdi-
vision of PG (PGlI), in which most motion-responsive cells were found, contains about 60,000 cells
(Trinh et al., 2016). Based on our data, we can estimate that over 9,000 of these are memoryless
adapting cells (a conservative estimate using only strictly history-independent cells with 8 =0, 5/33
or 15%). Thus, we hypothesize that the number of PGl cells is sufficient to attain the observed behav-
ioral precision, even when additional encoding errors (e.g. in heading and velocity estimation) are
taken into account. Taken together, our simulations suggest that time-interval encoding in PG can
consistently account for the observed behavioral precision of spatial learning. It should be noted
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Figure 8. PG simulation explains animals’ spatial and temporal behavioral accuracy. (A) Distribution of estimated time interval vs. actual time interval
using a heterogeneous population (N = 500 cells). Estimation is approximately unbiased: the mean (blue line) follows the identity diagonal. (B)
Temporal representation. Circles: mean error obtained numerically with 100 (yellow), 500 (brown) and 2000 (black) cells. Curves: CRLB computed
analytically. Two-dimensional boxplots: distribution of behavioral temporal estimation errors vs. time from last encounter (blue: with landmarks, red:
without landmarks, see Figure 7). (C) Spatial representation. MLE temporal results were converted to distance by multiplying by the median velocity
reported for navigating fish (12 cm/s) (Jun et al., 2016).

DOI: https://doi.org/10.7554/eLife.36769.020
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that the validity of this computational analysis relies on our (admittedly simple) model correctly cap-
turing the neuronal response dynamics. Finer details, such as the inter-dependency between the
model’s various parameters, were not taken into account in this study. However, it seems reasonable
to suggest that the plentitude of PGI cells provides a large margin of error to accommodate such
extensions.

Discussion

Our results suggest the following space-to-time transformation scheme: PG derives a sequence of
discrete novelty events (encounters) from OT activity. The remarkable history-independent adapta-
tion process provides an accessible, accurate and unbiased representation of the time intervals
between encounters. We have found visually-responsive PG cells displaying similar adaptation fea-
tures (Figure 5—figure supplement 2), suggesting that this mechanism is implemented across mul-
tiple sensory modalities. The elimination of egocentric topographic information in PG - both in the
response itself and in its adaptation — ensures that the encoding of time is invariant to the specific
body part encountering the object. This temporal information is then transmitted to DL, which can
use it to integrate the fish’s swim velocity to obtain distance-traveled, a key allocentric variable. For
fish, the necessary velocity information may be provided by the lateral-line system (Chagnaud et al.,
2007, Oteiza et al., 2017); several lateral-line responsive PG units were encountered in our record-
ings (Figure 3—figure supplement 1). Finally, DL can combine the distance information with instan-
taneous heading-direction (vestibular system, Straka and Baker, 2013; Yoder and Taube, 2014) to
yield the animal’s allocentric spatial position (Etienne and Jeffery, 2004). A recent study in zebrafish
suggests that DL neurons can indeed process temporal information on the long time-scales dis-
cussed here (Cheng et al., 2014). Our computational analysis demonstrates that the PG temporal
information is sufficient to account for the spatial acuity displayed in behavioral studies of gymnoti-
form fish utilizing electrosensory information alone (Figure 8).

This space-to-time mechanism may shed light on the primitive basis of egocentric-to-allocentric
transformations. Short-range sensing, used by ancestor species living in low-visibility environments,
necessitated the perception of space through temporal sequences of object encounters. With the
evolution of long-range sensory systems such as diurnal vision (Maclver et al., 2017), simultaneous
apprehension of the spatial relations of environmental features became possible. The neural mecha-
nisms implementing sequential (space-to-time) spatial inference and simultaneous spatial inference
presumably both exist in mammals, for example, we can acquire a map of relative object locations
by looking at a scene from afar, or by walking and sequentially encountering landmarks with our
eyes closed. Whether the sequential or the simultaneous spatial-inference is more dominant may
depend on the species (e.g., nocturnal or diurnal) and on context (e.g., open field or underground
burrows). However, it is not clear whether sequentially versus simultaneously-acquired spatial knowl-
edge is processed in a common circuit. Indeed, clinical case studies on the regaining of eyesight in
blind humans indicate that sequential and simultaneous spatial perceptions are fundamentally differ-
ent, and may therefore involve two distinct computations and neuronal pathways (Sacks, 1995). The
population of thalamic neurons that we discovered may provide an essential component underlying
one of these two major computations — the encoding of sequential temporal information — and we
hypothesize that such neurons underlie sequential spatial learning in all vertebrates.

There is substantial evidence indicating that the pathway studied here indeed has parallels in
other vertebrates, and specifically in mammals. PG’s homology to posterior thalamic nuclei is sup-
ported by previously published anatomical and developmental findings (Giassi et al., 2012a;
Ishikawa et al., 2007, Mueller, 2012), as well as by physiological (Figure 1B,C) and molecular (Fig-
ure 1—figure supplement 1) results presented here. The thalamic pulvinar nucleus is particularly
similar to PG in that it receives direct tectal input (Berman and Wurtz, 2011). Its involvement in
visual attention and saliency in primates (Robinson and Petersen, 1992) corresponds to PG's
involvement in novelty detection (Figure 2). Moreover, pulvinar lesions are associated with saccadic
abnormalities and deficits in the perception of complex visual scenes (Arend et al., 2008), suggest-
ing a link to the sequential mode of spatial learning. Komura et al. (2001) demonstrated that poste-
rior thalamic regions (including the rodent equivalent of the pulvinar) can implement interval timing
computations over long time-scales (>>1 s); however, the mechanistic basis for these computations
has not been identified (Simen et al., 2011) and potential contributions to path integration have not
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been explicated. A recent paper (Paton and Buonomano, 2018) reviewed models of temporal
encoding based on recurrent neural networks. Further studies will be required to determine whether
the novel adaptation encoding mechanism in PG engages the downstream recurrent networks of
DD and DL to produce refined estimates of the time interval between salient sensory and/or motor
events. Finally, a recent study in rodents demonstrated spatially non-specific adaptation in VPM
(Jubran et al., 2016), a posterior thalamic nucleus responding to vibrissal object encounters
(Yu et al., 2006). Taken together, we hypothesize that thalamic space-to-time mechanisms akin to
those presented here play an important role in mammalian sequential spatial learning, especially in
nocturnal animals relying on sparse sensory cues (Save et al., 1998).

The telencephalic target of PG, DL, resembles the mammalian hippocampus not only in function,
as revealed in lesion studies (Rodriguez et al., 2002), but also in development, gross circuitry and
gene expression (Elliott et al., 2017). The role of the hippocampus in spatial learning and navigation
is well established, and hippocampal neural correlates of allocentric spatial variables have been
exquisitely described (Barry and Burgess, 2014; Buzsaki and Moser, 2013). There is also evidence
for the importance of time coding in the mammalian hippocampus: ‘Time cells’ responsive to
elapsed time have been reported and, in some cases, these cells also respond at specific spatial loci
(Eichenbaum, 2014). Furthermore, a recent study on the representation of goals in the hippocam-
pus found cells encoding the length/duration of the traveled path (Sarel et al., 2017). The mecha-
nism we have found may therefore contribute to creating temporal coding in the hippocampus, not
just in the context of egocentric-to-allocentric transformations but rather whenever expectations
associated with specific time intervals need to be generated. It should be noted, however, that
unlike DL's direct thalamic input via the PG bottleneck, the hippocampus receives sensory and motor
information primarily via the cortex. Furthermore, multiple bi-directional pathways connect the mam-
malian sensory and motor cortical regions with the hippocampal network. Pinpointing the exact loci
where egocentric-to-allocentric transformations may take place in the mammalian brain is therefore
extremely challenging. We propose that this transformation is initiated in the mammalian thalamus
where history-independent adaptation also encodes time between encounter events. Finally, we pro-
pose that this thalamic output contributes to the generation of an allocentric spatial representation
in the mammalian hippocampus.

In this contribution, we propose a hypothesis about how gymnotiform fish, and perhaps verte-
brates in general, generate their representation of position relative to the environment. Future
experiments could test the predictions entailed by this hypothesis. Behaviorally, our model implies
that the fish’s sense of position is critically dependent on its last encounter with an object. Further
behavioral studies of spatial learning could elucidate this relationship, for example, by manipulating
the objects’ arrangement relative to the navigation target. Combining these studies with chronic
recordings of PG and its pallial targets in freely navigating fish will permit testing of our proposed
space-to-time neural transformation scheme.

Materials and methods

Experimental model

All procedures were approved by the University of Ottawa Animal Care and follow guidelines estab-
lished by the Society for Neuroscience. Apteronotus leptorhynchus fish (imported from natural habi-
tats in South America) were kept at 28°C in community tanks. Fish were deeply anesthetized with
0.2% 3-aminobenzoic ethyl ester (MS-222; Sigma-Aldrich, St. Louis, MO; RRID: SCR_008988) in water
just before surgery or tissue preparation.

Surgical procedure for in-vivo recordings

Surgery was performed to expose the rostral cerebellum, lateral tectum and caudal pallium. Immedi-
ately following surgery, fish were immobilized with an injection of the paralytic pancuronium bro-
mide (0.2% weight/volume), which has no effect on the neurogenic discharge of the electric organ
that produces the fish’s electric field. The animal was then transferred into a large tank of water
(27°C; electrical conductivity between 100-150 uS cm™ ") and a custom holder was used to stabilize
the head during recordings. All fish were monitored for signs of stress and allowed to acclimatize
before commencing stimulation protocols.
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Custom made stereotrodes or tritrodes were made of 25 um diameter Ni-Cr wire (California Fine
Wires). Each electrode was manually glued to a pulled filamented glass pipette (P-1000 Micropipette
Puller, Sutter Instrument, Novato, CA); the glass pipette provided mechanical rigidity that allowed
advancing the tetrode to the deep-lying PG. Prior to recording, tetrode tips were gold-plated
(NanoZ 1.4, Multi Channel Systems, Reutlingen, Germany) to obtain 200-300 kOhm impedance at 1
kHz. The electrode was positioned above the brain according to stereotaxic brain atlas coordinates
(150-300 um caudal to T26 and 800-1000 pum lateral to midline [Maler et al., 1991]), and lowered
using a micropositioner (Model 2662, David Kopf Instruments, Tujunga, CA) while delivering visual
and electrosensory stimuli. Tectal responses to such stimuli (Bastian, 1982) were usually detected
twice, around 1200 um and around 1900 um ventral to the top of cerebellum (as expected from the
curved shape of OT). The electrode usually then transversed nucleus Electrosensorius, producing
weak multi-unit responses to electrocommunication stimuli around 2300-2500 um
(Heiligenberg et al., 1991). PG units were usually encountered between 2800 um and 3400 um ven-
tral to the top of the cerebellum, and were easily identified due to their characteristic rapid spike
bursts (Figure 1B,C). Differential extracellular voltage was obtained by using one stereotrode/tri-
trode channel as reference. This enabled near-complete cancellation of the electric organ discharge
(EOD) interference.

We report on the responses of 84 PG neurons responsive to object motion; several motion proto-
cols were used and the sample size for each protocol is mentioned in context. We also found PG
cells responding to electrocommunication signals, mostly within the medial subdivision of PG (PGm).
As expected from the sparse retinal input to OT (Sas and Maler, 1986), we recorded only a small
number (n = 19) of PG cells responsive to visual input (Figure 5—figure supplement 2), mostly in
more ventral portions of PG (Figure 1—figure supplement 4). In addition, we identified a small
number of cells responsive to passive electrosensory (Grewe et al., 2017) (ampullary receptors,
n = 27), acoustic (n = 7) and lateral line (n = 7, Figure 3—figure supplement 1) stimulation — but did
not attempt to further characterize their coding properties.

Cell responses were initially manually tested with brass and plastic spheres. Cells responding to
both were also tested with an electrically neutral gel ball made of 15% agarose in tank water to
exclude lateral-line responses (Heiligenberg, 1973) (Figure 3—figure supplement 1). A plastic or
brass sphere (1.21 cm diameter) was connected to an electromechanical positioner (Vix 250IM drive
and PROmech LP28 linear positioner, Parker Hannifin, Cleveland, OH), which was pre-programmed
for the appropriate motion sequence and initiated by outputs from our data acquisition software
(Spike2, Cambridge Electronic Designs, Cambridge, UK). Typically, a trapezoidal velocity profile was
used with 150 cm/s? acceleration and 5 cm/s peak velocity, and total distance in either direction of 8
cm (longitudinal) or 5 cm (transverse); due to technical limitations, each cell was recorded using only
one direction of motion (longitudinal or transverse). For protocols involving motion in two axes
(receptive field sampling, Oddball), the object was attached to a second electromechanical posi-
tioner (L12-100-50-12-P linear actuator, Firgelli Technologies, Ferndale, WA), which was mounted
perpendicularly to the first one. In order to measure the receptive field (RF) size, we used one motor
to repeatedly perform transverse object motion (towards and away from the fish) while a second
motor was used to randomly change the longitudinal position between repetitions. This protocol
was performed on a total of 27 cells. To check the spatial specificity of the adaptation process (i.e. if
it is affecting only the body location experiencing the encounters or a whole-body effect), we per-
formed a spatial oddball experiment: First, a series of N ‘standard’ encounters (in and out transverse
object motion, N = 5-9) were given in rapid succession at one location (e.g. the head); the (N + 1)yth
encounter was given at a different location (e.g. the trunk) while maintaining the same time-interval
between encounters (3-5 s, the second motor was used to quickly switch positions). Each such series
was followed by a long recovery period ( > 30 s) and then repeated in the opposite direction. This
was performed on a total of 14 cells, out of which six were found to be adapting (in either direction).

Histology

In the initial experiments the location of PG was verified by preparing histological sections and locat-
ing the electrode track marks (Figure 1—figure supplement 4). After recordings were complete,
the fish was deeply anesthetized using tricaine methanesulfonate (MS-222 0.2 g/L; Sigma-Aldrich,
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St-Louis, MO) and transcardially perfused with 4% paraformaldehyde, 0.1% glutaraldehyde, and
0.2% picric acid in 0.1 M PBS pH 7.4. Brains were removed and incubated overnight in a solution of
4% paraformaldehyde, 0.2% picric acid, and 15% sucrose in 0.1 M PBS pH 7.4 at 4°C. Cryostat sec-
tions were cut at 25 um in the transverse plane and mounted on Superfrost Plus glass slides (Fisher
Scientific, Pittsburgh, PA). All sections were counterstained with green fluorescent Nissl reagent
1:300 (Molecular Probes, Eugene, OR; NeuroTrace 500/525 green-fluorescent Nissl Stain #N21480,
RRID: SCR_013318) in PBS for 20 min at room temperature.

Expression of T-type Ca®* channel a-subunits

Three adult male fish were anesthetized. Ice-cold ACSF was dripped on the head while the skull was
removed and brains quickly removed and submerged in ice-cold ACSF. PG and DL brain regions
were superficially located (Maler et al., 1991), identified, dissected out and stored at —20°C. Tissues
were weighted and total RNA was purified using Trizol (Sigma-Aldrich) according to the manufac-
turer’s recommendations. Contaminating genomic DNA was digested with DNAse1, total RNA was
then precipitated overnight at —20°C, resuspended in nuclease-free water and quantified by spec-
troscopy. 300 ng of total RNA were used for first strand cDNA synthesis using the Maxima H Minus
First Strand cDNA Synthesis Kit (K1681; ThermoFisher). PCR were made with the Taq polymerase
(EP0402; ThermoFisher) according to manufacturer’ recommendations for 35 cycles using the follow-
ing primer pairs: G amplicon (301 bp), direct: 5'-CGACACCTTCCGCAAAATCG-3’, reverse: 5'-
AGCACAGACAGACCTCCGCc-3'; H amplicon (338 bp), direct: 5'-GGGACGATTTCAGGGACAGG-3',
reverse: 5'-CACTCGCAGCAGACGGAA-3’; | amplicon (355 bp), direct: 5'-TGGGATGAGATTGGAG
TGAAAC-3', reverse: 5'-AGCGGACCAGCTTAATGACC-3'. Amplicons were then migrated on a 1%
agarose Et-Br gel and photographed with a BIO-RAD Gel Doc System.

Quantification and statistical analysis

Preprocessing

Data were acquired using Spike2 (Cambridge Electronic Designs, Cambridge, UK) and analyzed in
Matlab (MathWorks, Natick, MA). Single units were sorted offline by performing principal compo-
nent and clustering analyses. Units were considered to be well-separated and to represent individual
neurons, only if (a) their spike shapes were homogenous over time and did not overlap with other
units or noise; and (b) the unit exhibited refractory period of > 1 ms in autocorrelation histograms
(Figure 1—figure supplement 3).

Burst analysis

Any spike preceded or followed by an ISI < 8 ms was regarded as one participating in a burst. This
was justified by observing the ISI first-return maps (Ramcharan et al., 2005), which showed charac-
teristic clusters separated around 8 ms. To compute the burst fraction, the number of spikes partici-
pating in bursts was divided by the total number of spikes emitted by the unit.

Information content
To determine the information the spiking response r contains on object position p, the normalized

e H(rlp)
T H() T H(r) '

is the information entropy. The conditional entropy H(r[p) was calculated by binning the responses
obtained in the RF sampling protocol (Figure 2) into 24 bins and calculating the conditional
response (spike count) distribution in each bin. Note that 0 < U (rlp) < 1, with U(r|p) = O when the
spiking is completely independent of position, and U(r[p) = 1 when the firing is completely predict-
able given the object position.

mutual information was estimated: U(r|p) where [ is the mutual information and H

Response categorization

Motion response was categorized according to the epochs during which the cells’ firing rate was at
least twice the spontaneous rate (i.e. between motions). These epochs were defined as follows:
motion onset: the first cm of motion in either direction; encounter: up to 2 cm from the skin; proxim-
ity: closer than 2 cm from the skin; motion offset: up to 200 ms after motion secession in either
direction.
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Statistics

In all paired comparisons, the bootstrap method (5000 random redistributions without replacement)
was employed to estimate statistical significance. Random permutations were used to evaluate sig-
nificance of correlations (5000 random permutations without replacement). Sample sizes were deter-
mined by statistical requirements, aiming at confidence levels > 95%. No statistical methods were
used to pre-determine sample sizes but our sample sizes are similar to those generally employed in
the field. No randomization or blinding was used is this study.

Dynamic adaptation model

The random interval protocol (Figure 5A) produced for each cell an interval (input) vector {T,,} and a
spike count response (output) vector {R,} (count computed for each unit in a time-window deter-
mined by its response type, see Figure 3). For some of the cells, a slow decline in response due to
experimental instability was corrected by dividing the response time course by a least-squared fitted
slow ( > 10 min) exponential decay. The model (Figure 6) assumes each neuron has a latent state
variable x with dynamics following each encounter given by

xnzl—ef%(l—ﬁxn,l) 1

where T,, is the n" time interval in the sequence, B is the memory coefficient (0 <8 <1) and t the
recovery time-constant. Note that x is always in the range [0,1]. Equation (1) is in fact the between-
event, discrete-time solution of the standard resource-based depression model of Tsodyks and
Markram (Tsodyks and Markram, 1997), where B =1 — Ug; we chose this formalization so that the
extent of history-dependence in the adaptation dynamics will be emphasized (i.e., B8 =0 signifies
complete history independence and history dependence increases as 8 — 1).

The neuron’s firing parameter A, at the n' encounter is A,, = [ax, + ¢, where a > 0, ceR and [],
denotes non-negative rectification. Fitting of a and ¢ was performed using linear least squares, while
B and t were found by exhaustive search on a 2-D grid. Fitting was deemed successful if the parame-
ter values generated by the model were correlated with the actual responses with P < 0.05 (random
permutations, Figure 6—figure supplement 1). This was true for 15/33 cells. Note that when B=0
('history-independent’ adaptation), we get:

/\,,:[ (1_e f)+c]+7 2

which corresponds to the solid blue line in Figure 5B.

Finally, {t,} were used as the parameters of Poisson random variables to generate stochastic
spike-counts {R,}, so that the number of spikes emitted at each encounter was distributed according
to:

o k=0123.. 3)

Maximume-Likelihood estimation
Now we assume a population of N history-independent (3=0) neurons, with g;,¢;, and 1; are the indi-
vidual parameters of the j* neuron and R/ is its response to the n'" encounter. We also assume that

{R/,'I};VZ1 are independent Poisson random variables (r.v.’s), with each r.v. distributed according to

equation (3). The likelihood of this population response is therefore

y ([a(1-c#)a) )" (b C5)L)

LlrIRLY) = PR - TT T |

and the log-likelihood is

N

I(T,|{R}) Z ({aj(l —ef%) +Cj:|+) - [aj(l —e7%> +c_,~L—log(R£,!) .
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The Maximum-Likelihood Estimator of the last time interval is therefore obtained by finding the

time interval T, that maximizes this likelihood:

Tn

N Ta
TMLE _ R [ ,(1 _ *T> } — { .(1 — 77) ] .
" argmax jEZl Llogl |a; e V)4 . a; e +¢ N

7,>0

This maximum was found numerically for each generated time interval.

Homogeneous population model
To explore the coding properties of the model we used a population of N identical cells

(tj =1, a; = a; ¢; = ¢). Assuming for a moment a(l — e*%> + ¢>0, the MLE for the population is the

solution of:
d(T,) N~ (1 ne R, _ 4
dT, _Zla 7Ee ' - ( j,”,”LE) =0 (4)
= all—e "7 |+c
N .
R, —0

N2l
J=1 a(l—e’ T >+c

MLE
Tu

1.
a+chZRJn =ae T
=

N .
a+c— % R,
TMLE — _glog| ——1 | —1log

a A
a—l—c—N;R’n
=

a

TMLE
One can easily show that this solution indeed maintains a(l —e*T) +¢>0. Note that when

N .
YR, >(a+c) then T has no real solution (i.e., likelihood function has no finite maximum). In

=
these cases, the estimator output is ignored.
Since for f(X) = log (%), E(f(X)) # f(E(X) the MLE is biased. However, if we assume T < 1, then

we can approximate:

for which:

E{R{I}(T,’l”LE) g'c()ﬂ) = T(%) :'c(l —e’%> ~T,

a

Cramér-Rao lower bound
To compute the Fisher information for any time T>0, recall the identity:

18 of 23

Wallach et al. eLife 2018;7:€36769. DOI: https://doi.org/10.7554/eLife.36769


https://doi.org/10.7554/eLife.36769

LI F E Neuroscience
I(T):—E{Rj}{w}:—E{Rj} £ Z—a—‘jefﬁ [ , where the sum is

dT - T -z
J aj| 1—e I |+¢

restricted to those neurons with positive activity on that value of T, that is,

{iel:N]A a/-(l — 37%> + ¢;>0}. Therefore:

Rj Rl _T
I( E{R‘ Z 26 1; — - _ aj e ;f

a.i(l—fﬁ)ﬂ?j ( (l—e J>+cj>2

j a. J .
Z% E{R'} d.lE{f‘ } o
7 <1—e 1)+c, <aj<1_efﬁ)+cj)
. 1 . . 71
Since R’ are Poisson r.v. with rate A; =g (1 —e ‘J) +c:
&-2 _2T
I(T) = ! e’

Z’cf (aj (1 — e_%> +cj)

For a homogeneous population (Figure 6C-G), this becomes:

2
N .
I(T) = 2 e

SAESE)

Therefore, the CRLB (assuming zero bias) becomes:

a-2 iy

Var{Tmlc}Z Z (-(l—; \)_0_6)67?

7 riza

Simulation of bootstrap population

The set of parameter values obtained for all 15 fitted adapting cells (a, ¢ and 1) were randomly drawn
from to generate a bootstrap population of N cells (N=100, 500 and 2000). Gaussian noise with stan-
dard deviation of 25% was added to the parameters to obtain smoother distributions. The memory
variable B was set to 0 for all cells to simplify simulations. We also assumed that spiking across the
population was statistically independent with Poisson statistics given the last interval, that is
p(R,R|T,) = p(R.,|T,)p(R,,|T,) where R is the response of neuron i to time interval n. Random
intervals were drawn in the range 1-30 s, and for each interval a vector of responses (spike counts)

across the population {R/ } was generated, where N is the population size.

Analysis of behavioral data
Published spatial learning data (Jun et al., 2016) were used; methods used for the generation of
these data are explained in detail in that study. Briefly, South American weakly electric fish (Gymno-
tus sp.) were trained to find food (a mealworm restrained to a suction cup) in complete darkness, at
a specific location within a 150 cm diameter custom made circular arena. In experiments with land-
marks, four acrylic objects (two square prisms, 5.6 and 9.0 cm/side and two cylinders, 7.6 cm and
10.2 cm diameter) were placed in fixed locations within the arena. In each daily session, each fish
was given four trials to find the food. After a 12-session training stage, animal performance stabi-
lized, and four test sessions were performed in which food was omitted in one randomly assigned
‘probe’ trial. Only data from these four last sessions were analyzed here. A total of four fish were
used with landmarks and eight fish were used without landmarks. Fish behavior was video recorded
and tracked as previously described (Jun et al., 2014).

The cruising time/distance from the last encounter (with either a landmark or the tank wall) to the
location of the food is the epoch/trajectory the fish had to memorize in order to perform path
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integration. This was measured in each of the ‘food’ trials (Figure 7A,B); the segment from the last
encounter (3 cm from a landmark or 6 cm from the arena wall) to the detection of food (3 cm from
food location) was found and the trajectory’s total length and duration were computed. The spatial
‘decoding’ errors were obtained by measuring where the fish searched for the missing food in the
probe trials (Figure 7D,E); the normalized histogram of the visiting frequency across space (heat
map) was fitted with a two-dimensional Gaussian function:

1 <(x—,u)¢)2+ (y—M')zze(X—Mx)(y_ﬂy)))

P(x,y) =A-exp (2(1 — ) p p o0,
2 ,

y

where L, and 1, are mean parameters; o, and o, are variance parameters; A is a gain parameter
and 6 is the cross correlation parameter. The distance between the Gaussian center (y, 1) (white ‘x’
mark) and the food location (white '+’ mark) is the spatial error; dividing this error by the median
velocity in the trial produces the temporal error.
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