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Abstract: Complex diseases are often caused by the function of multiple genes, gene-gene (G�G) interactions as well as 
gene-environment (G�E) interactions. G�G and G�E interactions are ubiquitous in nature. Empirical evidences have 
shown that the effect of G�G interaction on disease risk could be largely modified by environmental changes. Such a 
G�G�E triple interaction could be a potential contributing factor to phenotypic plasticity. Although the role of environ-
mental factors moderating genetic influences on disease risk has been broadly recognized, no statistical method has been 
developed to rigorously assess how environmental changes modify G�G interactions to affect disease risk. To address this 
issue, we developed a G�G�E triple interaction model in this work. We modeled the environmental modification effect 
via a varying-coefficient model where the structure of the varying effect is determined by data. Thus the model has the 
flexibility to assess nonlinear environmental moderation effect on G�G interaction. Simulation and real data analysis were 
conducted to show the utility of the method. Our approach provides a quantitative framework to assess triple interactions 
hypothesized in literature. 
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1. INTRODUCTION 

 Gene-gene (G�G) interactions are ubiquitous in nature. It 
is less likely that a disease status is resulted from the func-
tion of single genes working separately, but rather due to the 
complex interactions of genes functioning together [1]. Sta-
tistical methods for the identification of gene-gene interac-
tions have been flourished in literature [2]. Some are focused 
on parametric models based on simple linear or generalized 
linear regression models, while others are based on nonpar-
ametric models such as the Multidimensional Reduction 
(MDR) method [3]. As for the unit of analysis, some are 
focused on single nucleotide polymorphism (SNP) interac-
tion analysis. Others are focused on gene level interaction 
analysis (e.g., [4, 5]), and such knowledge-driven gene-based 
interaction analyses are attractive given that genes are the 
functional units in living organisms. 

 Although the topic of G�G interaction has been studied 
for several decades, the field has not been advanced much 
until the recent wave of genome-wide association studies 
(GWAS). Recent GWAS have identified thousands of dis-
ease variants. However, such successes are undermined due 
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to limited heritability explained by these variants in many 
complex diseases [6]. Some investigators suggest that G�G
interaction may potentially contribute to the missing herita-
bility of many complex diseases [7]. Although many statisti-
cal methods have been developed for the identification of 
G�G interaction [2, 8], due to the limitation of model as-
sumptions as well as the underlying mechanism of gene ac-
tion modes in different diseases, there are still large needs 
for the development of advanced methods with biological 
relevance and statistical flexibility. 

 In addition to G�G interaction, gene-environment (G�E)
interaction could also be a contributing factor for the missing 
heritability [9, 10]. G�E interaction, defined as how geno-
types influence phenotypes differently under different envi-
ronments [11], is also interpreted as genetic sensitivity to 
environmental stimulus. Vast amount of studies have report-
ed the role of G�E interaction in many diseases, such as 
mental illness [12], Parkinson disease [13, 14], and type 2 
diabetes [15]. The development of statistical methods has 
also been evolving, from the identification of linear interac-
tion with traditional simple linear or logistic regression mod-
els to more flexible nonparametric methods for the identifi-
cation of nonlinear moderation of environmental influences 
on genetic risk [16, 17]. 

 Similar as the function of single genes, the influence of 
G�G interaction on disease risk could also be modified by 
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environmental changes. In a study of rheumatoid arthritis 
(RA), Padyukov et al. [18] reported the role of smoking in 
affecting G�G interaction on developing rheumatoid factor 
(RF)-seropositive disease. The authors found that the relative 
risk of developing RF-seropositive disease is higher in 
smokers who carrying double shared epitope (SE) HLA-DR 
genes than that in those who carrying either SE gene. Zou-
achel et at. [19] recently showed that a three-way gene-gene-
environment (G�G�E) interaction analysis explains the dif-
ferences in chikungunya virus transmission by Ae. albopictus
populations at different temperatures. These empirical evi-
dences underline the importance of evaluating three-way 
G�G�E interactions on disease risk, and further dissect the 
mechanism in which how G�G interactions on disease risk 
are moderated by environmental changes. 

 Recently, Hu et al. [20] proposed a three-way gene-gene-
gene interaction model for pure gene epistasis analysis based 
on information theory. Such model can be applied to study 
three-way G�G�E interactions. However, the model can 
only be applied for discrete environment factors and it can-
not estimate the interaction size (only a detection test). As 
discussed in [16], when continuous environmental factors are 
considered, a varying-coefficient nonparametric regression 
model shows its flexibility in capturing potential nonlinear 
G�E interactions. In this work, we extend our previous mod-
el on nonlinear G�E detection to study how environmental 
changes modify G�G interactions on disease risk. Simulation 
and real data analysis are conducted to show the utility of the 
model.

2. STATISTICAL METHODS 

2.1. The Model 

 From a G�E perspective, we propose the following par-
tial linear varying-coefficient model (PLVCM): 

� � �
�
� � �� � � �� � �� � �� � �� � ��������� � �

where � is the disease trait response; � represents a �-
dimensional vector of covariates containing clinical covari-
ates such as age, smoking and gender; �� and �� are two 
SNP variables; � is the environmental variable of interest; �
is an i.i.d. error term with mean 0 and finite variance; � is a 
�-dimensional unknown parameter vector; and �� � , �� �

and �� �  are parameters of interest which are varying func-
tions of variable �. We are interested in evaluating how the 
effects of each SNP variable as well as the interaction of the 
two are modified by the environmental variable � to affect 
the trait distribution of �, in particular the effect of �� �
which can be interpreted as the triple G�G�E interaction 
effect. In the model, we also allow the nonlinear marginal 
effect of � on �, denoted as �� �  which can be determined 
by the data. 

 Our model is motivated by a recent genome-wide associ-
ation study to identify genetic factors interacting with mater-
nal uterine environments for birth weight [21]. As a fetus 
resides inside its mother's womb, intensive signalling and 
chemical exchanges between the two are expected. As a re-
sult, the effect of fetal genes on birth weight can be modified 

by maternal conditions such as mother's glucose level, BMI 
level and blood pressure. In addition to identify major G�E
interactions in the context of the maternal-fetal unit, we are 
also interested in identifying how G�G interactions in fetal 
genome are modified by maternal conditions to control birth 
weight. The varying coefficient function ����� has much 
flexibility to capture the underlying functional mechanism of 
triple interactions which can be linear or nonlinear that must 
be determined by the data.

2.2. The Estimation 

 Denote Fn as the space of B-spline basis function of order 

r )2( �r  [22] with the B-spline basis T
nrsr JsuBu )1:)(()( , ��=B ,

],[ bau�  where rNJn += and
nNN = is the number of inte-
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 in which �� in-

creases along with the sample size n. Then function 
�� � � � � ��� ��, can be approximated by the following 
spline expansion. 
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the least squares estimators of � and � can be obtained as 
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=��          (2.2) 

 It is easy to obtain the estimator of the nonparametric 
function )(u�l

 by

.,,,,l=u = u l
T
rl 3210ˆ)()(ˆ �� �         (2.3) 

 We use the Bayesian Information Criterion (BIC) to se-
lect the number of interior knots and the order of basis func-
tion based on �0(U) in model E[Y |X, U] = �TX + �0(U).
More specific, we minimize the following criterion 

,/))(log(+))(log(minarg=)( 0
1

}543{},5432{
nN + rn� , �RSSnN, r -

,,r,,,N

��

��

where � =
+�=

n

i ii
T

i U�Y� , �RSS
1

2
00 )}({)( �
���� X , and ��  and �

�

(u)
are the estimates based on model E[Y |X, U] = �TX + �0(U),
with some preset interior knots and spline orders. The select-
ed knots and orders are then fixed when estimating functions 
�l (·), l = 1, 2, 3 to save computational time. 
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2.3. Testing the Overall Genetic Effect 

 One merit of our model is that it can assess the interac-
tion effect of environmental exposures with genes. This can 
be achieved by testing the nonparametric component �l (·), l
= 1, 2, 3, which allows one to discover the dynamic changes 
of the interaction effects. We first consider the following 
hypothesis test to detect if there is any genetic effect of two 
SNP variables on Y, i.e., 
 H0 : �1(·) = �2(·) = �3(·) = 0 v.s. H1 : at least one is not equal 
zero (2.4) 

via a log-likelihood ratio test (LRT). Under H0, we can esti-
mate TTT  , �� )( 00 by
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where ���and ��
�are estimators of variance of response Y un-

der H0 and H1, respectively. The LRT is defined as �
))ˆ,ˆ()ˆ,ˆ((2 0001 ���� �� �= , which asymptotically follows a �2-

distribution with 3Jn degrees of freedom. Fail to reject H0
indicates that the effects of G1 and G2 on Y are not signifi-
cant. Otherwise, we pursue further tests to dissect the inter-
action mechanism. 

2.4. Testing the Interaction Effect 

 If the null hypothesis in (2.4) is rejected, we can further 
test which component is significant by formulating the fol-
lowing hypotheses, 

0)(:0 =�l
I
lH �  v.s. 0:1 �l

I
lH � , l�{1, 2, 3},       (2.5) 

 Of particular interest is the test of 0)(: 303 =��
IH  where 

the effect )(3 ��  reflects the triple G�G�E interaction. In the 
following, we show the derivation of the test by focusing on 
this component. Similar procedure applies to the test of the 
other two components, i.e., )(:0 �l

I
lH � , l = 1, 2.
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The estimates under ����  is the same as (2.2). The log-
likelihood function under���� is given by��� ��� ��� �
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����� ����, where ��� is the es-

timator of variance of response Y under IH 03 . We can con-

struct the LRT as �� )ˆ,ˆ()ˆ,ˆ((2 3001 �
�= ����

I
�� , which has 

asymptotic �2-distribution with Jn degrees of freedom. Re-

jecting ���

�  indicates significant interaction effect of the two 
SNPs. However, whether the interaction effect is moderated 
by environmental variableU needs to be further assessed by 
statistical tests. 

2.5. Assessing the Environmental Moderation Effect on 
G�G Interaction 

 If ���

�  in test (2.5) is rejected, we can further test if the 
G� G interaction is modified by environmental variable U by 
testing ���: �3(·) = c vs ���: �3(·) � c, where c is a constant. 
The null hypothesis implies that the G� G interaction effect 
is not sensitive to the change of U, hence is not modified by 
U. To do this, we define a transformation matrix � such that 

TT
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The estimates under ��� is the same as (2.2). The log-
likelihood function under ��� is given by ��� ��� �� �

���� ��� ����
�
� �����

��
����� ���, where ��� is the esti-

mator of variance of response Y under ���. We can construct 
the LRT as �C ))ˆ,ˆ()ˆ,ˆ((2 001 C

C
���� �� �= , which has as-

ymptotic �2-distribution with Jn � 1 degrees of freedom. Re-
jecting ��� indicates there exists G� G� E triple interaction. 

3. MONTE CARLO SIMULATION 

 The finite sample performance of the proposed method 
was evaluated by simulation studies. Considering model 
(2.1), we generated the environmental variable U from a 
Uniform distribution U(0, 1) and two covariates X1, X2 from 
an independent Normal distribution N(0, 1). The SNP varia-
ble G, coded as (2, 1, 0) corresponding to genotypes (AA, Aa,
aa), was simulated from a multinomial distribution with cor-
responding frequencies ��

�
� ��� � � �� � �� � ���

�  where 
the frequency of the minor allele is specified as pA = (0.1, 
0.3, 0.5). The error term � was simulated from a normal dis-
tribution N (0, �2), where � = 0.1, 0.5, 1.0. The testing per-
formance was compared under different MAFs and different 
error distributions.

 For the varying coefficient functions, we set �0(u) = 
cos(	u); �1(u) = sin(	(u � A)/(B�A)) with

12/645.12/3 �=A and 12/645.12/3 +=B ; �2(u) = sin(�u);
�3(u) = cos(�u)/3 + 2 sin(	u)/3; and � = (0.3, 0.5)T. We run 
1000 simulation replicates each with sample size n = 500, 
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1000, 2000. The number of interior knots N and spline order 
r were selected by the BIC criterion.

 We first evaluated the performance for testing the func-
tional coefficients in hypothesis (2.4), i.e., H0 : �1(·) = �2(·) = 
�3(·) = 0. The testing power was evaluated under a sequence 
of alternative models indexed by �, i.e., �������

�
� � ������, l

= 1, 2, 3. When � = 0, the test results gave the false positive 
rates. (Fig. 1) depicts the empirical sizes (� = 0) and power 
functions (� > 0) to detect the overall genetic effect under the 
different scenarios with triplets (n, pA, �), where n = 500, 
1000, 2000, pA = 0.1, 0.3, 0.5 and � = 0.1, 0.5, 1.0. As shown 
in (Fig. 1), the empirical type I errors under all scenarios are 
very close to the nominal level 0.05. As we expected, the 
power increases as the sample size and MAF increase under 
a fixed error variance. Fox fixed n and MAF, the power in-
creases as the error variance �2 decreases. The results indi-
cate that our method can reasonably control the false posi-
tives and has appropriate power to detect genetic effect.  
 For the performance of testing ���� : �3(·) = 0, (Fig. 2)
shows the empirical sizes (� = 0) and power functions (� > 0) 
under different scenarios. Similar as the previous simulation 
setup, the alternative hypothesis was index by �. We ob-
served similar trends as described for the overall genetic 
effect test’s results shown in (Fig. 1). The testing sizes are 
reasonably controlled. The results indicate relatively good 
performance of the method. 

4. A CASE STUDY 

 We applied the proposed PLVCM model to a data set 
from the Gene Environment Association Studies initiative 
(GENEVA, http://www.genevastudy.org) funded by the 
trans-NIH Genes, Environment, and Health Initiative (GEI). 
Low and high birth weights are major causes of neonatal 
morbidity and mortality. They are also associated with in-
creased risk of metabolic diseases in adult life. New born 
baby’s weight is determined by fetal genes, and also con-
trolled by maternal uterine environmental conditions, leading 
to complicated gene-environment interactions. For this da-
taset, we aimed at identifying potential genes as well as 
gene-gene interactions and further explore the mechanisms 
in which their effects are modified by maternal environmen-
tal conditions. 
 We focused on the Thai population with 1126 subjects 
genotyped with the Omni1_Quad_v1_0_B platform after 
removing potential outliers. We picked mother’s one hour 
OGTT glucose level (denoted as U) as the environmental 
moderator in our analysis and baby’s gender as the covariate 
(denoted as X). There are total 590,913 SNPs after filtering 
out SNPs with MAF < 0.05, missing rate < 0.05 and deviat-
ing from Hardy-Weinberg equilibrium (p-value< 0.001). We 
first fitted the SNP data with a simple liner model, i.e., 
 Y = �X + �0U + �1G + �         (4.6) 
and test H0 : �1 = 0 using the Plink software with centered 
birth weight. There are total 61 SNPs with p-value < 10-4.

Fig. (1). The power functions for testing H0: �1( ) = �2( ) = �3( )= 0 under different samples sizes, MAFs and error variances. � � �
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The left panel in (Fig. 3) shows the QQ plot of the -log10(p-
values). No significant deviation from the expected diagonal 
line was observed. The right panel in (Fig. 3) shows the 
Manhattan plot of the signals. 
 We then fitted the data with the following varying-
coefficient model to allow the effect of G vary over U, and 
allow nonlinear marginal effect of U, i.e.,
 Y =�X + �0(U) + �1(U)G + �,        (4.7) 
then we test H0 : �1(·) = 0. There are total 59 SNPs remained 
significant with a p-value threshold 10-4. The left panel in 
(Fig. 4) shows the QQ plot of the -log10 (p-values). Again, 
we did not observe significant inflation of the p-values. The 
right panel in (Fig. 4) shows the Manhattan plot of the sig-
nals.

 Since doing a pairwise interaction search with nearly 
600K SNPs is technically infeasible, we merged the two 
SNP sets obtained in previous tests and got 115 SNPs in 
total (the two sets share 5 SNPs in common). Then we ap-
plied the proposed triple interaction PLVCM model (2.1) to 
the selected 115 SNPs. This strategy is also statistically 
valid since we only focused on the interaction analysis for 
SNPs showing marginal significance. The results are sum-
marized in (Table 1). We assessed the overall genetic effect 
by testing H0 : �1(·) = �2(·) = �3(·) = 0. The corresponding 
p-values are denoted by ���

� . The p-values for testing ���� :
�3(·) = 0 are denoted by ���

� . The last column of the table is 
the p-value for testing H0 : �(·) = c. As a comparison, we 

also fitted the 115 SNPs with a linear interaction model, 
i.e.,

 Y = �X + �0U + �1G1 + �2G2 + �3G1G2 + �,       (4.8) 

then test ���� �1 = �2 = �3 = 0 and ��� : �3 = 0 with the Plink 
software. The corresponding p-values are denoted by ��� and 
��

� , respectively in the table. 

 We reported the results in (Table 1) based on the interac-
tion p-values, i.e., ���� < 0.001 or ���< 0.001. The top panel 
shows the SNP pairs with ���� < 0.001 when fitting the 
PLVCM model. We observed consistently smaller p-values 
for testing the overall genetic effect compared to the p-values 
fitted with the linear model (���� �vs ��� ). When fitting the line-
ar interaction model, the interaction effect �3 does not show 
significance (���> 0.05) at the 0.05 significance level. Further 
tests show that the interaction effects are not constant for these 
SNP pairs (���� < 0.05) at the 0.05 level, which implies that the 
interactions are significantly modified by mother’s glucose 
level to affect baby’s birth weight. If we fit a linear interaction 
model, we could miss these interaction effects. 

 The lower panel in (Table 1) shows the SNP pairs with 
��

�< 0.001 when fitting the linear interaction model. There 
are total 7 SNP pairs showing significant interaction effects 
based on the test H0 : �3 = 0. The p-values for testing the 
overall genetic effect when fitting both models are quite sim-
ilar to each other. However, the p-values (���� ) for testing 
interaction effect with the PLVCM model are larger than the 

Fig. (2). The power functions for testing� ��1( )= �2( ) = �3( )= 0 under different samples sizes, MAFs and error variances. 
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ones (��� ) obtained when fitting the data with a linear interac-
tion model. This is not surprise since we failed to reject the 
null hypothesis H0 : �(·) = c. The large p-values (���� > 0.05) 
suggest that the coefficient functions (�(u)) are all constant. 
We could miss these interaction effects if we only fit the data 
with the proposed PLVCM model [22]. 
 To show the estimated varying-coefficient function for 
�3(·), we picked SNP rs6744005 in gene PLB1 and SNP 
rs969981 in gene CEP112 and plotted their interaction effect 
in (Fig. 5). The constant coefficient fitted with a linear model 
(4.8) is shown as the dash-dotted line in the figure. Clearly 
the estimated function is not a constant. The increasing pat-
tern of the function indicates that the baby’s birth weight 
increases as the mother’s glucose level increases. 
 In summary, we identified 5 SNP pairs in which their 
interactions are significantly modified by mother’s glucose 
level based on the proposed PLVCM model. Such triple 
G�G�E interaction effects could be missed by fitting a linear 
interaction model. On the other hand, if a G � G interaction 
effect is not sensitive to environmental changes, fitting the 
PLVCM model could lead to potential model mis-
specification, hence losing power. Thus, a practical guidance 
when fitting the PLVCM model is to assess the functional 
form of the varying coefficient first. If the coefficient is a 
constant, then we fit the data with a constant coefficient 
model. Otherwise, one can fit the proposed varying coeffi-
cient model. 

5. DISCUSSION 

 Identifying gene-gene and gene-environment interactions 
underlying complex disease traits has been one of the central 
foci in genetic association studies. Vast amount of empirical 
studies have supported the role of both types of interaction in 
understanding the etiology of human diseases. Our previous 
investigations on nonlinear gene-environment interaction 
studies [16, 17] have suggested the power of statistical 
methods in hunting for nonlinear environmental modification 
effect on genetic risk. Although empirical studies have sug-
gested the role of environmental changes on the effect of 
gene-gene interactions [18, 19], there has been no rigorous 
statistical treatment to assess the role of gene-gene interaction 
on complex diseases triggered by environmental stimulus [23]. 
 In this work, we proposed a triple G�G�E interaction 
model in which we allow for nonlinear modification effect of 
environmental changes on gene-gene interactions to affect a 
disease trait. The proposed PLVCM model has the flexibility 
to incorporate both parametric (linear part) and nonparamet-
ric (nonlinear part) interaction effect. The varying coefficient 
function is estimated through nonparametric B-spline tech-
niques, hence has the flexibility to capture the underlying 
functional form, either linear or nonlinear which can be 
evaluated via statistical tests. Our model is biologically at-
tractive in which it exhibits two important features: (1) It 
addresses a long-term question on how environmental expo-
sures moderate G�G influences on disease risk; and (2) It 
has the flexibility to detect nonlinear interaction, thus more 

Fig. (3). QQ plot (left) and Manhattan plot (right) of the testing signals by fitting Model (4.6). The dotted blue and red lines in the Manhattan
plot correspond to the level of 10-4 and 10-5, respectively. 

Fig. (4). QQ plot (left) and Manhattan plot (right) of the testing signals by fitting Model (4.7). The dotted blue and red lines in the Manhattan
plot correspond to the level of 10-4 and 10-5, respectively. 
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powerful when G�G effects are nonlinearly modified by 
environmental stimuli. 

Fig. (5). The estimator ����� fitted with the PLVCM model (2.1), 
and the estimator �� fitted with the linear interaction model (4.8). 

 In a typical genetic association study, there are usually 
large number of genetic variables (e.g., SNPs). When focus-
ing on a gene set based analysis, it is important to fit multi-
ple SNPs within a gene to a single interaction model and 
select important players moderated by environmental chang-
es. In addition, the proposed model is implemented based on 
a quantitative trait in current work. The framework can be 
extended to a binary disease trait with a known link function. 
The parameter estimation will be a little different due to the 
nonlinear link function to be adopted. Such a generalized 
PLVCM has particular power to dissect gene-gene interac-
tion effects triggered by nonlinear environmental modera-
tion. These will be considered in our future investigations. 
The computational code for implementing the proposed 
method is available upon request. 
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