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Reconstruction of the metabolic network of
Pseudomonas aeruginosa to interrogate virulence
factor synthesis
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Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that
may be associated with less potential for resistance than targets in growth-essential
pathways. However, efficacy of virulence-linked targets may be affected by the contribution of
virulence-related genes to metabolism. We evaluate the complex interrelationships between
growth and virulence-linked pathways using a genome-scale metabolic network
reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded recon-
struction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112
virulence-linked genes and virulence factor synthesis pathways that produce 17 unique
compounds. We integrate eight published genome-scale mutant screens to validate gene
essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate
virulence-linked gene distribution across essentiality datasets. Computational screening
further elucidates interconnectivity between inhibition of virulence factor synthesis and
growth. Successful validation of selected gene perturbations using PA14 transposon mutants
demonstrates the utility of model-driven screening of therapeutic targets.
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here is a need for new drugs that effectively inhibit

microbial infection while avoiding the development of

resistance. Traditional antibiotics that inhibit growth of
bacteria by targeting growth-essential functions actively select for
antibiotic-resistant mutants that overtake the infection. This
growth-based selection promotes the rapid development of
resistance and consequently exacerbates infections!, resulting 1n
substantial patient morbidity, mortality and health-care costs?.
Inhibiting mechanisms of infection by targeting the synthesis of
virulence factors (VFs) and virulence-linked genes may be a
promising new therapeutic strategy that avoids growth-based
target selection, improves patient outcomes and mitigates the
spread of resistancel>*. However, genes that contribute to
growth and genes that contribute to virulence are not
necessarily distinct actors in an organism’s genetic network;
understanding the impact of genes on each pathogen directive
(growth versus virulence) is critical to therapy design and
prediction of resistance development.

Virulence-linked genes contribute to survival and fitness within
a host. Many of these genes encode the synthesis pathways of
VFs, pathogen-produced small molecules that are involved in
activities such as iron sequestration and bacterial communication
that enable adaptation to the host environment and enhance
infection potential®®. In targeting the synthesis of these
metabolites, resistance may develop more slowly because of
weakened selection pressure versus traditional targets that
directly impact growth- essentlal catabolism of substrates or cell
wall construction and repair’. However, our understandlng of
the role of virulence-linked genes is evolving’—significant
links between virulence and pathogen metabolism are now
emerging. For example, antibiotic pigments called phenazines
enable opportunistic bacteria to combat the effects of immune cell
oxidative bursts, but these pigments may also induce rewiring of
redox-linked pathways within the pathogen®. Furthermore, the
production of virulence-linked compounds relies on essential
components of central metabolism that connect substrate
catabolism to VF synthesis pathways. A clear division between
therapeutic targets 1mpact1ng growth and virulence is therefore
not straightforward’. We need to map the interconnectivity of
these systems to identify genes that contribute to either or
both systems, determine their function and essentiality in
a clinically relevant environment, and estimate the impact of
their inhibition on virulence versus growth.

To study the relationship between VF synthesis and growth
from a systems level perspective, we used genome-scale metabolic
network models (GEMs). Assembled from annotated genomic
data, GEMs are mathematical frameworks that incorporate
biochemical, genetic and cell phenotypic data and account
for hundreds to thousands of gene-protein-reaction (GPR)
relationships and reaction stoichiometry and directionality’;
they have been used to predict novel drug targets that inhibit
growth!® as well as probe the capability of an organism to
synthesize various metabolites!!, including VFs (ref. 12).

Here, we present a new GEM of Pseudomonas aeruginosa
strain PA14 (iPaull29) as well as an updated GEM of
reference strain P. aeruginosa PAO1 (iPael146). P. aeruginosa
is a Gram-negative opportunistic pathogen capable of develogmg
multi-drug antibiotic resistance, hospital-acquired infections!
and infections in cystic fibrosis patient lungs, burn wounds and
immunocompromised individuals. We validate our GEMs using
substrate utilization data and gene essentiality screens from
transposon mutant libraries and use six previously published
transposon sequencing (Tn-seq) screens to evaluate essential
virulence-linked genes'®™1%, To study the relationship between
VF production and growth, we compare the effect of in silico
gene knockouts on synthesis of biomass versus 17 VFs and
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identified genes uniquely critical for VF production, genes solely
important for the synthesis of biomass, as well as genes involved
in both VF production and biomass production. A case study
of the VF pyoverdine shows the utility of GEMs in probing
network dependencies that offer novel insights into links between
virulence and metabolism that may enhance design of cycled
or combination drug therapies as well as reduce the development
of resistance.

Results

Metabolic network reconstruction of P. aeruginosa. Here,
we present an updated GEM of P. aeruginosa strain PAOL1
(iPael146) as well as a new GEM of P. aeruginosa strain PA14
(iPaull29) (for ease of reference in this study, we refer to
these reconstructions as mPAOl and mPAl4, respectively).
The network reconstruction process began with previous
P. aeruginosa PAO1 GEMs (refs 19,20). We implemented a more
detailed biomass equation, incorporated new biological
information, and curated the model against carbon source
utilization and gene essentiality data (see below). We also
assigned potential roles to 59 and 44 genes annotated as
hypothetical proteins in PAO1 and PA14 genome annotations
from the Pseudomonas Genome Database (PGD), respectively. In
conclusion, the new GEM mPA14 accounts for the function of
1,129 genes, 1,495 reactions and 1,286 metabolites while the
updated GEM mPAOL1 accounts for the function of 1,146 genes,
1,493 reactions and 1,284 metabolites (Fig. 1a). The distribution
of genes, metabolites and reactions in mPA14 across a variety
of KEGG functional categories is shown in Fig. 1b (for the
distribution of mPAOI, see Supplementary Fig. 1).

During curation, we specifically accounted for the synthesis
pathways of several small molecule VFs. P. aeruginosa produces
an array of VFs which can be grouped into several categories
including exopolysaccharides, lipopolysaccharides, phenazines,
quorum  sensing  signal molecules, siderophores and
surfactants?1?2, Table 1 lists the compounds that can be
synthesized by mPAl4—the six italicized factors are new to
mPAO1 and mPA14 compared to previous GEMs. Bolded
dihydroaeruginoic acid is a recently identified PA14-specific VF
included only in mPA14 (ref. 23). Additionally, we evaluated a list
of 454 genes linked to virulence of PAO1, PA14 or both in the
Virulence Factor Annotations tool from the recently updated
PGD to identify model genes that are associated with virulence.
Only 123 of these virulence-linked genes were annotated as part
of a BRITE metabolic pathway by KEGG, and 49 of the 454 genes
were annotated as hypothetical proteins. Using KEGG and
PseudoCAP annotations (functional system annotations
developed by the PGD) as well as literature on VF synthesis,
we focused on accounting for genes relevant to metabolism
and virulence-linked synthesis pathways. Ultimately, there are
112 and 108 virulence- lmked genes incorporated into mPAO1
and mPA14, respectively®*.

Model validation. We used two data types to curate and validate
the models: a carbon source utilization data set and a published
gene essentiality data set. We generated the substrate utilization
data set using BIOLOG phenotype microarrays, which indicated
whether PAO1 and PA14 were able to grow on particular carbon
sources. We then compared these results to model predictions
of biomass production (an approximation of growth) on different
minimal media. After extensive transport reaction curation
and refinement of metabolic pathways, mPA14 and mPAO1l
account for 91 and 93 carbon sources and predict utilization with
accuracies of 81% and 80%, respectively (Supplementary Fig. 2).
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Figure 1 | Network model characteristics. (a) Properties of the updated PAOT model as compared to previously published GEMs for P. aeruginosa,
iMO1056 and iMO1096, as well as properties of the new PA14 model. (b) The number of genes, metabolites and reactions in mPA14 grouped into
functional categories as defined by KEGG (ref. 74). For the distribution of genes, metabolites and reactions in mPAQOT1, see Supplementary Fig. 1.

Category Virulence factor

Table 1 | Small molecules associated with virulence accounted for in mPA14 and mPAO1.

Metabolite ID

Exopolysaccharide Alginate

Lipopolysaccharide A-band-O-antigen
B-band-O-antigen
Lipid A

Chorismate
1-Carboxyphenazine
Pyocyanin

Phenazines

Quorum sensing signal molecules

Siderophores
Pyochelin
Pyoverdine
Salicylate

Surfactant Rhamnolipid

Acyl-homoserine-lactone (AHL)
cis-2-Decenoic acid (DSF)
2-heptyl-4-quinolone (HHQ)
Pseudomonas quinolone signal (PQS)

Dihydroaeruginoic acid (Dha)

cpd17074(c]

cpd17056[c]
cpd17057[c]
cpd17066[c]

cpd00216[c]
cpd17083[c]
cpd01206[c]

cpd17082[c] and cpd08635[c]
cJB00127[c]
cpd17078[c]
cpd17085[c]

cJB0O0126[c]
cpd08828[c]
cPY00164[c]
cpd00599(c]

cpd17081[c] and cpd17080[c]

(ref. 23). The metabolite ID is the compound reference ID used in our models.

The six italicized factors are new additions to mPA14 and mPAOT1 as compared to previous GEMs, and bolded dihydroaeruginoic acid is a recently identified PA14-specific VF included only in mPA14

For the gene essentiality validation, we used a published data
set comprised of the overlap between the essential PAO1 genes
identified in Jacobs et al.?> and the essential PA14 genes identified
in Liberati et al?® by creation of transposon insertion mutant
libraries in a Luria-Bertani (LB) media background. We used this
overlap data set for our curation efforts instead of the individual
libraries because there is a higher confidence in which genes are
essential since they were not disrupted in either of the PAO1 and
PA14 screens and the libraries are validated, publically available
and created with established approaches in rich media. To
compare this overlap data set with our model predictions, we
performed in silico single gene knockouts in our models and
measured the subsequent effects on biomass production.

Ultimately, both mPA14 and mPAO1 can be used to predict
gene essentiality with an accuracy of 91% (Supplementary Fig. 3).

Virulence associations of Tn-seq-based essential genes.
The recent advent of Tn-seq high-throughput screening has
enabled the rapid evaluation of the fitness of a transposon
insertion mutant in a given condition. These screens contribute
important information regarding bacterial survival in specific
contexts. Given our interest in studying the relationship between
growth and virulence, we sought to determine how many
essential genes were also virulence-linked in recent P. aeruginosa
Tn-seq screens.
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Table 2 | Comparison of experimental essentiality screens.

Strain PA14 PAO1

Reference Pier Whiteley Manoil Whiteley Manoil Whiteley Manoil Whiteley
Media LB Sputum LB LB Sputum Sputum Pyruvate Succinate
No. of essential genes 634 510 201 336 224 445 182 641
No. of VF-linked essential genes 49 25 21 20 30 A4 27 54
%VF-linked essential genes 7.73 490 10.45 5.95 13.39 9.21 14.84 8.42

The number of essential genes, virulence-linked essential genes (VF-linked essential genes), and the proportion of essential genes that are virulence-linked for all eight of the transposon mutant screens
analysed. The data are assembled from studies by the Pier Lab in 2013 (ref. 16) and the Whiteley Lab'” and Manoil Lab'® in 2015.

We obtained data from published Tn-seq screens for PAO1
and PA14 in several culturing conditions and identified essential
genes for each individual screen. We then compared these
individual essential gene lists to a list of either PAO1 or PA14
virulence-linked genes from the PGD to identify virulence-linked
essential genes for each screen (Table 2). The number of
virulence-linked essential genes identified across the screens
ranged from 20 in the Whiteley PAO1 LB data set!” to 54 in the
Whiteley PAO1 succinate data set!”. Furthermore, the proportion
of essential genes that were also virulence-linked varied across the
screens, ranging from 4.9% in the Whiteley PA14 sputum data
set!? to 14.8% in the Manoil PAO1 pyruvate data set!'®, This
variability in the percentage of virulence-linked essential genes
may stem from the variability in transposon insertion coverage
of the individual screens. While some screens identified over
600 essential genes'®17, other screens identified less than
200 essential genes'8 in the same media.

The moderate number of virulence-linked genes present in
the Tn-seq screens can partially be explained by the lack
of host selection pressure in the generation of the mutant
libraries and the imperfect replication of in vivo growth
conditions in in vitro studies. Tn-seq screens performed in
infection models have demonstrated that mutants unable to
synthesize certain VFs are unable to colonize the infection site?’,
suggesting that virulence-linked genes may be essential in some
contexts, while elsewhere (such as in liquid culture) they are
unnecessary for bacterial fitness. However, using only Tn-seq
screens that differ by growth media rather than host selection
pressure to contextualize virulence-linked gene essentiality still
shows that some virulence-linked genes have important,
potentially non-virulence related, functions. This analysis
indicates that these genes may play a more focused metabolic
role in the development of infection or are capable of dual
functions linked to both virulence and growth.

To evaluate the potential overlap of virulence-linked genes with
growth activity, we first used mPA14 as a framework to compare
sets of growth essential genes and virulence-linked genes that
have been curated as functionally relevant to metabolic activity
using the Whiteley PA14 sputum screen!’. Figure 2 shows the
model reactions linked to 205 genes required for growth of PA14
in sputum (blue), and the 108 PA14 virulence-linked genes from
the PGD (red). The overlap between reactions associated with
required genes and virulence-linked genes, totalling 21 reactions
(11 genes) are linked to a broad array of systems and present at
high density in central metabolic pathways, amino acids, lipids
and nucleotide metabolism (overlap reactions in purple).
Intriguingly, many reactions associated only with growth or
virulence group together in the same pathways, which may
indicate functional connections even if specific genes are not
shared between the distinct gene sets. This analysis supports the
need for a mechanistic evaluation of virulence-linked genes in the
context of growth.

4

Modelling VF production capabilities. While infection-based
Tn-seq screens have demonstrated that mutants incapable
of VF synthesis lack the ability to infect, it is challenging to
discern whether this occurs due to the inhibited gene’s essentiality
for the expression of virulence-linked compound(s), essentiality
for growth, or essentiality for both”-?8, To address this gap in
knowledge, we employed genome-scale metabolic network
modelling. We implemented a medium that mimics the lung of
cystic fibrosis patients (synthetic cystic fibrosis medium, SCEM)
in order to more closely model in vivo conditions?®. The ability of
P. aeruginosa to maintain decades-long infections in the lungs of
cystic fibrosis patients may be due to both its metabolic
adaptability and deployment of an array of VFs, such that
pathway interconnectivity may proffer unique metabolic benefits
as well as enable resistance to treatment®, Using an in silico
SCFM medium, we performed in silico single-gene knockouts and
assessed the levels of growth inhibition and VF synthesis
inhibition by normalizing the resulting biomass flux and
VF flux to wildtype production levels. By repeating this analysis
for all 17 VFs in our model, we quantitatively compared the broad
effects of simple genetic perturbations on the production of
different VFs versus growth.

Core set of growth-essential genes impact VFs. To study the role
of genes critical to both growth and VF synthesis, we compared
the 116 genes predicted by mPA14 as essential for growth on
SCFM to the genes essential for synthesis of VFs and found
that 46 of the growth-essential genes are also essential for the
production of at least one VF. These 46 genes critical to both
biomass production and virulence are listed in Fig. 3 with their
PseudoCAP category and function and a heatmap showing the
affected VFs. The PseudoCAP category critical for the largest
number of VFs is fatty acid and phospholipid metabolism,
with seven genes predicted to be essential for the production
of at least eight VFs in addition to biomass production.
Additionally, several aro operon genes contributing to aromatic
amino acid synthesis are essential for the production of six VFs in
the phenazine and siderophore families, while an array of genes
involved in purine metabolism fully inhibit only the production
of A-band-O-antigen. Ultimately, this analysis provides a novel
list of genes ranked by their impact on virulence pathways in
addition to growth inhibition, which may assist the design of
therapeutics with broad impact on metabolic processes.

We then expanded our analysis to all genes in our model,
plotting inhibition of each VF versus growth (Fig. 4). Each point
in the resulting plots indicates the level of growth inhibition
(x axis) and VF inhibition (y axis) relative to wild-type for a given
in silico knockout. All data points are transparent such that a high
density of data points results in an increase in colour intensity.
Thus, the colour intensity at the origin of the plots indicates
a high number of gene deletions that have no effect on production
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Figure 2 | Visualization of experimental virulence-linked essential genes. Distribution of virulence-linked genes and growth-essential genes from

experiments in CF sputum visualized across all mPA14 reactions (grey) using MetDraw. Reactions associated with virulence-linked genes (as defined by the
Pseudomonas Genome Database) are highlighted in red, and reactions associated with genes essential to growth in synthetic cystic fibrosis sputum are
shown in blue. Purple reactions are associated with both virulence and growth essentiality. All reactions and metabolites are labelled with unique identifiers

referenced in the model, visible at high magnification and text-searchable.

of either biomass or the indicated VF. Data points in the upper
right corner of each plot represent genes essential to both
VF production and growth, while data points arrayed between
axes indicate the degree of biased impact on growth versus
VF production by a given knockout.

This analysis enabled the identification of non-obvious
relationships between growth and VF production. Unsurpris-
ingly, most gene knockouts resulted in marginal or no growth
defects, as indicated by data point clusters near the origin along
the x axis. This result was mirrored for VF synthesis, with most
gene knockouts also resulting in marginal or no VF production
defects. We hypothesized that VF synthesis would be less robust
to perturbation as compared to growth because these compounds
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rely on the «catabolism of growth substrates prior to
VF anabolism. We instead see that for several VFs, many genes
essential for growth only partially inhibit synthesis when
disrupted. The number of genes essential solely for the
production of a given VF varies considerably, and is not always
correlated with the complexity of the synthesis pathway or final
compound. These results highlight critical differences in the
degree of interconnectivity of VF synthesis and biomass
production across the VFs, which we can evaluate mechanistically
through the use of our computational model.

VFs that are less sensitive to genetic perturbations than
biomass production may have a high degree of redundancy in
their synthesis pathways. For example, relatively few genes impact
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Pathway assignment via PseudoCAP annotation and tabulated count of VFs for which the gene is essential are also included. Impact of a given gene's
deletion is shown as white indicating 0% inhibition and black indicating 100% inhibition.

lipid A, chorismate and 1-carboxyphenazine production without
also impacting growth and no gene is essential solely for the
production of the respective VF. Instead, genes that are essential
for VF production are also essential for growth, thus indicating

6

the high level of integration of VF synthesis with the overall
metabolism of P. aeruginosa. While this integration of VF and
biomass synthesis is expected for lipid A given its presence in
the biomass reaction in the model as an essential component, this
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was a surprising result for chorismate and 1-carboxyphenazine as
we do not consider these essential components. Upon closer
network inspection, we find alternative pathways for the
production of chorismate and multiple isozymes for the synthesis
of 1-carboxyphenazine. Both instances highlight redundancies in
the network that reduce the occurrence of predicted essential
genes unique to these two VFs.

Interestingly, ~B-band-O-antigen and A-band-O-antigen
demonstrate the other extreme—all growth essential genes also
impact the synthesis of both O-antigens to some extent. This case
highlights the dependency of the production of these O-antigens
on some of the biomass components themselves, namely lipid A.
Since the O-antigens rely on the production of lipid A, all the
genes that inhibit the synthesis of lipid A (and, thus, biomass)
also inhibit the synthesis of the O-antigens. This result indicates
the importance of biomass function formulation; here, we retain
a standard list of components for consistency with other models,
but more targeted analyses may improve upon addition and
removal of less integral biomass components.

In contrast to these VFs, there were several VFs that displayed
much less interconnectivity with the rest of the network. For
example, relatively few genes maximally inhibit both growth and
alginate production compared to the other VFs in the model.
Most of the genes that are essential for alginate production have
no impact on growth when the associated function is removed
from the model, thus indicating that the synthesis pathway
for alginate is less highly integrated into the metabolism of
P. aeruginosa. VFs like alginate may be more peripheral to the
general metabolic function of P. aeruginosa due to specialization.
While in vivo studies have highlighted the importance of these
metabolites in maintaining infections®! =34, here we systematically
demonstrate pathway independence from essential metabolic
function.

Interconnectivity of synthesis of pyoverdine and biomass. In
addition to studying the interconnectivity of individual
VF synthesis pathways, this analysis also enabled the investigation
of the role of individual genes. While the disruption of some gene
functions results in a similar response across the VFs, other gene
function disruptions produce a highly varied response, suggesting
that these genes play a unique role in the synthesis of each
VF (example genes circled in Fig. 4). Using the VF pyoverdine
as a reference, when the function of the gene hom, encoding for
homoserine dehydrogenase, is removed, there is a very slight
impact on growth and only marginal impact on each of the VFs,
with pyoverdine synthesis demonstrating the most inhibition
as a result of a hom knockout. Similarly, while a functional
disruption of pvdA, which encodes for L-ornithine N5-oxygenase,
maximally inhibits pyoverdine production, it has no impact on
synthesis of the other VFs accounted for in mPA14.

In contrast, other simulated gene knockouts have more
varied impact on VF inhibition. Functional disruption of gapA,
which encodes for glyceraldehyde-3-phosphate dehydrogenase,
has varied impact on the synthesis of VFs in the network,
illustrated by preservation of pyoverdine production but near
maximal impact on salicylate production. Similarly, while
functional disruption of rpiA, which encodes for ribose-5-
phosphate isomerase, again does not inhibit pyoverdine
production, it does inhibit production of the AHLs incorporated
into mPA14. Likewise, functionally disrupting folD, which
encodes for 5,10-methylene-tetrahydrofolate dehydrogenase,
maximally inhibits pyoverdine production and has no impact
on PQS production. Thus, we can tease out the role of different
genes on the synthesis of different VFs, with some simulated
gene knockouts demonstrating consistent levels of inhibition
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across all of the VFs and others demonstrating varied levels of
inhibition.

Experimental evaluation of pyoverdine mutants. We chose to
extend our investigation of the inhibition of pyoverdine synthesis
because of the important role it has in iron scavenging and the
tractability of experiments measuring pyoverdine production. In
fluorescent Pseudomonads, pyoverdine is the main siderophore,
a molecule that solubilizes iron for use by essential metabolic
processes. It has been implicated in bacterial interactions in
biofilms, it is essential for burn wound colonization, and it is
upregulated in initial CF lung colonization®>~3. Pyoverdine is
also considered a ‘public good’” compound that is produced by
select members of a community to benefit the whole. Thus, the
inhibition of pyoverdine synthesis within the small group of
producer cells may affect the whole community while reducing
the possibility of acquisition and spread of resistance genes>®>°.

To interrogate the relationship between growth and pyoverdine
synthesis, we identified gene function disruptions with varied
impact on pyoverdine synthesis and growth as shown by the
circled points of Fig. 4. We chose pvdA because it was predicted
to be essential for pyoverdine production but not growth.
Conversely, rpiA was chosen because it was predicted to be
essential for growth but not for pyoverdine production. We chose
folD because our model predicted it to be essential for both
growth and pyoverdine production, and hom and gapA because
of their predicted sub-inhibitory effects on pyoverdine production
and growth, respectively. We then investigated the accuracy of
these predictions with literature and experiments using available
transposon mutants.

Mutants for both folD and rpiA were not present in the PA14
genome-wide transposon mutant library?®, suggesting that both
these genes are indeed essential for growth of P. aeruginosa.
Involved in the folate biosynthetic pathway, folD plays a critical
upstream role in the synthesis of several compounds such as
thymidine, purines and various amino acids. Studies have
investigated folD as a potential therapeutic tar§et to kil
a variety of pathogens including P. aeruginosa®*2. Also
important for purine synthesis, rpiA plays a critical role in the
pentose phosphate pathway, converting D-Ribulose-5 to
D-Ribose-5. Due to their growth essentiality, it is not feasible to
study their role in VF synthesis experimentally—we instead use
our computational model to offer unique insight. While mPA14
predicts that rpiA is not important in pyoverdine synthesis via
a simulated knockout, it does predict that folD plays a crucial role,
as evidenced by a simulated knockout resulting in total inhibition
of pyoverdine synthesis. An analysis of pyoverdine synthesis
precursors that cannot be produced after an in silico folD
knockout in mPA14 highlights N5-formyl-N5-hydroxy-1-
ornithine as the missing metabolite. This metabolite is not
included in the much longer list of missing metabolites including
purines that prevent biomass formation by the model. Thus,
while folD may be essential for growth because of its role in
purine synthesis, it appears to be essential for pyoverdine
synthesis because of its role in amino acid metabolism.
Understanding the metabolic interconnectivity of these genes
provides insight into their potential impact on multiple systems if
targeted therapeutically and we are able to determine the role of
growth essential genes in VF synthesis which would otherwise be
intractable.

Using transposon mutants of pvdA, hom and gapA from the
PA14 genome-wide transposon mutant library®®, we performed
absorbance-based assays of pyoverdine production and growth in
SCFM as described in the methods. The extent of growth and
pyoverdine production (normalized to growth) for wild-type
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Figure 5 | Pyoverdine synthesis capabilities in vitro on SCFM. PA14 wild-
type and pvdA, hom and gapA PA14 mutants were grown to stationary phase
in SCFM and growth was measured using OD600 (a). Subsequently, the

supernatants were isolated and the OD405 of each condition’s supernatant
was measured as a proxy for pyoverdine levels. The OD405 was divided by
the OD600 of the culture in order to normalize pyoverdine production to
growth (b). Error bars indicate s.d. among five biological replicates.

PA14 and each mutant strain are shown in Fig. 5a and b,
respectively. As expected, the pvdA mutant showed markedly
decreased pyoverdine production compared to wild-type, as it is
an established pyoverdine assay control directly connected to the
pyoverdine synthesis pathway. Interestingly, the pvdA mutant
resulted in a minor growth defect relative to wild-type. This result
could indicate that the lack of pyoverdine, and thus lack of access
to iron, somewhat hindered the growth of the pvdA mutant. The
hom mutant displayed a marginal growth defect and an
approximately 1.5-fold decrease in pyoverdine production
relative to wild-type. These results are consistent with model
predictions that a hom knockout would result in slight
growth inhibition and significant, but not total, inhibition of
pyoverdine synthesis. Homoserine dehydrogenase, the gene
product of hom, catalyses the reaction converting r-homoserine
to L-aspartate 4-semialdehyde which then gets converted to
1-2,4-diaminobutryate, an important precursor of pyoverdine®’,
Thus, a mutated hom limits the production of L-aspartate
4-semialdehyde, creating a bottleneck in pyoverdine synthesis.
Because, L-aspartate 4-semialdehyde is not a growth-essential
metabolite, both in vitro and in silico, targeting it may specifically
prevent pyoverdine production without strong growth-based
resistance selection. Unlike the pvdA and hom mutants, the gapA
mutant did not exhibit a growth defect, disagreeing with our
model prediction of an approximately 50% reduction in growth.
Additionally, while we predicted that a gapA knockout would not
impact pyoverdine production, we observed that the gapA mutant
did indeed reduce pyoverdine synthesis, albeit to a lesser extent
than the pvdA and hom mutants. gapA encodes for the enzyme
glyceraldehyde-3-phosphate dehydrogenase, which catalyses the
conversion of glyceraldehyde-3-phosphate to 1,3,-biphospho-p-
glycerate, a central reaction in glycolysis. The discrepancy
between our model predictions and experimental results for
both growth and pyoverdine synthesis identifies a ‘gap’ in our
knowledge regarding the function of glyceraldehyde-3-phosphate
dehydrogenase in the overall metabolic network. Thus, we
experimentally tested model predictions regarding genes in both
growth and VF synthesis to tease out the role of genes upstream
of pyoverdine synthesis and identify ‘gaps’ in our current
understanding of P. aeruginosa metabolism.

Discussion
We utilized a novel approach to systematically evaluate the
contribution of metabolic genes to the synthesis of factors critical

to virulence as well as growth at genome-scale using metabolic
models. A new GEM for P. aeruginosa PAl4 and an updated
GEM for strain PAO1 were curated using single transposon
insertion mutant data, virulence-linked gene databases, substrate
utilization data, updated genome annotations and recent
literature. Using our PA14 model, we contextualized the
PGD database of virulence-linked genes that were identified as
essential for growth in Tn-seq screens, and then identified a core
set of metabolic genes that were necessary for both growth and
the synthesis of at least one VF. Subsequent analyses mapped the
metabolic interconnections between growth and the synthesis of
individual VFs, using a case study of pyoverdine to demonstrate
model utility in teasing out the role of individual genes
with regards to both growth and VF production. Our work
enhances understanding of relationships between VF synthesis
and growth, which is challenging to elucidate with experimental
approaches. By quantifying the impact of genetic targets on
growth versus virulence using a mechanistic model, we contribute
novel insights for the design of therapeutic strategies that account
for potential resistance development.

The rapid fitness screening enabled by transposon insertion
mutants have produced valuable insights into gene function in
different environments*, but the genome-scale data sets can be
difficult to interpret. Signature-tagged mutagenesis screens in
infection models have identified virulence-linked genes, but
require a highly accurate replication of growth conditions in vitro
for a baseline of effective comparison with infection®>4°.
Recently, Tn-seq has been used to measure in vivo gene
fitness*¥, but transposon insertion coverage, interpretation of
Tn-seq results and essential gene identification are difficult to
replicate across studies. Our model provides important nuance
when considering the true definition of an ‘essential’ gene and
survival fitness in varied environmental conditions; genes can be
classified in a quantitative manner instead of a binary ‘essential/
nonessential’ categorization. Thus, the high degree of variability
in the number and roles of genes identified as critical for fitness
even in different Tn-seq studies of the same growth environment
can be elucidated when paired with mechanistic modelling. While
we focused our efforts on mapping the distribution of virulence-
linked genes in the data sets in an effort to understand their
impact without the pressure of survival in a host, there is a rich
opportunity to expand this comparison to the distribution of all
metabolic genes in future work.

Our analysis provides an important expansion of genes to
consider when studying VF synthesis during adaptation. We
identify 46 genes as critical for the production of up to 10 of the
17 assessed VFs as well as biomass, which represent a novel core
set of metabolic functions integral to the development of infection
by P. aeruginosa. Long-term adaptation may result in altered
virulence capabilities due to accumulated mutations in these
genes as well as regulatory genes and genes linked directly to
product synthesis?’. When we expand our analysis to all model
genes, we can then group genes by their functional impact on
growth, VF synthesis or a combination of roles highlighting
a higher degree of connection. This novel analysis provides
testable hypotheses regarding the contribution of a gene to a
given synthesis task. While we focus on experimental assessment
of uniquely categorized genes in our pyoverdine analysis, this
approach can be expanded to the other VFs. The analysis also
demonstrates the flexibility of P. aeruginosa metabolism in
a substrate-rich environment; the impact of competition for
resources and the role of auxotrophy in evolving strains can be
compared using predictions of differing optimal growth and
production levels. Thus, further mapping of gene function may be
enhanced by repeating the study in less complex and varied
growth conditions.
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Therapeutically targeting virulence-related pathways is an
approach attracting much attention from a field struggling to
find effective treatment for drug-resistant pathogens!*8, Quorum
sensing inhibitors have been investigated through small molecule
screening for a range of pathogens including P. aeruginosa®~>!
partially as a means of broad-spectrum anti-virulence treatment.
A recent study showed that gallium-based quenching of
extracellular siderophore activity successfully inhibited infection
of caterpillars by P. aeruginosa while avoiding the development of
resistance®”. While inhibiting siderophore synthesis may increase
resistance incidence in comparison to quenching, it will also
enable pathogen-specific targeting of iron sequestration and avoid
other systemic side effects (for example, radiation with respect to
gallium). While these VFs are regulated by quorum sensing
molecules, related signalling networks are complex; more direct
routes of inhibition provide an efficient avenue for precision
treatment. This study provides curated sets of potential targets for
diminishing or preventing the production of a large array of VFs.
Reducing experimental costs and time to identify targets while
simultaneously elucidating the underlying mechanisms by which
targets inhibit infection are major contributions of our models to
effective development of new therapies.

Our quantitative analysis of metabolic gene contribution to
both growth and virulence is the most comprehensive genome-
scale computational screen to date of virulence-related metabo-
lism. Concerns regarding resistance to growth-targeting anti-
biotics in the context of multi-drug treatments may benefit from
incorporation of new therapeutics that target VF synthesis®>~>°,
However, new proposals regarding sequential cycling of drugs
with different mechanisms of action in an attempt to avoid drug
resistance may favour drugs that inhibit VF production and
growth simultaneously to maximize impact®®>”. Our mechanistic
modelling approach allows us to predict the graded contribution
of a given target gene to growth versus virulence systems to aid in
these treatment designs. Ultimately, our updated models are
valuable tools for quantitatively assessing relationships that would
be challenging to interrogate experimentally at genome-scale. Our
experimental validation of model predictions indicates that our
approach provides testable hypotheses of gene function that can
be used to elucidate critical interactions that may inform
development of ‘resistance-resistant’ therapeutics.

Methods

Metabolic network reconstruction. Previously published iterations of

P. aeruginosa PAO1 GEMs iMO1056 (ref. 19) and iMO1086 (ref. 20) were both
used as resources during reconstruction efforts. iMO1056 was created using
field-standard syntax consistent with many models in the BiGG database, while
iMO1086 was built using the ToBiN platform which is not currently available!>2,
Since these original models were published, the modelSEED has become a favoured
draft reconstruction resource, and offers a comprehensive database of balanced
reactions and metabolites referenced from KEGG and MetaCyc from which
hundreds of draft models have been created for use within the modelling
community>8. In light of this, we used a draft conversion of iIMO1056 to model
SEED format as the starting point for our GEM update to enable consistency with
our past P. aeruginosa models, improve annotation of model reactions and
metabolites (KEGG IDs, E.C. numbers, pathway assignments) and enable easy
comparison with a large collection of models created and curated by other
groups!>%9-61, Because the conversion was an automated step performed by the
modelSEED in an early iteration of the SEED database, manual curation was
performed to add additional species-specific reactions that did not successfully
convert from the original iMO1056 model or were present in iMO1086 as well
as to correct conversion errors in reaction stoichiometry, directionality and

GPR assignments. Further updates to SEED reactions and metabolite names
using the modelSEED database were implemented to ensure consistency, and

a KEGG subsystem assignment was added to each reaction when possible®?.

The genomic contents of P. aeruginosa PAO1 and P. aeruginosa PA14 and two
closely related pathogens from the Burkholderia cepacia complex were compared to
assist development of new, reconciled GEMs for each strain from previously built
models. P. aeruginosa PA14 is a primary clinical isolate that is used as a model
strain due to its substantial virulence in a variety of hosts, while P. aeruginosa
PAQI, a wound isolate, is the main reference strain of this species*s. We used

10

Burkholderia species specifically because of their similarities to Pseudomonas as
opportunistic Gram-negatives that also chronically infect cystic fibrosis patients
and share similar virulence mechanisms. We also previously built and extensively
curated GEMs for these species in modelSEED syntax as described further below,
making them useful resources. P. aeruginosa PA14, P. aeruginosa PAO1,
Burkholderia cenocepacia J2315 and Burkholderia multivorans ATCC17616 were
compared using genome-scale reciprocal BLASTP with an E-value cutoff of

0.01 with no low-complexity filter using CLC Main Workbench (CLC bio, Aarhus,
Denmark). Hits with E-values below 1E-40 were considered high confidence hits
and automatically matched. Genes with hits that received a higher E-value score
were manually evaluated based on predicted function, gene descriptions and
PseudoCAP category (custom system/pathway annotations) on the PGD (ref. 24)
before inclusion in the models in the few cases they were employed. There is

a distinction, however, between confident gene matches between the organisms
used, and utilization of genes annotated as hypothetical proteins in all species. We
propose functions for a number of hypothetical proteins in the models, some of
which are missing a specific functional annotation only in PA14 versus PAO1, and
some of which are hypothetical proteins in both strains which we have utilized in
the models based on functional domain associations and other predictions
provided by PGD annotations, literature and manual curation based on BLAST
results against other species. Many of these hypothetical proteins are implemented
in transport reactions, fatty acid and lipid pathways, and VF pathways. A table of
these low-confidence gene assignments and hypothetical proteins to which we
assigned functions in the model is provided in Supplementary Data 1.

Updated, strain-specific biomass formulas were created using a field standard
approach that approximates the biomass composition by accounting for DNA,
RNA, protein, cell wall components, lipids and organism-specific compounds
whose production is required for growth®!2. This effort expanded the number of
components considered necessary for growth according to an improved biomass
formulation and an updated search of literature pertaining to Pseudomonas species.
Additional Pseudomonas-specific requirements, such as preference for ubiquinone-
9 versus ubiquinone-8 as a key cofactor in respiration®?, were implemented. More
specific lipids were implemented using recent studies from literature and as enabled
by the expanded lipid reactions used in modelSEED draft reconstructions.
Specifically, while iMO1056 and iMO1086 accounted for simple representations of
cardiolipin, phosphatidylethanolamine, phosphatidylglycerol and
phosphatidylserine, we implemented the specific saturated, unsaturated and
cyclopropane fatty acids making up the full lipid profile of P. aeruginosa as
described in the literature®*-%7. We provide further details of the new biomass
formulations at the following website in conjunction with the model files in
spreadsheet and SBML format (http://bme.virginia.edu/csbl/Downloads1-
pseudomonas.html).

To fill gaps and improve predictions, additional model components were first
derived from iMO1086 and recently published GEMs of Burkholderia species. We
built on prior curation efforts while maintaining consistent modelSEED syntax to
enable future cross-species comparisons and community modelling. If SEED
reactions in Burkholderia models were not present in the new Pseudomonas SEED
model, the high confidence BLASTP results were used in conjunction with the
PGD and Burkholderia Genome Database®® and literature to evaluate addition of
these reactions. Many of the new reactions were added to increase the number of
Biolog carbon sources accounted for in the Pseudomonas models (from only the
PMI1 substrate set to both PM1 and PM2a substrate sets); this effort was guided by
previous work we performed for the highly catabolically flexible Burkholderia'2.
We also implemented new VF synthesis pathways using similar Burkholderia
pathways as a guide. Other new reactions were added to expand lipid metabolism
pathways using literature regarding Pseudomonas-specific lipid composition and
the increased specificity of SEED reactions in this subsystem. Reactions
implemented in the other well-curated SEED model available during our build
work, B. subtilis iBsul103, as well as reactions included in the MetaCyc and
MetRxn databases were also used as resources®>®>70, PAO1 and PA14 genes
categorized as linked to virulence via data from experimental studies incorporated
into the PGD v3 (ref. 24) were specifically evaluated for inclusion in the models to
expand clinically relevant functional prediction ability (Supplementary Data 2 and
Methods—Screen and Database Assembly).

Model validation. Models were validated using new, comprehensive assessments
of experimental data from genome-scale transposon libraries and carbon utilization
screening. Similar data had been used with prior models, but unexpected
discrepancies identified in comparisons between PAO1 and PA14 measurements
motivated careful re-assessment of data sets and experimental confirmation of
results.

Gene essentiality predictions were performed by in silico deletions of single
genes while optimizin% for production of biomass using flux balance analysis via
the COBRA Toolbox”!. Predicted essential genes were compared with a list of
genes that were not successfully targeted by transposon insertions in both
genome-scale transposon insertion libraries of P. aeruginosa PAO1 (ref. 25) and
P. aeruginosa PA14 (ref. 26). By using genes lacking transposon insertions in both
studies, which used different transposon systems and resulted in differing levels of
insertion rate and genome coverage, we increased our confidence that these genes
were truly essential for growth in rich media for P. aeruginosa strains. Curation

| 8:14631| DOI: 10.1038/ncomms14631 | www.nature.com/naturecommunications


http://bme.virginia.edu/csbl/Downloads1-pseudomonas.html
http://bme.virginia.edu/csbl/Downloads1-pseudomonas.html
http://www.nature.com/naturecommunications

ARTICLE

with essentiality data resulted in improved prediction accuracy of gene essentiality
via curated GPR relationships as well as the addition of new components to the
biomass formula.

Single carbon source catabolic ability of the strains was predicted by providing
a single carbon source and salts to the model via exchange constraints and
optimizing for biomass production using flux balance analysis'2. Carbon utilization
data were compiled from literature for both PAO1 and PA14, but discrepancies
between studies motivated us to perform our own growth screens for both strains
using Biolog phenotype arrays PM1 and PM2a. Growth curve screens were
performed in triplicate using a microplate reader with shaking at 37 °C for
48h. Curves were evaluated to identify substrates enabling growth versus no
growth!2, Results guided specific curation of catabolic pathways and expansion of
transport systems included in the model to improve prediction accuracy.

Screen and database assembly. Information on virulence-linked genes was
compiled from the PGD (ref. 24) (current as of February 2016) using the
Annotations by Category tool that provides Virulence Factor Annotation lists for
several strains. We used the lists for PAO1 and PA14, which provided 427 and
208 genes, respectively, which were culled by the PGD from experimental screens
in many different infection models, the Virulence Factor Database, and the Victors
database as indicated in Supplementary Data 2. The bias towards PAO1 is partly
due to more screens and studies performed for PAO1 versus PA14 in the literature;
however, 419 of these genes are present in both genomes. We assumed that many
of the genes identified as virulence-linked in PAO1 could also be virulence-linked
in PA14; however, virulence-linked genes truly active in only one strain would be of
interest to track in future work; these genes must then have alternate functions in
addition to a role in virulence. Nevertheless, building on the above assumption, we
created a combined list of genes associated with virulence that included any genes
noted in either list which were present in both genomes to which we then added
strain-specific virulence genes. The resulting lists included 432 and 441 plausible
virulence-linked genes for PAO1 and PA14, respectively; the strain in which each
gene was originally classified as a VF is also indicated as well as its presence in each
model in Supplementary Data 2.

For the Tn-seq-based essential gene analysis, we obtained gene essentiality data
from eight recently published Tn-seq screens for PA14 and PAOL in a variety of
culturing conditions. These screens are listed in Table 2 and are identified by the
name of the paper’s senior author (Pier1®, Whiteley17 and Manoil'®), strain, and
media condition. For the PA14 Pier dataset!S, we used the essential genes identified
in Supplementary Table 1 of the original manuscript. Similarly, for the PAO1 and
PA14 Whiteley data sets!”, we used the essential genes identified in Data set S1 and
Data set S3 of the original manuscript, respectively. For the PAO1 Manoil data
sets'$, we curated the ‘General essential genes’ identified in Data set S1 of the
original manuscript to determine essential genes for each of the three media
conditions studied: LB, sputum and pyruvate. Specifically, we applied a cutoff such
that if a mutant for a particular gene failed to be generated in at least one of the
independent transposon mutant pools for a particular media condition, that gene
was deemed essential for that media condition. This approach does not take into
account the location of the transposon insertion and, thus, may miss some essential
genes. In the end, we obtained eight unique lists of essential genes for either
PAO1 or PA14 in different media conditions based on the Pier, Whiteley and
Manoil data sets. Once we obtained these lists of the essential genes identified in
each screen, we compared them individually to the list of virulence-linked genes
from the PGD database for either PA14 or PAOI as appropriate. Genes that were
in both a particular screen’s essential list and the virulence-linked list were
categorized as virulence-linked essential genes for that particular screen.

Prediction of virulence-related production versus growth. VF production
capacity was first evaluated by optimizing the flux through an artificial ‘demand’
reaction for each virulence-related metabolite. Single gene deletions were imple-
mented by identifying reactions for which a given gene was essential via the
model’s Boolean relationships and then constraining the flux through each of these
reactions to zero. The effect of each of these deletions was evaluated by predicting
production levels of each VF and biomass separately; resulting production levels
lower than 0.001 were categorized as completely inhibitory (that is, the deleted gene
is essential for production of that component). Production levels were normalized
by maximum possible production of a component under wild-type conditions for
comparison within VFs.

Network visualization. mPA14 was visualized using a command line imple-
mentation of MetDraw’? that enables colour overlay which was then edited in
Inkscape (https://inkscape.org/en/).

Strains and growth conditions. Wild-type strains of P. aeruginosa PAO1 and
PA14 and PA14 single gene knock-out mutants from the PA14 non-redundant
genome-scale transposon library?® were grown in LB media supplemented with
15 pugml ~! gentamycin as necessary at 37 °C with aeration for liquid cultures.

Pyoverdine assay. To measure pyoverdine production, strains were grown in
synthetic cystic fibrosis media?” for 24 h in 50 ml flasks and the absorbance of
culture supernatants was measured at 405 nm according to a previously published
protocol’®. All measurements were normalized to culture density as determined by
the absorbance of the bacterial culture at 600 nm.

Data availability. The new metabolic network reconstructions for P. aeruginosa
PAO1 and PA14, iPael146 and iPaul129, respectively, are provided in spreadsheet
format (Supplementary Data 3 and 4) that includes curation notes and SBML file
format at our lab website (http://bme.virginia.edu/csbl/Downloads1-pseudomo-
nas.html). The lab website also includes files detailing the development of strain-
specific biomass formulas. Experimental data sets are available by request to the
corresponding author.
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