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Abstract: Single nanoparticle imaging is a significant technique to help reveal the reaction mechanism
and provides insight into the nanoparticle transformation. Here, we monitor the in situ morpho-
logical transformation of Au nanostars (GNSs) induced by iodide (I−) in real time using dark-field
microscopy (DFM) with 638 nm red (R) and 534 nm green (G) laser coillumination. The two lasers
are selected because the longitudinal localized surface plasmon resonance of GNSs is located at
638 nm and that for GNSs after transformation is at 534 nm. Interestingly, I− can interact with GNSs
directly without the engagement of other reagents, and upon increasing I− concentrations, GNSs
undergo color changes from red to orange, yellow, and green under DFM. Accordingly, green/red
channel intensities (G/R ratios) are extracted by obtaining red and green channel intensities of single
nanoparticles to weigh the morphological changes and quantify I−. A single nanoparticle sensor is
constructed for I− detection with a detection limit of 6.9 nM. Finally, a novel mechanism is proposed
to elucidate this shape transformation. I− absorbed onto the surface of GNSs binds with Au atoms
to form AuI−, lowering the energy of its bond with other Au atoms, which facilitates the diffusion
of this atom across the nanoparticle surface to low-energy sites at the concaves, thus deforming to
spherical Au nanoparticles.

Keywords: single nanoparticle imaging; Au nanostars; laser; dark-field microscopy; Green/Red
channel intensities (G/R ratios)

1. Introduction

Real-time imaging of single nanoparticles during their reactions and motions is vital to
understanding their chemical [1–4], physical [5,6], and biological properties [7,8]. Although
techniques such as atomic force microscopy (AFM) [9–11], liquid cell transmission electron
microscopy (TEM) [12–14], and scanning electron microscopy (SEM) [15,16] are useful for
monitoring single nanoparticles, they are expensive, exhibit low temporal resolution, and
typically cannot be conducted under biophysical conditions. Thus, inadequate detailed
kinetic information, inaccurate physical and chemical properties, and deactivation of
biological function are problematic. Many techniques enabling the monitoring of real-
time and in situ dynamic behaviors of single particles based on their optical properties
have become important tools for understanding the physical and chemical properties and
bifunctionality of nanoparticles [17–19]. Dark-field microscopy (DFM) is innately suitable
for monitoring single plasmonic nanoparticles with a high signal-to-noise ratio and high
spatial and temporal resolution. It is extensively applied in imaging [20,21], sensing [22–24],
and drug and gene carriers [25]. It demonstrates promising prospects for understanding
the details and mechanisms of certain chemical phenomena [26–28]. For example, DFM
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can monitor the transverse etching of Au nanorods (GNRs) using HAuCl4 at an arbitrary
time in the presence of cysteine during the formation of Au nanodumbbells [29]. DFM was
employed to examine the in situ formation of individual Ag@Hg nanoalloys where Hg
atoms were rapidly adsorbed onto Ag nanoparticles and diffused into Ag cores to form
Ag@Hg alloys [30]. When linear sweep potentials were applied, dynamic structural and
morphological changes during the formation of Hg amalgamation on individual GNRs
were observed via DFM, thus confirming the correlation between spectral changes and
the formation of an amalgam [31]. Dynamic structural and morphological changes in Ag
nanoparticles with the introduction of Au3+ via a galvanic exchange process were monitored
in real time using DFM, indicating the formation of Ag–Au alloys as the intermediate
state [32,33]. During this reaction, the color of the nanoparticle solution changed from blue
to yellow and to dim red.

Iodine is one of the essential trace elements in the human body, which plays an
important role in human growth and metabolism [34]. Iodine deficiency in the body
would cause goiters and abnormal growth and development of the nervous system in
children, resulting in different degrees of cretinism in adults, and abundance would induce
hypothyroidism and hyperthyroidism health problems [35–38]. On the other hand, the
risks of iodine poisoning continually persist. High intakes can lead to the occurrence of
thyroid papillary carcinoma and acute poisoning symptoms [39,40]. Therefore, it is of great
significance to realize the rapid, sensitive, and selective monitoring of iodide in food.

In addition, iodide (I−) has unique interactions with Au. It can be spontaneously
chemisorbed on Au surfaces primarily because of the strong binding between I− and
Au [41–43]. Based on this, Au nanoparticles labeled with iodine-125 have been prepared
and applied in radioactive imaging [42]. Moreover, the interaction force is highly dependent
on their surface facets, at a decreasing order of (111) > (110) > (100) [44,45]. By adding I− to
inhibit Au deposition on specific facets, Au nanomaterial with various shapes, including
nanorods, triangular prisms, spheres, octahedra, and rhombic dodecahedra, have been
prepared [46–49]. Interestingly, it was observed that I− can induce the morphological
transformation of Au nanoparticles through the process of Ostwald ripening. During this
process, I− at the surface is transformed to iodine atoms via an electron injection process,
neutralizing the surface charge and increasing the van der Waals attractive forces among
nanoparticles, leading to the formation of aggregates. Potential accumulation because of
aggregation induces fragmentation, thereby forming small nanoparticles [43,50]. Although
the geometry-dependent localized surface plasmon resonance (LSPR) properties during
transformation were investigated by ultraviolet–visible (UV–VIS) absorption spectroscopy
and TEM [51,52], the actual mechanism and detailed process remain elusive.

Here, we visually monitored the morphological transformation of single Au nanostars
(GNSs) in the presence of I− via DFM under coillumination with red and green lasers. Direct
imaging of single nanoparticles revealed the fundamental mechanism of the I−-induced
shape transformation, which has been developed as a single nanoparticle sensor for I−

detection. Lasers with wavelengths of 638 and 534 nm were selected because during their
morphological changes to spheres, the LSPR band of the GNSs varied from 638 to 534 nm.
As the I− content increased, the scattering spot of the single GNSs underwent color changes
from red to orange, yellow, and green. Importantly, this study did not observe aggregation,
fusion, and fragmentation, which should occur as per previous studies [43,50]. To assess
their morphological changes, the green/red (G/R) intensity ratios were extracted. The ratio
was linearly dependent on the I− concentration with a low limit of detection (LOD). The
iodide contents in table salt and seaweeds were quantified with good accuracy. Furthermore,
X-ray photoemission spectroscopy (XPS) and high-resolution TEM result confirmed that I−

adsorption and binding on the GNS surface to form AuI− lowered the energy of its bond
with other Au atoms, which facilitated Au atoms from high-energy sites to low-energy
ones, inducing the shape transition of GNSs to spherical nanoparticles.
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2. Materials and Methods
2.1. Materials

HAuCl4·3H2O, (3-aminopropyl)triethoxysilane (APTES), ascorbic acid (AA), and
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Hydrochloric acid (HCl) and nitric acid (HNO3) were pur-
chased from Beijing Chemical Reagents Company (Beijing, China). Lead nitrate (Pb(NO3)2),
potassium iodide (KI), sodium acetate trihydrate (CH3COONa·3H2O), sodium carbonate
(Na2CO3), sodium chloride (NaCl), sodium hydroxide (NaOH), sodium sulfate (Na2SO4),
sodium sulfide (Na2S), and sodium thiosulfate (Na2S2O3) were obtained from Sinopharm
Chemical Reagent (Shanghai, China). Human SH-SY5Y cells were purchased from the Cell
Resource Center of the Institute of Basic Medicine, Chinese Academy of Medical Sciences
(Beijing, China). Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum, and
0.25% pancreatin were acquired from the U.S. Gibco Company (Paisley, UK). Ultrapure
water with a resistivity of 18.2 MΩ·cm was produced using a Millipore Milli-Q IQ7003
water purification system. All glassware was cleaned in a bath of freshly prepared aqua
regia solution (HCl/HNO3 = 3:1 in volume) and thoroughly rinsed with H2O before use.

2.2. Apparatus

The UV–VIS absorption spectra of the GNSs were obtained using a UV-2700 spec-
trometer (Shimadzu, Kyoto, Japan). The morphologies of the GNSs were observed using a
Titan G2 60-300 microscope (FEI, Thermo Fisher Scientific, Hillsboro, OR, USA). XPS was
conducted on a K-alpha multichine surface analyzer from Thermo Scientific (Waltham,
MA, USA) with Al Kα radiation as the X-ray source and a pass energy of 100 eV. Zeta
potentials were measured using a zeta potential analyzer (Nano-ZS90, Malvern, UK). For
DFM imaging, a Nikon Ni-U upright microscope equipped with a 100 W tungsten halogen
lamp, an oil immersion dark-field condenser (numerical aperture (NA) = 1.20–1.43), and
a 40× Plan Fluor objective lens was used. A DP73 single-chip true-color charge-coupled
device (CCD) camera (Olympus, Japan) was mounted on the top of the microscope to
capture images. Red (638 nm, 100 mW) and green lasers (534 nm, 100 mW) from Laserland
(Wuhan, China) were used to replace the 100 W tungsten halogen lamp for illumination to
improve the image quality of the individual GNSs.

2.3. Preparation of GNSs

The GNSs were synthesized using a seedless approach according to a previous
study [53]. Briefly, 40 mL of the HEPES buffer (75 mmol/L, pH 7.4) was mixed with
59.18 mL of deionized water in a volumetric flask, and then 823 µL of HAuCl4 solution
(24.28 mmol/L) was added. After shaking for 20–30 s, the solution was left undisturbed
in a water bath at 25 ◦C for 30 min. The solution color slightly changed from light yellow
to purple and finally to greenish blue, indicating the successful formation of GNSs. To
improve the stability of the GNSs and prolong their storage time, the pH of the solution
was adjusted to 9.6 ± 0.1 with a 1 mol/L NaOH solution.

2.4. Shape Transition of GNSs Monitored under UV–VIS Spectroscopy

The I−-induced morphological variation of GNSs was investigated by UV–VIS spec-
troscopy. Briefly, aliquots (1 mL) of the GNS solution were added into a 2 mL centrifuge
tube, and 1 mL each of the I− solutions at varying concentrations (0, 0.3, 0.5, 1, 1.3, 1.5, 1.6,
1.7, 1.8, 1.9, and 2 µmol/L) was added. After incubation at room temperature for 90 min,
the UV–VIS spectra were recorded. Moreover, the time-dependent UV–VIS spectra were
also recorded at an interval of 5 min. To confirm whether other anions can have a similar
effect, 2 µmol/L of Cl−, S2O3

2−, OH−, SO4
2−, S2−, CH3COO−, CO3

2−, NO3−, and AA
solutions was added to each GNS solution separately, followed by the recording of their
UV–VIS spectra after a 90 min incubation.
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2.5. Real-Time Monitoring of the Morphological Transformation of Single GNSs Induced by I−
under DFM

To anchor GNSs onto the surface, coverslips were cleaned and treated by salinization
via soaking in a piranha solution (H2SO4:H2O2 = 3:1 in volume) for 1 h. Then, they were
extracted and washed with ultrapure water. After drying in a stream of N2, the coverslips
were placed on a steel shelf and maintained at 105 ◦C for 2 h to thoroughly remove the
water molecules on their surfaces. Subsequently, the coverslips were immersed in ethanol
containing 2.5% APTES and left undisturbed for 1 h. Next, they were rinsed twice with
ethanol and immersed in ultrapure water for further use.

To monitor the transformation process of single GNSs by DFM, GNSs (10 µL) were
cast onto an APTES-modified coverslip surface. After 3 min, the coverslips were rinsed
with ultrapure water and reversely placed on a glass slide for further DFM imaging. The
images of these GNSs were captured under exposure times of 200, 400, 600, and 800 ms
through traditional DFM with a 100 W tungsten lamp. GNSs with 0.5 µmol/L of I− were
similarly recorded after incubation for 90 min. To improve image quality, green and red
lasers at 534 and 638 nm, respectively, were integrated. After passing through a beam
expansion, they were applied as light sources for illumination. The GNSs without and
with 0.5 µmol/L of I− were imaged at an exposure time of 50 ms by DFM. The obtained
color images of the GNSs were split into red, green, and blue channels using Image J (1.8.0,
National Institutes of Health). The G and R intensities of the single GNSs were extracted,
and G/R ratios were calculated to assess the morphological changes of the GNSs during
their interactions with I−.

2.6. Sensitive Detection of I− by DFM Imaging of Single GNS Nanoparticles

To investigate the sensitivity, the coverslips loaded with GNSs were soaked separately
in a series of KI solutions with various concentrations (e.g., final concentrations of 0, 20,
50, 70, 100, 200, 300, 400, and 500 nM). The GNSs immobilized on the coverslip act as an
individual signal-response output sensor, which is not affected by the average value in
the homogeneous system and has higher sensitivity. Subsequently, the coverslips were
reversely placed on a glass side, and the color images of single nanoparticles were captured
through dual-laser DFM. The color DFM images were split into RGB channels using Image
J software. The G and R intensities of single GNSs were extracted, and the G/R ratios were
calculated to assess I− content.

2.7. Selectivity

To investigate the selectivity of our assay toward I−, the above procedure was repeated
by replacing with other anions, including CO3

2−, S2−, OH−, S2O3
2−, Cl−, SO4

2−, NO3
−,

CH3COO−, and AA, followed by capturing their DFM images. All the experiments were
repeated three times.

2.8. I− Detection in Real Sample

To evaluate the application of our assays, we tested iodine contents in table salts and
seaweeds that were bought from a supermarket. In these samples, iodine usually exists in
the form of organic iodine, IO3

−, and so on, rather than I−. IO3
− is the main species in table

salts; we needed to transform iodine to iodide. Briefly, 1 g of iodized salt was dissolved
in 99 mL distilled water, and 1.0 mL of 20 mM AA was added. The mixture solution was
heated at 50 ◦C for 20 min, ensuring that the IO3

− was reduced to I− [54]. The treatment
of seaweeds was according to GB 5009.267-2016 with some modifications. Briefly, 2–3 g
of samples was put into a crucible, followed by adding 5 mL of 0.47 M Na2CO3 solution.
Then, the mixture was heated until there was smoke and was placed in a muffle furnace at
600 ◦C for 4 h and then taken out after the temperature dropped to 200 ◦C. Subsequently,
the ashed sample was transferred to a 100 mL volumetric flask by adding 5 mL water and
washing three times. Finally, 1.0 mL of 20 mM AA was added, and the solution was kept at
60 ◦C for 15 min. If the detected iodide content exceeded the detection range, the sample
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should be diluted by adding distilled water and redetected. For detection, 750 µL of sample
solution was mixed with 750 µL GNS solution (pH 6.8) for 90 min. An amount of 10 µL of
solution was added dropwise to the surface of the APTES-modified coverslip and observed
under DFM. All analysis results were repeated three times.

3. Results and Discussion
3.1. Transformation of GNSs after the Introduction of I−

I− can induce the morphological deformation of GNSs, as shown in Figure 1 and
as suggested in previous studies [43,50]. Two plasmonic absorption peaks of the GNSs
at 520 and 638 nm were assigned to their transverse and longitudinal LSPR bands, re-
spectively (Figure 1a) [53,55,56]. The longitudinal LSPR is closely related to the number,
length, and size of the branch [57]. After incubation with I− (2 µM) for 90 min, the GNS
solution exhibited one absorption peak at 534 nm (Figure 1b), revealing that the GNSs
were transformed into spherical Au nanoparticles. Correspondingly, the solution changed
from greenish blue to red. The TEM image (Figure 1c) demonstrated that the as-prepared
GNSs had an average diameter of 39.4 ± 1.5 nm with 2–5 branches. After incubation with
I−, spherical Au nanoparticles with an average diameter of 23.4 ± 0.8 nm were observed
(Figure 1d). The time-dependent UV–VIS spectra (Supporting Information Figure S1) of the
GNS solution showed that during the transformation, the longitudinal LSPR experienced
gradual blue shifts. These results confirmed the shape transition of the GNSs induced by
I−; however, they did not provide sufficient information to support whether or not the
shape changed through the aggregation/fusion/fragmentation processes, as suggested in
previous studies [43,50].
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Figure 1. UV–VIS spectra (a,b) and transmission electron microscopy (TEM) (c,d) images of GNSs
prior to (a,c) and after (b,d) incubation with 2 µM iodide for 90 min.

3.2. Enhanced Image Quality of Single GNSs through DFM with G and R Lasers

Using the conventional DFM with a tungsten lamp (100 W), single GNSs in the absence
and presence of 2 µM I− were imaged at various exposure times (200–800 ms) (Figure 2a).
It was practically impossible to observe the GNSs under an exposure time of 200 ms. At
400 ms, GNSs exhibited dim red spots. With an increase in exposure time, brightness
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was greater. However, when the exposure time was raised to 800 ms, multiple spots
changed to orange, which should be red according to their longitudinal LSPR. However,
after the shape transformation to spheres with the presence of I−, dim green spots were
visualized with an exposure time at 400 ms. Nanoparticles exhibited green spots at 600 ms,
and more yellow-green spots were observed at 800 ms. Based on spectral change in the
LSPR from 638 to 534 nm, the color of the nanoparticles should have changed from red
to green. The unusual color variations were attributable to two reasons. One is that the
wavelength of the tungsten light source covered a range of 360–760 nm, and the light
collection efficiency of the CCD was wavelength dependent [58]. The other one is that
GNSs had a small size distribution (Figure 1c). Long exposure time changed the saturation,
inevitably causing a color change. Furthermore, observing small GNSs at a short exposure
time was challenging. Furthermore, the color of nanoparticles recorded under DFM with
conventional illumination can hardly reflect the morphological changes. In addition,
the long exposure time (>400 ms) required for conventional DFM limited the temporal
resolution of GNSs.
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The iodide concentration was 2 µM, and the incubation time was 90 min.

To enhance image quality, R and G lasers with wavelengths of 638 and 534 nm were
integrated to replace the 100 W tungsten lamp to monitor the deformation of the GNSs
induced by I− (Figure 2b). The lasers were selected because of the LSPR variation during
the transformation. At a short exposure time of 50 ms, the color of all GNSs was bright red,
and after the transformation, it was green (Figure 2c). The improved imaging quality was
attributed to the merits of lasers, including their strong light intensity and monochromatic
properties [58]. Additionally, a short exposure time was beneficial for better temporal
resolution. Moreover, because only G and R lasers were employed, the scattering spots
were in the clear-cut color gamut comprising red and green. Because of the wavelength
of light scattering, the color variations are highly correlated with morphological change.
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Therefore, the R and G laser illuminations are effective for observing small nanoparticles in
the transformation process.

3.3. Monitoring the Dynamic Transformation of Single GNSs

Figure 3a shows that after adding I− (0.5 µM), the red GNS spots gradually changed to
orange, yellow, and green, revealing that I− induced the dynamic morphological changes.
After 30 min, 33.5% of the spots turned orange. When reaction time was prolonged to 90 min,
practically all nanoparticles became green. The results showed inhomogeneous reaction
rates among different GNSs, suggesting that reactions, like that between small molecules,
follow kinetic models. In addition, a few particles appeared after incubation since the
particles suspended in the channel were then adsorbed onto the slide. To quantitatively
weigh the changes, we split the color images into RGB channels, and the G and R channel
intensities of single GNSs were extracted [23,58]. Figure 3b shows images of the GNSs in
the R and G channel, displaying evident changes in their intensities after transformation.
Therefore, it is feasible to use G/R ratios to record the reaction kinetic. To check whether
G/R ratios are identical to spectral change, we placed a transmission grating beam splitter
(TGBS, 70 lines/mm) in the light collection path to acquire the scattering spectrum of the
single GNSs [59]. Results showed that the changes in the G/R ratio obtained by splitting
images with/without the TGBS were identical (Supporting Information Figure S2). More
importantly, during the process, diverse behaviors were observed. Figure 3c,d shows four
representative examples. For particle 1, the G/R ratio started to increase at 20 min, became
fast within 30–60 min, turned slow during 60–75 min, and became fast again then. For
particle 2, the G/R ratio generally increased within 0–100 min. Interestingly, the G/R ratio
of particle 3 increased during 30–60 min, slightly declined within 60–75 min, and rose to the
maximum, exhibiting variable reaction rates. Particle 4 exhibited a continuous ascending
G/R ratio over 15–90 min. Fascinatingly, during transformation, the scattering intensities
of particles 2–4 decreased, and that for particle 1 increased (Figure 3e). The diverse kinetics
among various GNSs occurring among nanoparticles was probably due to the difference
in the sizes and shapes as well as active sites and surface energies. Above all, the GNSs
underwent shape transformations individually, without aggregation and fragmentation.

3.4. Sensitivity and Selectivity

The scattering images of single GNSs at increasing concentrations (0–500 nM) of I−

were recorded (Figure 4a) and demonstrated concentration-dependent kinetics. With an
increase in the I− concentration, single GNSs turned from red to orange, yellow, and green.
The color change in the single GNSs was effortlessly distinguished under microscopy
when the I− concentration exceeded 50 nM. Note that such a color change was due to
the direct interaction between I− and GNRs without the engagement of other reagents,
indicating an assay with high convenience and practicality. To quantify I−, G/R ratios were
statistically calculated from the intensities of 150 single GNSs. A linear relationship was
gained between the G/R ratio and I− concentration (Figure 4b). With I− concentration over
the range of 0–500 nM, a linear equation was constructed: G/R = 0.054 + 0.0079 × Ciodide
with a correlation coefficient (R2) of 0.993. Owing to the high anisotropy of the GNSs, the
Au atoms at the edges exhibited high chemical activity. Thus, they interacted relatively
readily with I−. Only with additional I−, the Au atoms with low chemical activities can
interact with I−. It is reasonable that Au atoms on the nanoparticle surface are not in the
complete lattice; thus, they have few neighbors and exhibit high chemical activity. The LOD
was 6.9 nM (LOD = 3σ/slope, where σ is the standard deviation of five blank samples),
which is more sensitive than the reported fluorescence and colorimetric methods (Table 1).
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Other anions, such as Cl− and S2O3
2−, failed to induce the GNS shape transformation

(Figure 4c,d), thus suggesting minimum interference. Dissimilar to I−, other anions, in-
cluding Cl−, S2O3

2−, OH−, SO4
2−, S2−, CH3COO−, CO3

2−, NO3
−, and AA, cannot induce

GNS shape deformation, as also confirmed in the UV–VIS absorption spectra (Supporting
Information Figure S3). S2− and S2O3

2− exhibited high affinity to Au [60,61], and the
solubility product constant values for Au2S and Au2S2O3 were 1.6 × 10−73 and 3.2 × 10−27,
whereas that for AuI− was 1.6 × 10−23 [62,63]. Although the adsorption of S2− and S2O3

2−

on the Au surface was more substantial than I−, they could not trigger the shape trans-
formation of the GNSs. We can infer that the morphological change was because of not
only the strong affinity to Au but also specific properties of the AuI− complexes after being
adsorbed onto the surface.

Table 1. Comparison of various iodide detection methods.

Method Linear Range LOD Ref

Colorimetric 10–600 nM 10 nM [64]
Fluorescence 0.5–20 µM 430 nM [65]
Fluorescence 0.1–6 µM 90 nM [66]
Colorimetric 8.8–260 nM 8.8 nM [51]
Fluorescence 0–200 µM 22.6 nM [67]
Fluorescence 0–90 µM 92.3 nM [68]

Single-particle color imaging 0–500 nM 6.9 nM This work
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3.5. Mechanism for I−-Inducing Transformation of GNSs

According to previous studies [41,43], the morphological transformation of Au nanopar-
ticles induced by I− involved aggregation, fusion, and fragmentation through the Ostwald
ripening process based on TEM images and UV–VIS spectra. However, in this study, we
observed that the transformation from GNSs to spherical nanoparticles was a self-fusion
process through adsorption, binding, and migration (Scheme 1). We propose that I− can be
spontaneously absorbed on the surface, and the formation of AuI− enabled the migration
of Au atoms from high-energy sites to low-energy sites. To support this hypothesis, we
recorded the XPS spectra of GNSs in the presence and absence of 2.0 µM I−, as shown in
Figure 5. A new peak at 618 eV was responsible for the surface I− (Figure 5a). The binding
energy (BE) for Au 4f7/2 of the GNSs located at 82.27 eV shifted to 82.77 eV after its interac-
tion with I−, thus supporting their interaction without alternating the oxidation state of
Au (Figure 5b) [69]. After being absorbed, the BE for I 3d5/2 located at 618.13 eV indicated
the existence of negative valence of I− (Figure 5c) [70]. The zeta potential of the GNSs
decreased from −49.6 to −64.1 mV after incubation with I−, indicating the replacement
of surface molecule HEPES by I− [71]. High-resolution TEM images of the GNSs without
and with 2 µM of I− were taken (Figure 5e,f). Lattice spacings of 0.235 and 0.205 nm were
observed on the GNSs, representing typical (111) and (200) crystal facets, respectively.
However, after being transformed to spherical Au nanoparticles, only (111) was observed.
I− did not enter the interior of the Au nanoparticles. Moreover, the deformed spherical
nanoparticles were particularly round without edges or corners.
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To examine whether the transformation was not attributed to the electron injection
process, we added extra NaBH4 and starch to the reacting solution to examine whether
I2 was formed (Supporting Information Figure S4). Owing to the shape transformation,
the GNS solution changed from greenish blue to red after adding I−. In the presence of
0.1 mM of NaBH4 with a strong reducing ability to prevent the formation of iodine, the
GNSs still underwent a shape change, revealing that iodine was not responsible for the
shape transformation. I2 can interact with starch to form blue complexes, but no change
was observed on the UV–VIS curve of GNSs with the presence of extra starch, thus again
confirming that iodine was not formed. Additionally, in the absence of light, 2 µM of
I− still induced GNS transformation, ruling out the essential role of photo irradiation in
the process.

Single nanoparticle imaging directly confirmed that aggregation, fusion, and fragmen-
tation did not occur during the transformation of GNSs to spherical Au nanoparticles. To
investigate whether other shaped nanoparticles experienced similar changes, Au nanorods,
Au nanoprisms, and large GNSs (~100 nm, capped by citrate) were prepared as per pre-
vious studies with slight modifications (Supporting Information Figure S5) [72,73]. The
results showed that 2 µM of I only induced the transformation of the large GNSs. Thus,
the specific shape of GNSs with various corners and branches was critical for the shape
deformation, for the existence of highly active Au atoms on the edges of the GNSs. The
GNSs capped with citrate and HEPES underwent transformation, suggesting that the
surface capping agents did not account for the shape transformation. The growth of large
spherical Au nanoparticles was not observed in this study. Therefore, we ruled out the
occurrence of Ostwald ripening [74,75]. Our results are consistent with a previous study in
that the chemical adsorption of I− onto the GNSs played an important role in nanoparticle
transformation [76]. However, it was not sufficient, and the AuI− formation took effect
for shape transition because other ions such as S2− with strong chemical adsorption could
not induce this phenomenon. Thermodynamically, I− induced the shape transformation
in a spontaneous process, which was primarily because spherical Au nanoparticles were
more energetically favored than star-shaped particles. Moreover, the Au atoms on the
nanoparticle surface were energetically less stable than those in the interior because all
atoms inside bonded to 12 neighbors, while the atoms on the surface were bound to fewer.
Therefore, the mechanism for the transformation was that I− adsorbed onto the surface of
the GNSs was bound to an Au atom to form AuI−, lowering the energy of its bond with
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other Au atoms, which facilitated the diffusion of this atom across the nanoparticle surface
to low-energy sites.

3.6. Single GNS Sensor for the Quantification of I− Real Sample Detection

To promote the application of this probe and method in real sample detection, table
salt and seaweeds were used to monitor the I− content. For table salts, we transformed
iodine in salts to iodide. AA was also effective in reducing IO3

− to I−. The treatment of
seaweeds and a complex vitamin tablet was according to GB 5009.267-2016 with some
modifications. Considering the high sensitivity of our assay, the seaweeds were diluted
1000 times using distilled water. For detection, 750 µL of sample solution was mixed with
750 µL GNS solution (pH 6.8) for 90 min. An amount of 10 µL of the solution was dropped
onto the surface of the APTES-modified coverslip and observed under DFM. The iodide
contents in table salt, seaweeds, and complex vitamin tablets were precisely quantified, as
shown in Table 2. The iodized salt contained 22.8 mg/kg of iodide, meeting the requirement
of the standard. The iodide content in seaweeds was as high as 1620.4 mg/kg. In addition,
the sample recoveries varied from 98.5% to 106.5%, and the relative standard deviation
(RSD) was in the range of 3.2%–6.7%, which verified the reliability of the GNSs for real
complex biological samples.

Table 2. Detection of iodide content in table salts and seaweeds (n = 3).

Sample Added (mg/kg) Detected (mg/kg) Recovery (%) RSD (%)

Uniodized table salt 0 ND / /

Table salt

0 22.8 / 3.2
5 28.1 101.3 4.5
10 33.9 104.8 3.8
20 44.3 106.5 3.6

Seaweeds (chilled)

0 1620.4 / 3.7
100 1721.4 100.1 5.2
200 1805.4 98.5 6.7
500 2115.4 99.4 5.9

Note: ND denotes not detected.

4. Conclusions

Here, DFM with R and G laser illumination afforded high-quality scattering images
of single GNSs, thus providing detailed information during the shape transformation of
GNSs induced by I−. With increasing I− concentration, the color of the single nanoparticles
changed from red to orange, yellow, and green. The G/R ratios reflected the degree of
morphological transformation, which was dependent on the I− concentration. A single
nanoparticle sensor was developed for I− quantification with a LOD of 6.9 nM. Importantly,
the I− contents in table salt, seaweeds, and a complex vitamin tablet were quantified with
good accuracy. The processes of aggregation, fusion, and fragmentation did not occur,
dissimilar to the results of previous reports. The I−-induced transformation of Au nanopar-
ticles was investigated by XPS, high-resolution TEM, and zeta potential measurements. It
confirmed that the valence of I− did not change during the transformation process, and
Ostwald ripening was not responsible for shape transition. The strong absorption and
binding of I− onto the Au surface were critical for shape transformation. However, the
specific properties of AuI− played more critical roles, because the interaction of I− with
the Au atom lowered the energy of its bond with other Au atoms, which facilitated the
diffusion of this atom across the nanoparticle surface to low-energy sites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12152555/s1, Figure S1: The UV–VIS spectra of GNS solution
in the presence of 2 µM KI after various periods (0–90 min) of reaction time; Figure S2: Representative
G/R ratios and scattering spectra of single GNSs irradiated with R and G lasers. Exposure time:

https://www.mdpi.com/article/10.3390/nano12152555/s1
https://www.mdpi.com/article/10.3390/nano12152555/s1
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50 ms; reaction time: 0, 30, 60, and 90 min. Inset: Corresponding DFM images of single GNSs after
treatment with 0.5 µM KI, showing a color change from red to green; Figure S3: UV–VIS spectra of
the selective response of GNSs with the presence of different anions, including Cl−, S2O3

2−, OH−,
SO4

2−, S2−, CH3COO−, CO3
2−, NO3−, and AA; Figure S4: Photographs and UV–VIS spectra of

GNSs (A) and in the presence of 2 µM KI (B), 2 µM KI and 100 µM NaBH4 (C),100 µM I2 that had
reacted with 0.5% starch for 3 min (D), and 2 µM KI and 0.5% starch (E); Figure S5: UV–VIS spectra
and DFM images of Au nanorods (A), Au nanoprisms (B), and larger GNSs capped with citrate (C) in
the presence of 2 µM KI.
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