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Abstract: Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile com-
pounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial
impression, such as “sweet”, “smoky”, or “fruity” aroma. Of the more than 400 VOCs released by
tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs
can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast
array of scientific studies has investigated the genetic component of tomato aroma in modern tomato
cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the
available literature on flavour-related QTLs in tomato. Three hundred and fifty nine (359) QTLs
associated with tomato fruit VOCs were physically mapped on the genome and investigated for
the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential
donors described in literature for specific traits, (ii) highlight important QTL regions by combining
information from different populations, and (iii) pinpoint potential candidate genes. This overview
aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato
flavour and for breeders who aim to improve tomato aroma.
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1. Introduction

Tomato (Solanum lycopersicum L.) is one of the most important crops on the market,
used worldwide as basis in many national traditional dishes [1]. Conventional wisdom
suggests that breeding tends to reduce the genetic basis of a cultivated species, but tomato
genetic diversity appears to have actually been enhanced in the last fifty years. A recent
study [2] investigated the genetic diversity of cultivated tomato varieties in The Nether-
lands (NL) from 1950s to 2010s, observing that tomato commercial varieties from 1950s and
1960s were mainly homozygous, with narrow genetic variation among them. From 1970s
onwards, genetic diversity in tomato has increased, thanks to the application of introgres-
sion breeding programs using wild relatives of tomato. The first genetic diversity boost
appeared to take place with the introgression of tomato mosaic virus (ToMV), southern
root-knot nematode (Meloidogyne incognita) and leaf mold disease (Cladosporium fulvum) re-
sistance from Solanum peruvianum and Solanum pimpinellifolium [3–5]. These introgressions
varied in size from ~5% of the chromosome (introgression of Cf-4 and Cf-9 on top of Chr.01
for resistance to Cladosporium fulvum) up to half a chromosome 9 (ToMV), and together led
to a significant increase in overall genetic diversity [2]. A second diversity boost, starting
in the late 1980s affected both fruit size and quality traits: in particular the introgression
of parts of Chr. 4, 5 and 12 from S. pimpinellifolium led to fruit size variation among culti-
vated varieties and the introduction of cherry, cocktail and large fruited varieties to the NL
market [3].

Not only disease resistance and fruit size, but also flavour has been targeted by
breeding programs in the last thirty years [2]. The main components of tomato fruit
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flavour are: (i) sweetness, mainly determined by sugars; (ii) acidity, determined by the
presence of organic acids; (iii) textural attributes, such as firmness and juiciness, and (v)
aroma [6]. Tomato aroma is determined by the interaction of volatile compounds released
by the tomato fruits with receptors in our nose, leading to a sensorial impression, such
as “sweet”, “smoky”, or “fruity” aroma. More than 400 volatile compounds [7] have
been detected in ripe tomato fruit and they are derived from primary metabolites, such
as fatty acids and amino acids or secondary metabolites, such as phenylpropanoids and
carotenoids. Only a fraction of these volatiles has been associated with specific human
sensorial attributes or were shown to be present at concentrations above the so-called
odor threshold. From an evolutionary point, these molecules evolved to attract seed
dispersers, including animals and men. For humans they have a great economic impact,
since they are important determinants of food quality and consumer preference [8,9].
Among them, about 20 compounds have been identified as the most contributing ones,
based on their concentrations in fruits and their individual odor thresholds [10]. However,
it has to be mentioned that the perception of aroma is determined by both the odor
activity of individual VOCs and by interactions between them or with other non-volatile
chemicals [11]. For instance, the presence of sugars or organic acids alters the perception
of aromatic descriptors of samples with the same concentration of volatiles [12,13], while
the perception of basic tastes, e.g., sourness or sweetness, can be modified by variation in
VOCs accumulation [8,14,15]. Tomato aroma is therefore a hard-to-define trait and efforts
have been made to develop prediction models for its different components [8,12,16,17].
This led to the identification of the main 21 VOCs impacting consumer liking (Table 1).
Each of these compounds has its own characteristic odor, as retrieved from the Good Scents
Company database [18]. The compounds can be grouped in five clusters, according to
their biosynthetic origins [11]: (1) fatty acids-derived VOCs; (2) sulphur-containing and
branched chain amino acids-derived VOCs; (3) carotenoid catabolism by-product phenolic
VOCs; (4) phenolic VOCs; and (5) phenylpropanoid VOCs [19–25].

Table 1. Overview of the 21 main components of tomato aroma (adapted from [11]). * Odor descriptors were retrieved from
the Good Scents Company database [18].

Class Compound Odor Descriptors *

Apocarotenoid 6-Methyl-5-hepten-2-one Citrus, green, musty, lemongrass, apple
Apocarotenoid Geranial Sharp, lemon, sweet
Apocarotenoid β-Damascenone Apple, rose, honey, tobacco, sweet
Apocarotenoid Geranylacetone Fresh, green, fruity, waxy, rose, woody, magnolia, tropical
Apocarotenoid β-Ionone Floral, woody, sweet, fruity, berry, tropical, beeswax
BCAA 3-Methylbutanal Ethereal, aldehydic, chocolate, peach, fatty
BCAA 2-Methylbutanal Musty, cocoa, coffee, nutty
BCAA 3-Methylbutanol Fusel, oil, alcoholic, whiskey, fruity, banana
BCAA 2-Isobuthylthiazole Green, wasabi, privet, tomato, leaf, earthy, vegetable, metallic
Lipid 1-Penten-3-one Pungent, peppery, mustard, garlic, onion
Lipid (Z)-3-Hexenal Green, fatty, grassy, weedy, fruity, apple
Lipid Hexenal Sweet, almond, fruity, green, leafy, apple, plum, vegetable
Lipid (E)-2-Hexenal Sharp, fresh, leafy, green, clean, fruity, spicy, herbal
Lipid (E)-2-Heptenal Pungent, green, vegetable, fresh, fatty
Lipid (E,E)-2.4-Decadienal Oily, cucumber, melon, citrus, pumpkin, nut, meat
Phenolic Phenylacetaldehyde Green, sweet, floral, hyacinth, clover, honey, cocoa
Phenolic 2-Phenylethanol Sweet, floral, fresh, bready, rose, honey
Phenolic 1-Nitro-2-phenylethane Flower, spice
Phenylpropanoid Guaiacol Phenolic, smoke, spice, vanilla, woody
Phenylpropanoid Methyl salicylate Wintergreen, mint
Phenylpropanoid Eugenol Sweet, spicy, clove, woody

Breeders and breeding researchers aim to elucidate the genetic basis underlying im-
portant agronomic traits. This requires three essential elements: (1) genetic variation,
(2) phenotypic variation and (3) methods to find associations between the genetic and
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phenotypic data. As outlined in more detail below, advances in the development of high-
throughput (HTP) molecular marker platforms, the availability of genomic information and
progress in phenotyping methodologies, such as metabolomics, have led to an increasing
importance and use of marker-assisted breeding strategies, such as QTL analysis, associa-
tion mapping and genomic prediction in current plant breeding practice and transformed
plant breeding into a hight-tech industry.

Marker-assisted introgression breeding: Tomato is highly autogamous, a characteristic
that, together with the loss of many genes and alleles during domestication and crop
improvement, led to a narrow genetic basis of cultivated tomato, compared with its 12 wild
relative species [26]. For this reason, wild relatives have been used as potential sources of
lost alleles in the development of new cultivated tomato varieties [27,28]. Marker-assisted
selection in plant breeding programs relies on genetic linkage analyses, which are based
on the principle of genetic recombination during meiosis. This allows the construction
of linkage maps, composed of genetic markers linked to genes or Quantitative Trait Loci
(QTL’s) affecting traits of interest for a specific population. QTL analysis is mostly done
using biparental segregating populations based on a cross of two contrasting genotypes.
In order to discover and elucidate the genetic basis of agricultural traits, segregating
populations have not only been made from intraspecific crosses, but also from interspecific
crosses with various tomato wild relatives (S. pimpinellifolium, S. pennellii, S. lycopersicoides
and S. habrochaites) in which genomic regions of the wild donor have been introgressed
in the cultivated tomato genetic background, allowing the identification of potential new
alleles for traits of interest [29–33]. Interestingly, researchers not only investigated Solanum
lycopersicum wild relatives, but also Solanum lycopersicum var. cerasiforme L, the expected
ancestor of the domesticated tomato [34].

The impact of genomics: In the last decades, the advances in genomics have provided
new tools for discovering and tagging novel alleles and genes. The advent of next genera-
tion sequencing (NGS) techniques has considerably accelerated and simplified the genome-
wide detection of single-nucleotide polymorphisms (SNPs), which have become the most
popular molecular markers. The development of the reference tomato genome from the
inbred cultivar “Heinz 1706” [35] represented a milestone in the genomic era. The compari-
son of the cultivated tomato genome with the genome of a wild relative S. pimpinellifolium
revealed the potential of high-throughput sequencing in comparative genetics, confirming
the previously reported introgression of S. pimpinellifolium in the “Heinz 1706” genome [36]
and the identification of thousands of SNPs between the two relatives. Further genome and
transcriptome resequencing aimed at detecting genetic variation in tomato paved the way
for the development of relatively universal genotyping platforms (i.e., SNP arrays) that can
be applied for the genetic analyses of different populations—the SolCap SNParray [37,38]
and the CBSG array [3]. A further progress in the application of NGS is represented by the
genotyping-by-sequencing (GBS) approaches, based on the use of restriction enzymes to
decrease genome complexity before sequencing. These techniques include over a dozen of
reduced-representation sequencing (RRS) approaches [39] and have been recently applied
for high-resolution QTL mapping in tomato, especially in interspecific crosses [40–43].
These protocols have been applied in the development of high-density genetic maps in
many different species [44–55], making it possible to perform comparative and quantitative
genetics in virtually any genomic background. The current advances in genome sequencing
technologies, such as a revolutionary increase of sequencing throughput and concomitant
reduction in costs per sequenced nucleotide, allowed to unravel the genetic variation in
tomato to its full extent [25,56,57] and has helped to realize that the concept of one or a few
reference genomes is not sufficient to fully understand the genetic control of traits. For this
reason, the pangenome concept has been introduced in plant genomics, investigating the
sum of genes that can be found in a specific species [58–63]. Specifically, the pangenome is
defined as “the full complement of genes of a species, which can be partitioned into a set of
core genes that are shared by all individuals and a set of dispensable genes that are partially
shared or individual specific” [64]. In the Solanaceae family, the pangenomes of tomato and
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pepper (Capsicum spp.) have been recently released, identifying missing genes involved in
resistance mechanisms and quality traits [26,65,66], but eggplant (Solanum melongena L.)
and potato (Solanum tuberosum L.) are still pangenome-orphan species. The availability of
the tomato pangenome allowed the identification of presence/absence variations (PAVs)
and the identification of structural variants (SVs) of functionally important genes [26,65].
Interestingly, [26] identified a rare promoter allele for the TomLoxC gene, a lipoxygenase
that has been reported to be crucial in C5 and C6 lipid-derived volatiles biosynthesis and
apocarotenoid production [67,68]. Moreover, the newly developed tomato pangenome [65]
resolved the genomic region flanking NSGT1, a functional gene associated with the pro-
duction of guaiacol, methylsalicylate and eugenol, three phenylalanine-derived volatiles.
Five different haplotypes were identified in the analyzed tomato germplasm, providing
new insights in the understanding of the genetic variation of NSGT1. Pangenome appears
to be the most novel tool that breeders and researchers have at their disposal: it may
facilitate the mining of natural genetic variation and could contribute to crop improvement
by supporting molecular breeding programs and gene function studies.

Linking genetic markers to traits: In the genomics era, novel genotyping techniques
and the availability of multitudes of molecular markers, in combination with new high-
throughput phenotyping technologies (i.e., phenotyping platforms), supported the devel-
opment of new methodologies to link genetic markers to phenotypic traits. Not only the
above-mentioned QTL mapping has become more precise, also association mapping and
genomic prediction are now widely used in breeding [69–72]. Genome-Wide Association
Studies (GWASs) are based on genotyping of a set of accessions representing the variability
in a given species and rely on the linkage disequilibrium (LD) between a marker and its
associated trait [73]. This technique has been applied in tomato, identifying interesting
associations for many fruit quality traits [74–79]. Zhao et al. performed a meta-GWAS
analysis, by combining datasets of several GWAS panels. This analysis not only led to
confirmation of existing, but also to the discovery of novel QTLs and candidate genes for
several flavour-related traits [77]. Genomic Prediction (GP) is a selection tool that makes
use of genetic markers to predict the genetic potential of untested lines in breeding [80].
While QTL mapping and GWAS rely on the (statistically-significant) association between
phenotypic variation and specific molecular markers, GP calculates the genetic potential of
breeding candidates by the application of Bayesian or mixed statistical models that take
all the genome-wide marker information into account to predict the phenotype. Genomic
prediction is a selection tool rather than a research tool and performs better with traits
that are controlled by a large number of small-effect QTLs which are hard to detect by
QTL analysis of mapping populations or GWAS [81,82]. Genomic prediction is particularly
useful for traits for which phenotyping is expensive, difficult or time consuming, since no
phenotyping is needed for selection, once a good prediction model based on data of a
representative training population is available. This technique has been widely applied in
animal selection [83–85], while its practical application in plant breeding is still limited to
major crops, such as maize and wheat [82,86,87], in which QTLs for important traits, such
as yield, have already been fixed in the elite germplasm [88], or to tree crops, where early
selection is very useful and cost-effective [89].

The combination of all the above-mentioned approaches, except GP, led to identifica-
tion of a multitude of QTLs for many agronomic and quality traits. In this review we aim to
collect, compare, integrate and summarize the available literature on flavour-related QTLs
in tomato. We selected 16 scientific papers and supplemental data focusing on QTLs for
tomato aroma and fruit quality. This not only provides an overview of the known flavour
QTLs, but the combined and integrated information also makes it possible to (i) pinpoint
potential donors described in literature for specific traits, (ii) highlight important QTL
regions by combining information from different populations, and (iii) pinpoint potential
candidate genes. This overview aims to be a valuable resource for researchers aiming to
elucidate the genetics underlying tomato flavour and for breeders who aim to improve
tomato aroma.
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2. Construction of a Unified QTL Map of Tomato Aroma

A literature search was performed with the aim of collecting articles reporting QTLs
for tomato aroma. In order to compare and integrate QTLs from different studies, the avail-
ability of marker information was an essential requirement for inclusion in this review. The
identified QTLs have been organized and are available as Supplemental Material (Table S5),
reporting the biosynthetic pathway, the QTLs Genomic Regions (QGR), the QTL’s original
name, the related compound, the chromosome, the correlated markers, their position in
cM and bp, their p-value, their LOD score, the SolycID of the gene in which the markers
have been found, the percentage of explained variation by the QTL, the effect, the donor
parent, the crossing population or association panel used and the reference of the primary
resource.

We identified 16 articles reporting QTLs for tomato aroma including marker infor-
mation (Table 2). In the pre-genomics era only genetic linkage positions (cM) of QTLs
could be reported, since a reference genome sequence was not available the. This made
it difficult to align QTLs of that period with the more recent studies utilizing modern
genomics technologies. To circumvent this, the physical position of genetic markers was
retrieved from the tomato genome (https://solgenomics.net/search/markers (accessed
on 20 November 2020)) whenever marker sequence information was available, using the
SL2.50 genome version.

Table 2. List of the articles reporting QTLs for tomato aroma included in the review. RILs: Recom-
binant Inbred Lines; BCs: Backcross population; ILs: Introgression Lines; GWAS: Genome-Wide
Association Studies; DP: Diversity Panel.

Author, Year Population References

Saliba-Colombani et al., 2001 RILs [90]
Fulton et al., 2002 BCs [91]
Tadmor et al., 2002 ILs [92]
Tieman et al., 2006 ILs [93]
Mathieu et al., 2009 ILs [6]
Kochevenko & Fernie, 2011 ILs [94]
Ruggieri et al., 2014 GWAS [95]
Sauvage et al., 2014 GWAS [74]
Capel et al., 2015 RILs [96]
Zhao et al., 2016 GWAS [97]
Baldina et al., 2016 GWAS [98]
Bauchet et al., 2017 GWAS [99]
Tieman et al., 2017 GWAS [25]
Garbowicz et al., 2018 ILs [100]
Kimbara et al., 2018 RILs [101]
Tikunov et al., 2020 F2, F6, DP [102]

Two criteria were used to cluster QTL information from the different studies into
QTLs Genomic Regions (QGRs) in a unified physical map (Figure 1): (i) a biochemical
relationship between aroma volatiles and their possible precursors, such as similar chemical
structure or common biosynthetic pathway and (ii) overlapping of the QTLs. Since most
of the studies only reported the most significant marker(s) of an identified QTL, while
information on genetic confidence intervals or (average) linkage disequilibrium (LD) decay
was lacking, it was virtually impossible to determine the size of QTL regions. For this
reason, we standardized the potential positional error across the reported studies by setting
an empirically defined window of ±2.5 Mb around each identified QTL. This window was
derived from the average inter-study standard deviation of QTL positions of the three most
functionally explored tomato aroma loci—floral aroma on chromosome 4 [25,90,99,102],
smoky aroma on chromosome 9 [25,90,102] and the malodorous locus on chromosome
8 [92,93,99]. The major genetic factors underlying these QTLs were identified and, therefore,
the dispersion of QTL positions in these different studies could most likely be attributed

https://solgenomics.net/search/markers


Genes 2021, 12, 226 6 of 26

to non-genetic sources of variation. This window as well as resulting QGRs only serve as
means to classify QTLs and indicate the possibility that the individual QTLs they harbor
may be affected by one or a few co-localized genetic factors.
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Figure 1. VOCs QGRs chromosome map (T01–T12) obtained from the reported literature. Green: Lipid VOCs QGRs; Red:
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(±2.5 Mb), has been reported in the figure.

The identified QGRs were mined for the presence of candidate genes based on their
annotation (ITAG2.40) and on their expression in tomato fruit, using publicly available
dataset and tools [103]. Candidate genes were defined by two criteria: (1) genes belonging
to families known from literature to be involved in VOCs biosynthesis and expressed in
tomato fruit and (2) genes reported in literature with a demonstrated function in VOCs
biosynthesis, irrespective of their expression in tomato fruit. A complete list of the potential
candidate genes (with and without expression in the fruit tissues) can be found as Supple-
mental Material (Tables S1–S4). The genes which have been demonstrated to functionally
underlie aroma QTLs in tomato were highlighted in bold.

3. Fatty Acids Derived Volatiles (FA VOCs)

The volatile compounds originating from the degradation of linolenic and linoleic
acid accumulate during tomato ripening and can also markedly increase their emission
upon fruit tissue disruption. They provide a note of freshly cut grass to the aroma bou-
quet [104]. These compounds are the most abundant volatiles in tomato fruit and are
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mainly represented by the C5 volatile 1-penten-3-one, a few C6 volatiles, such as 1-hexanol,
(Z)-3-hexenal, (E)-2-hexenal and hexanal, the C7 volatile (E)-2-heptenal and the C10 VOC
(E,E)-2,4-decadienal [8,11,16,17]. Although their high accumulation in ripe fruits may sug-
gest that these compounds are very important determinants of tomato flavour, some studies
provide evidence that impact of their quantitative variation on consumer liking may be
limited [8,67], likely due to their in general high abundance and low odor thresholds,
e.g., for (Z)-3-hexenal these values are 12,000 nLL−1 and 0.25 nLL−1, respectively [21].

3.1. Biosynthesis of FA VOCs

During tomato fruit ripening, free fatty acids, mainly linolenic and linoleic acid, are de-
rived from the catabolism of acylglycerides from disintegrating cellular membranes, by the
action of lipases [87,88]. Linolenic and linoleic acid can be further catabolized by means
of β-oxidation, α-oxidation, or the lipoxygenase pathway [68,105–107]. In tomato fruit
the latter is the most important for the production of volatiles, which occurs through
two steps: (i) fatty acids are deoxygenated by means of lipoxygenases (LOX), which are
classified as 13-LOX and 9-LOX and are leading respectively to 13-hydroperoxides and
9-hydroperoxides [67,108]; (ii) hydroperoxides are catabolized by means of hydroperoxide
lyases (HPL), also classified as 13-HPL and 9-HPL, leading to an oxoacid and a volatile
aldehyde. Volatile aldehydes can be converted into alcohols by means of alcohol dehydro-
genases (ADH; [109–114]). According to the literature ([68]), 13-LOX enzymes are mainly
involved in the synthesis of (Z)-3-hexenal from linolenic acid and hexanal from linoleic acid.
Among these enzymes, TomloxC has shown significant correlation with the production
of hexanal, together with LeHPL, a 13-HPL [67,68,115]. Another gene, ADH2, has been
reported as positively related to the production of hexanol and (Z)-3-hexenol [116] while
ADH1 showed in vitro activity in the conversion of hexanal into hexanol [117]. Figure 2
summarizes the complete biosynthetic pathway of the lipid-derived VOCs, according to
the available literature.
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3.2. QTLs for FA VOCs

Data collection identified a total number of 108 QTLs reported in 8 different studies
and correlated with lipid volatiles biosynthesis (Table S1). Comparing these regions (see
“Data Acquisition and Classification”), we identified 24 distinct QGRs (Figure 1, Table S1).

3.3. FA VOCs’ Candidate Genes

The collected data allowed the identification of 112 genes potentially involved in lipid
VOCs biosynthesis (Table S1). Among them, 28 genes have been reported to be expressed in
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at least one fruit tissue (Table 3; [103]), or have been functionally characterized for their role
in fatty acids metabolism. Eight lipoxygenases (LOXs) were identified as candidate genes
expressed in tomato fruit. Among the identified LOXs, three have been reported for their
association with lipid VOCs: LoxC (Solyc01g006540) has a major role in the biosynthesis of
the most quantitatively prominent C5 and C6 lipid-derived VOCs, LoxF (Solyc01g006560)
is involved in the production of fatty acid VOCs derived from 13-hydroperoxides [3,121].

Table 3. List of the genes identified as potentially responsible for the lipid VOCs QTLs reported in literature. Genes that
have been functionally characterized are highlighted in bold in the table. The last column reports whether the gene has
been reported to be expressed in fruit (Y/N—[103]), for a complete overview of the gene expression see Table S1.

Solyc ID Name QGR Start
(bp) Annotation Reference Expressed

(Y/N)

Solyc01g006540 loxC LIP1 1,113,718 Lipoxygenase [68] Y
Solyc01g006560 loxF LIP1 1,128,815 Lipoxygenase [121] N
Solyc01g099210 - LIP1 89,509,072 Lipoxygenase Y
Solyc01g108150 - LIP2 95,505,678 Oxidoreductase zinc-binding dehydrogenase family protein Y
Solyc02g090930 - LIP2 52,398,542 Lipase Y
Solyc03g093360 - LIP3 54,632,041 Lipoxygenase Y
Solyc03g095360 - LIP5 56,412,064 Alcohol dehydrogenase zinc-binding Y
Solyc03g111550 - LIP5 62,149,409 GDSL esterase/lipase Y
Solyc04g010250 - LIP6 3,577,656 Lipase-like protein Y
Solyc04g054980 - LIP7 53,517,056 Lipoxygenase homology domain-containing protein 1 Y
Solyc04g054990 - LIP7 53,522,447 Lipoxygenase homology domain-containing protein 1 Y
Solyc04g064710 - LIP7 55,858,388 Alcohol dehydrogenase 2 Y
Solyc05g005480 EO

QR LIP9 352,211 Oxidoreductase zinc-binding dehydrogenase Y
Solyc05g009390 - LIP9 3,544,526 Lipase-like protein Y
Solyc06g059740 ADH2 LIP11 37,606,747 Alcohol dehydrogenase 2 Y
Solyc07g045090 - LIP13 58,206,449 Alcohol dehydrogenase zinc-binding domain protein [116] Y
Solyc08g014000 LOXA LIP14 3,516,113 Lipoxygenase Y
Solyc09g059030 - LIP17 53,010,842 Alcohol dehydrogenase zinc-containing Y
Solyc09g059040 - LIP17 53,050,984 Alcohol dehydrogenase zinc-containing Y
Solyc09g091050 - LIP18 70,389,731 Lipase Y
Solyc11g010960 - LIP20 4,006,687 Alcohol dehydrogenase Y
Solyc11g011330 - LIP20 4,375,432 Cinnamyl alcohol dehydrogenase Y
Solyc11g065530 - LIP21 50,971,492 Lipase (Fragment) Y
Solyc11g071290 - LIP21 54,819,572 Alcohol dehydrogenase Y
Solyc12g010950 - LIP22 3,827,848 Alcohol dehydrogenase zinc-containing Y
Solyc12g011040 - LIP22 3,894,074 Lipoxygenase Y
Solyc12g096760 - LIP24 65,539,079 Alcohol dehydrogenase zinc-containing Y
Solyc12g096780 - LIP24 65,557,520 Mitochondrial trans-2-enoyl-CoA reductase Y

Eleven alcohol dehydrogenases (ADH) were identified. ADHs are a family of enzymes
associated with the interconversion of the aldehyde and alcohol forms of lipid volatiles
in tomato and they have been reported to accumulate in the fruit during ripening [6,116].
Among them, Solyc06g059740 has been characterized in tomato fruit as ADH2 [116,122,123].
Solyc11g071290 was identified in the LIP21 QGR, a QTL for the earthy/mushroom odor
type volatile 1-octen-3-one—which, unlike the major C6 VOCs, has rarely been suggested
as an important fresh tomato fruit odorant, has a much lower concentration than C6 VOCs,
but has an extremely low odor threshold of 0.005 nLL−1 [124]. A structural variation in the
promoter of this gene was reported in [26]. The wild allele was present in S. pimpinellifolium
and S. cerasiforme, but was not found in heirloom tomatoes, suggesting selection against
the wild allele during domestication. Although this gene showed a significant expression
level in one fruit sample only (S. pimpinellifolium fruit at 4 DPA), we cannot exclude that
allelic differences in this gene may be responsible for the 1-octen-3-one QTL identified by
GWAS [99].

4. Branched-Chain Amino Acids Derivatives (BCAA VOCs)

Branched-chain amino acid (BCAA) derived compounds are highly volatile com-
pounds with a low molecular weight, some of which are considered important in the devel-
opment of tomato aroma, e.g., 3- and 2-methylbutanal (aldehydic/chocolate/musty odor
types), 3- and 2-methylbutanol (roasted/fermented odor types), and 2-isobutyl-thiazole
(green/wasabi odor), which is partly derived from BCAA [10,12,16].
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4.1. Biosynthesis of BCAA VOCs

Even though the relationship between BCAA VOCs and the tomato aroma is clear,
the exact molecular mechanism underlying their quantitative variation in tomato fruit is
not fully understood. In general, BCAA VOCs originate from the branched-chain amino
acid (BCAA) pathway in many organisms including plants. BCAA biosynthesis has been
studied well in plants and it takes place in the chloroplast where leucine and valine are
synthesized from pyruvate and isoleucine from threonine via several enzymatic reactions
(Figure 3). Catabolism of BCAAs, which occurs in mitochondria is believed to be the source
of BCAA VOCs in tomato fruit. It has been suggested that the first step in the catabolic
pathway leading to BCAA VOCs is the reversible conversion of branched-chain amino
acids (leucine, isoleucine) into their corresponding α-ketoacids by means of branched-
chain amino acid aminotransferases (BCATs; [125]). The importance of BCATs in the
degradation of BCAAs has been demonstrated in Arabidopsis [126]. In tomato different
members of the BCAT family have been shown to mediate either synthetic or catabolic
reactions of BCAAs [94,127–129]. The products of the reversible BCAT-mediated BCAA
deamination—α-ketoacids—have been suggested to be the likely precursors for BCAA
VOCs [128], which then could be produced through the combined action of various classes
of candidate enzymes (Figure 3), such as α-ketoacid dehydrogenases, decarboxylases and
alcohol/aldehyde dehydrogenases [130].
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4.2. QTLs for BCAA VOCs

Data collection identified a total number of 129 QTLs reported by seven different
authors and correlated with BCAA volatiles biosynthesis (Figure 1; Table S2). These QTLs
were classified into 26 distinct QGRs (Table S2).

4.3. BCAA VOC Candidate Genes

Table S2 reveals 75 genes that were identified as potentially involved in the BCAA
VOCs metabolism, 28 of which have been reported to be expressed in at least one fruit
tissue [103]. An overview of the 30 selected candidate genes is shown in Table 4, including
genes expressed in fruits plus two functionally characterized genes (BCAT2 and BCAT4;
see below).

Among the genes identified as expressed in tomato fruit, ten belong to enzymatic
families that have been associated with BCAA biosynthesis: four genes were annotated as
pyruvate dehydrogenases (PDH), three as 3-isopropylmalate dehydratases (IPMD), two as
ketol-acid reductoisomerase (KARI) and one as 2-isopropylmalate synthase (IPMS). Reverse
genetics analysis of Solyc06g060790 (IPMD) revealed that this gene influences the BCAA
content in tomato fruit, while a similar analysis failed to support such a conclusion in case
of Solyc07g053280 (KARI) [94]. Branched chain amino acid aminotransferases (BCATs) can
be involved in the last step of BCAA anabolism and/or in the first step of BCAA catabolism
depending on their subcellular localization (chloroplast or mitochondrion, respectively). Six
BCAT genes were reported as candidate genes in Table 4, of which five (BCAT1, 2, 3, 4 and
7) have been functionally characterized [112,114]. Although BCAT2, 4 and 7 were located
outside the QTL intervals, they were included in this review for completeness. BCAT1
and BCAT2 were shown to be located in mitochondria and involved in the catabolism of
BCAAs, while BCAT3 and BCAT4 were shown to be located in chloroplasts and involved
in BCAA biosynthesis. In turning and ripe fruits of cv. M82 BCAT1 expression was up
to 10-fold higher compared to BCAT2, 3 and 4. Although BCAT2, 3 and 4 showed low,
but detectable expression in fruits, their expression was much higher in leaves (BCAT2 and
3) or inflorescence (BCAT4) in this tomato background [127]. According to the RNAseq
data present in the TomExpress database [103], these three genes are hardly (BCAT3) or not
at all expressed in tomato fruits (BCAT2 and 4). Although its subcellular location is unclear,
BCAT7 was proposed to play a role in BCAA degradation [128]. Finally, we identified
eleven alcohol dehydrogenases (ADH) expressed in tomato fruit in the BCAA QGRs. These
may play a role in BCAA catabolism, although their functional characteristics remain to be
demonstrated.

The available tomato pangenome [26] was investigated for the presence of non-
reference (non cv. Heinz) promoter regions for the abovementioned genes. Interest-
ingly, a non-reference allele was reported for Solyc04g063350, annotated as 3-methyl-2-
oxobutanoate dehydrogenase, an enzymatic class that has been described as involved
in the BCAA catabolism, which involves the decarboxylation of branch chain amino
acids [94,129,131]. This gene has recently been named FLORAL4 after both genetic and
functional studies revealed that its involvement was not restricted to BCAA catabolism,
but this gene also controlled the quantitative variation of floral phenolic-derived VOCs
derived from catabolism of the aromatic amino acid phenylalanine (see below; [102]).
Among the investigated tomato varieties, the cultivars harboring the ”wild” allele showed
significantly lower gene expression than the ones presenting the domesticated promoter,
suggesting a positive selection for FLORAL4 expression during tomato domestication [26].
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Table 4. List of the genes identified as potentially responsible for the BCAA VOCs QTL reported in literature. Genes that have been functionally characterized are highlighted in bold in
the table. The last column reports whether the gene has been reported to be expressed in fruit (Y/N—[103]); for a complete overview of the gene expression see Table S2.

Solyc ID Name QGR Start (bp) Annotation Family References Expressed (Y/N)

Solyc01g098700 SlBCAT7 89,114,957 Branched-chain-amino-acid aminotransferase 7 BCAT [128] Y
Solyc02g091970 SlBCAT3 BCAA4 53,178,240 Branched-chain-amino-acid aminotransferase 3 BCAT [127] Y
Solyc03g005730 BCAA5 509,260 3-isopropylmalate dehydratase large subunit 2 IPMD Y
Solyc03g007200 BCAA5 1,775,153 Oxidoreductase zinc-containing alcohol dehydrogenase family ADH Y
Solyc03g043880 SlBCAT4 7,542,329 Branched-chain amino acid aminotransferase 4 BCAT [127] N
Solyc03g097680 BCAA6 60,009,332 Pyruvate dehydrogenase E1 component subunit β PDH Y
Solyc04g008590 BCAA7 2,195,990 Pyruvate dehydrogenase E1 component subunit β PDH Y
Solyc04g063350 FLORAL4 BCAA9 55,462,543 3-methyl-2-oxobutanoate dehydrogenase [102] Y
Solyc04g064710 BCAA9 55,858,388 Alcohol dehydrogenase 2 ADH Y
Solyc05g005480 EO QR BCAA10 352,211 Oxidoreductase zinc-binding dehydrogenase ADH Y
Solyc06g059880 BCAA11 37,781,458 Acetolactate synthase ALS Y
Solyc06g060790 BCAA11 38,814,018 3-isopropylmalate dehydratase small subunit IPMD [94] N
Solyc07g021630 SlBCAT2 20,381,557 Branched-chain amino acid aminotransferase 2 BCAT [127] Y
Solyc07g045090 BCAA13 58,206,449 Alcohol dehydrogenase zinc-binding domain protein ADH Y
Solyc07g053280 BCAA14 61,749,215 Ketol-acid reductoisomerase KARI Y
Solyc07g061940 BCAA14 64,814,098 Acetolactate synthase ALS Y
Solyc08g014130 BCAA15 3,972,785 2-isopropylmalate synthase 1 IPMS Y
Solyc09g008670 TD BCAA17 2,123,840 Threonine ammonia-lyase biosynthetic TD Y
Solyc11g010960 BCAA21 4,006,687 Alcohol dehydrogenase ADH Y
Solyc11g011330 BCAA21 4,375,432 Cinnamyl alcohol dehydrogenase ADH Y
Solyc11g071280 LOC778238 BCAA24 54,809,918 Branched-chain amino acid aminotransferase like protein BCAT Y
Solyc11g071290 BCAA24 54,819,572 Alcohol dehydrogenase ADH Y
Solyc12g005860 BCAA25 490,745 3-isopropylmalate dehydratase large subunit IPMD Y
Solyc12g009400 BCAA25 2,682,210 Pyruvate dehydrogenase E1 component α subunit PDH Y
Solyc12g009410 BCAA25 2,687,666 Pyruvate dehydrogenase E1 component α subunit PDH Y
Solyc12g010840 BCAA25 3,773,065 Ketol-acid reductoisomerase KARI Y
Solyc12g010950 BCAA25 3,827,848 Alcohol dehydrogenase zinc-containing ADH Y
Solyc12g088220 SlBCAT1 BCAA26 63,663,328 Branched-chain-amino-acid aminotransferase 1 BCAT [127] Y
Solyc12g096760 BCAA26 65,539,079 Alcohol dehydrogenase zinc-containing ADH Y
Solyc12g096780 BCAA26 65,557,520 Mitochondrial trans-2-enoyl-CoA reductase ADH Y
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5. Carotenoid-Derived VOCs

Carotenoid-derived volatiles (apocarotenoid VOCs) are perceived as “floral” and accu-
mulate in low amounts in tomato fruit [11]. However, due to their low odor thresholds [10],
they have been reported to positively correlate with tomato flavour acceptability [15].
There are two groups of carotenoid VOCs that are relevant for tomato aroma [21,132]:
(i) cyclic carotenoid volatiles, such as β-ionone and β-damascenone (both floral odor type);
and (ii) open-chain carotenoid-derived volatiles, such as 6-methyl-5-hepten-2-one, geranial
(both citrus odor type) and geranylacetone (floral odor type).

5.1. Biosynthesis

Apocarotenoid volatiles are produced in plastids [104] through the cleavage of
carotenoids by carotenoid cleavage dioxygenases, like LeCCD1A and LeCCD1B [133],
which are particularly expressed during fruit ripening [132]. This family of genes has
been reported in other species to act both on cyclic carotenoids (at the 9′,10′ position)
and open-chain carotenoids—at the (5′,6′), (7′,8′), or (9′,10′) positions-, leading to the pro-
duction of the carotenoid VOCs (Figure 4; [133–139]). Although many structural genes
in the carotenoid biosynthetic and cleavage pathway are known, the regulation of the
carotenoid pathway is still unclear. In this respect it has been proposed that the loss
of membrane integrity during the ripening-dependent conversion of chloroplasts into
chromoplasts may be a key mechanism in their regulation, as this process may lead to
the release of the carotenoids in the cytoplasm, were they will react with cytoplasmatic
cleavage enzymes [15,140]. The available knowledge of the carotenoid biosynthetic and
cleavage pathway and the underlying biosynthetic genes (Figure 4) is very helpful for the
identification of candidate genes within QTLs for carotenoid-derived VOCs in tomato fruit.
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5.2. QTLs for Apocarotenoid VOCs

Data collection identified a total number of 42 QTLs reported in 8 different articles and
correlated with apocarotenoid volatiles biosynthesis (Figure 1; Table S3). Comparing these
regions (see “Data Acquisition” paragraph for methodology), we identified 19 distinct
QGRs (Table S3).

5.3. Apocarotenoid VOCs’ Candidate Genes

Twenty-three genes were identified as potentially associated with apocarotenoid
VOCs metabolism (Table S3). For nineteen genes there is functional evidence for their
involvement in the carotenoid pathway and five of those (Solyc03g007960, Solyc03g031860,
Solyc03g123760, Solyc06g036260, Solyc10g081650) have also been shown to be expressed
in at least one fruit tissue based on [103]. Solyc06g036260 (Crtz1), Solyc03g114340 (DXR),
Solyc03g123760 (PDS), Solyc04g040190 (LCY-B1) are located outside the QTL regions,
but were included for completeness (Table 5; [137,143–154]).

Two genes have been annotated as 1-deoxy-D-xylulose 5-phosphate synthases (DXS),
reported as first and key regulatory step of the MEP pathway required for the produc-
tion of carotenoids [141,143,155]. Most of the structural genes of the carotenoid path-
way are found within the QTL regions, including three phytoene synthases required for
the production of phytoene, the first carotenoid of the pathway [144,149,156–160], fol-
lowed by phytoene desaturase [152] and one carotenoid isomerase [161], required for
the production of lycopene, two lycopene cyclases, involved in the production of α- and
β-carotene [153,154,162,163], one carotene hydroxylase to form zeaxanthin [159,164], and fi-
nally one zeaxanthin epoxidase, an enzymatic class that converts zeaxanthin, precursor of
3-hydroxy-β-ionone, into violaxanthin [132,135,151,165]. As mentioned above, lycopene
β-cyclase 1 (Solyc04g040190) was not associated with any of the apocarotenoid QGRs. In to-
tal four carotenoid cleavage dioxygenases (CCDs) were present in the QGRs. Two CCD’s
were annotated as carotenoid cleavage dioxygenase 1A (CCD1A—Solyc01g087250) and
1b (CCD1B—Solyc01g087260) and have been shown to be directly involved in carotenoid
VOCs accumulation in tomato [132,138], one was annotated as carotenoid cleavage dioxy-
genase 2 (CCD2—Solyc01g087270), reported to be involved in the formation of carotenoid
VOCs in Crocus sativus [137], and one as carotenoid cleavage dioxygenase 7 (CCD7—
Solyc01g090660), associated with β-carotene cleavage to carlactone [166]. Two CDDs
(CCD4A—Solyc08g075480, CCD4B—Solyc08g075490) have been reported to be associated
with tomato fruit color, flavour, and aroma [167–169], but were not comprised in any
identified QGR.

Phytoene synthase 2 (PSY2—Solyc02g081330) represents an exception to our candidate
gene mining approach. This gene has been annotated at 45Mb on chr 2 and is located
between QGRs APO3-4. Although this gene is not comprised among the regions identified
by this review, its activity has been associated with carotenoid production in fruit in other
Solanaceae [170]. For this reason, it has been proposed here as potential candidate gene for
tomato apocarotenoid VOCs.
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Table 5. List of the genes identified as potentially responsible for the carotenoid VOCs QTL reported in literature. Genes
that have been functionally characterized are highlighted in bold in the table. The last column reports whether the gene has
been reported to be expressed in fruit (Y/N—[103]); for a complete overview of the gene expression see Table S3.

Solyc ID Name QGR Start (bp) Annotation References Expressed (Y/N)

Solyc01g005940 PSY3 APO1 613,955 Phytoene synthase 3 [171] N
Solyc01g067890 DXS1 APO2 76,868,469 1-Deoxy-D-xylulose 5-phosphate synthase 1 [145,155] N
Solyc01g087250 CCD1A APO2 82,184,585 Carotenoid cleavage dioxygenase 1A [132,138] N
Solyc01g087260 CCD1B APO2 82,196,996 Carotenoid cleavage dioxygenase 1B [132,138] N
Solyc01g087270 CCD2 APO2 82,209,237 Carotenoid cleavage dioxygenase 2 [137] N
Solyc01g090660 CCD7 APO2 84,307,951 Carotenoid cleavage dioxygenase 7 [166] N
Solyc02g081330 PSY2 APO3/4 45,335,358 Phytoene synthase 2 N
Solyc02g090890 ZEP APO4 52,369,708 Zeaxanthin epoxidase, 2C chloroplastic [151] N
Solyc03g007960 CrtZ-2 APO5 2,447,872 β-Carotene hydroxylase 2 [164] Y
Solyc03g031860 PSY1 APO5 4,326,134 Phytoene synthase 1 [171] Y
Solyc03g114340 DXR 64,347,674 1-Deoxy-D-xylulose-5-phosphate

reductoisomerase [143] N
Solyc03g123760 PDS 70,501,011 Phytoene desaturase [152] Y
Solyc04g040190 LCY-B1 11,947,053 Lycopene β-cyclase 1 [153] N
Solyc06g036260 CrtZ-1 25,742,578 β-Carotene hydroxylase 1 [162] Y
Solyc06g074240 LCY-B2 APO12 45,898,227 Lycopene β-cyclase 2 [153] N
Solyc08g075480 CCD4A 59,627,153 Carotenoid cleavage dioxygenase 4A [167] N
Solyc08g075490 CCD4B 59,643,898 Carotenoid cleavage dioxygenase 4B [167] N
Solyc10g079480 LCY-b APO17 61,024,821 Lycopene β-cyclase [153] N
Solyc10g081650 CRTISO APO17 62,682,440 Carotenoid isomerase, 2C chloroplastic [161] Y
Solyc11g010850 DXS2 APO18 3,870,455 1-Deoxy-D-xylulose 5-phosphate synthase 2 [145,155] N

A search for reported wild promoter regions [26] was performed for the above-
mentioned candidate genes, identifying Solyc03g114340 (DXR—1-deoxy-D-xylulose-5-
phosphate reductoisomerase) as the only candidate gene showing a wild allele for its
promoter region in the available tomato pangenome. This non-reference allele consists
of a 645 bp promoter located at 582 bp upstream of DXR, and has been associated with
an occurrence frequency of 0.58 in the Solanum pimpinellifolium L. accessions investigated
by [26]. On the other hand, its presence in the Solanum lycopersicum var. cerasiforme and
S. lycopersicum heirlooms has been reported to be rare, with an occurrence frequency of
0.05 and 0.02 respectively. The cultivars presenting the wild allele showed a significantly
higher expression of Solyc03g11434 compared to the ones harboring the common allele,
suggesting a selection against a higher expression of DXR during tomato domestication.

6. Phenylalanine-Derived Volatiles (Phe VOCs)

Phenolic and phenylpropanoid volatiles originate from the catabolism of phenylala-
nine. Phenolic VOCs include compounds such as phenylacetaldehyde, 2-phenylethanol,
1-nitro-2-phenylethane and 2-phenylacetonitrile (benzylnitrile; all floral odor type) which
have been reported to affect consumer liking of tomato fruit, [8,12,16,17]. However, the ef-
fect of these phenolic compounds on flavour and consumer preference seems not easy
to predict, since some studies show positive while others show negative effects of these
compounds on consumer liking [13,92,172]. This apparent inconsistency may be caused
by differences in the concentrations of these compounds in the tomato materials studied.
The main phenylpropanoid VOCs in tomato are guaiacol, methylsalicylate and eugenol.
They are associated with a smoky, pharmaceutical aroma and are generally considered as
off-flavours.

6.1. Biosynthesis of Phe VOCs

Phenolic volatiles (C6–C2) have been reported to have a high impact on tomato
aroma [11]. Their biochemical pathway starts with decarboxylation of phenylalanine,
leading to the production of phenylethylamine [93]. According to the proposed phenolic
volatile biosynthetic pathway in tomato, phenylethylamine is the precursor for the synthe-
sis of the two nitrogen-containing volatiles nitrophenylethane and benzylnitrile, as well as
the production of phenylacetaldehyde. Extremely high phenylacetaldehyde levels were
found in tomato introgression lines carrying the malodorous locus from S. pennellii on
chromosome 8 [92]. The high phenylacetaldehyde production in this line was associated
with the expression of AADC1A, AADC1B, and AADC2 located in the malodorous QTL



Genes 2021, 12, 226 15 of 26

region [93,173,174]. Transgenic approaches revealed that this family of genes was capable
of decarboxylating phenylalanine, leading to phenylethylamine, the direct precursor of
phenylacetaldehyde. The subsequent deamination of phenethylamine to produce pheny-
lacetaldehyde has been reported to be related to an amine oxidase. Finally, 2-phenyethanol
is produced from phenylacetaldehyde by means of two reductases, PAR1 and PAR2 [175–
177]. These enzymes are not only reducing phenylacetaldehyde, but they are also able
to catalyze the reduction of benzaldehyde and cinnamaldehyde to their respective alco-
hols as well [175]. More recently, FLORAL4 (Solyc04g063350—3-methyl-2-oxobutanoate
dehydrogenase- has been fine mapped in a diversity panel of cultivated contemporary
tomato varieties and tomato RIL populations, and associated with the floral phenolic
volatiles accumulation in tomato fruit [102]. Based on the protein sequence FLORAL4 be-
longs to the mitochondrial 2-oxoisovalerate dehydrogenase/decarboxylase enzyme family
which is involved in the catabolism of BCAAs and constitutes the E1 subunit of the BCKDC
complex, catalyzing the decarboxylation of the BCAA deamination products in plants [131].
A complete knock-out of the FLORAL4 gene by CRISPR-Cas9-mediated gene editing in
tomato plants led to a major depletion of the phenylalanine-derived volatiles as well as a
notable depletion of BCAA VOCs. This suggests involvement of FLORAL4 in both BCAA
and PHE VOC metabolism, possibly via decarboxylation of the corresponding amino or
keto acids.

As mentioned above, phenylpropanoid volatiles (C6–C3) are the second group of
phenylalanine derived VOCs. Although their biosynthesis in tomato has not been fully
characterized, results from other species suggest that phenylpropanoid volatiles are derived
from intermediates of the lignin pathway [178–181]. For example, eugenol has been
reported in other species to be produced from coniferyl acetate by means of a eugenol
synthase [182]. The mechanisms of methyl salicylate and guaiacol biosynthesis have been
investigated in tomato [11]. Methyl salicylate can be produced from salicylic acid by means
of SlSAMT1, an O-methyltransferase [183], while guaiacol may be produced from catechol,
by means of the catechol-O-methyltransferase CTOMT1 [184]. Although CTOMT1 could
not be connected to any of the QTL regions found, it has been included for completeness.
Furthermore, the conjugation of these three compounds after their biosynthesis has been
reported to be linked to the activity of two classes of enzymes: glycosyltransferases and
glycosyl hydrolases. Among these classes of enzymes, NSGT1 was shown to prevent the
wound-induced release of the smoky aroma associated with phenylpropanoid VOCs in
ripening tomato fruit [185]. Figure 5 summarizes the metabolic reactions described above.
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6.2. QTLs for Phe VOCs

Data collection identified a total number of 81 QTLs reported by eight different authors
and correlated with phenylalanine-derived volatiles biosynthesis (Figure 2; Table S4). Com-
paring these regions (see “Data Acquisition” paragraph for methodology), we identified 24
distinct QGRs (Table S3).

6.3. Phe VOCs’ Candidate Genes

Seventy-five genes were identified as potentially associated with phenylalanine de-
rived VOCs, including all candidate genes present in the QGRs plus the above-mentioned
CTOMT1 (Solyc10g005060—Table S4). Among them, twenty-one have been reported to be
expressed in at least one fruit tissue or were characterized for their role in VOCs metabolism
(Table 6 and Table S4; [103]). In addition, the above-mentioned NSGT1, present in QGR
PHEN17, was also included in Table 6. NSGT1 expression in tomato fruit was reported
by [185], but this gene has not been predicted by the tomato genome and its genomic
organization has only recently been resolved [65], and hence gene expression data for this
gene could not be retrieved from the TomExpress database.

Table 6. List of the genes identified as potentially responsible for the phenylalanine-derived VOCs QTL reported in literature.
Genes that have been functionally characterized are highlighted in bold in the table. The last column reports whether the
gene has been reported to be expressed in fruit (Y/N—[103]); for a complete overview of the gene expression see Table S4.

Solyc ID Name QGR Start (bp) Annotation References Expressed (Y/N)

Solyc01g107910 PHEN3 95,296,421 Caffeoyl CoA 3-O-methyltransferase Y
Solyc02g093270 PHEN5 54,178,272 Caffeoyl CoA O-methyltransferase Y
Solyc03g097700 PHEN6 60,029,697 O-methyltransferase Y
Solyc03g111830 PHEN6 62,444,512 O-methyltransferase Y
Solyc04g063350 FLORAL4 PHEN7 55,462,543 3-methyl-2-oxobutanoate dehydrogenase [102] Y
Solyc04g071140 PHEN7 58,070,304 Decarboxylase family protein Y
Solyc05g013440 PHEN8 6,501,962 Primary amine oxidase Y
Solyc06g059840 LOC778303 PHEN9 37,729,682 3-methyl-2-oxobutanoate dehydrogenase Y
Solyc08g006740 AADC2 PHEN14 1,295,712 Decarboxylase family protein [175] N
Solyc08g066240 PHEN15 54,722,572 Decarboxylase family protein Y
Solyc08g066250 Hdc PHEN15 54,745,923 Decarboxylase family protein Y
Solyc08g068600 PHEN15 57,730,921 Decarboxylase family protein Y
Solyc08g068610 AADC1B PHEN15 57,740,004 Decarboxylase family protein [175] Y
Solyc08g068680 AADC1A PHEN15 57,812,621 Decarboxylase family protein [175] N
Solyc08g079430 PHEN15 62,954,528 Primary amine oxidase Y
Solyc09g007890 PHEN16 1,413,536 Phenylalanine ammonia-lyase Y
Solyc09g007900 PHEN16 1,419,041 Phenylalanine ammonia-lyase Y
Solyc09g007910 PHEN16 1,429,132 Phenylalanine ammonia-lyase Y
Solyc09g007920 PHEN16 1,435,451 Phenylalanine ammonia-lyase Y
Solyc09g091550 SAMT1 PHEN17 70,802,564 Salicylate methyltransferase 1 [183] N

NSGT1 PHEN17 64,653,692 Glycosyltransferase [185] Y
Solyc10g005060 CTOMT1 53,330 Catechol-O-methyltransferase 1 [184] Y
Solyc10g085830 PHEN18 64,899,145 O-methyltransferase 1 Y
Solyc10g086180 PHEN18 65,098,335 Phenylalanine ammonia-lyase Y
Solyc12g013690 SlFMO1 PHEN22 4,532,510 Monooxygenase FAD-binding protein [175] Y

Among the genes identified as expressed in tomato fruit, one was annotated as
3-methyl-2-oxobutanoate dehydrogenase (Solyc04g063350), the above-mentioned FLO-
RAL4 gene and was demonstrated to be the causal gene for the variation in phenolic VOCs
in the PHEN7 QGR on chromosome 4.

One gene (SlFMO1—Solyc12g013690) was annotated as flavin-dependent monooxy-
genases, a class of enzymes that was shown to catalyze the hydroxylation of aromatic
compounds in prokaryotes and plants [174–176]. This gene was suggested to play a role
in the synthesis of nitrogenous phenolic volatiles, like 2-phenylacetonitrile and 1-nitro-2-
phenylethane in tomato [186], although this needs experimental confirmation. Furthermore,
we identified one primary amine oxidase (Solyc08g079430) that may potentially be involved
in the production of 2-phenylacetaldehyde from phenethylamine [93].

We identified five phenylalanine ammonia-lyase (Solyc09g007890, Solyc09g007900,
Solyc09g007910, Solyc09g007920, and Solyc10g086180) genes expressed in tomato fruit. These
enzymes have been reported to be responsible for the first key step in phenylpropanoid
metabolism, catalyzing the conversion of l-phenylalanine into trans-cinnamate [187].
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Finally, six decarboxylase genes were reported to be expressed in tomato fruit during
ripening [103,188]. Among them, Solyc08g066250 has been reported as SlHDC11 and has
been associated with fruit-ripening in tomato [189]. Moreover, LeAADC1A (Solyc08g068680),
together with LeAADC1B (Solyc08068610) and LeAADC2 (Solyc08g006740), have been
related with the conversion of phenylalanine to phenylethylamine in a S. lycopersicum var.
M82 × S. pennellii tomato IL population [93].

The tomato pangenome [26] was investigated for potential non-reference alleles in the
promoter region of the identified candidate genes. A presence-absence variant was detected
in the promoter of FLORAL4 (Solyc04g063350). This variant has an occurrence frequency
of 0.74 in cultivated heirloom tomato and 0.64 in S. lycopersicum var. cerasiforme, while it
occurs at a frequency of 0.02 only in S. pimpinellifolium WL. Gene expression analyses
pinpointed a significant difference (p-value: 5.48 × 10−6) between accessions harboring the
domesticated versus the wild allele, suggesting that the domesticated allele of FLORAL4
has a lower expression compared to the wild allele.

7. Concluding Remarks

In the last decades, a vast array of scientific studies has investigated the genetic
components of tomato aroma in modern tomato cultivars and their relatives. However,
the methodological differences between different studies, such as the source materials,
the type of mapping population, the number of markers, the reference map used, the influ-
ence of environmental factors on trait performance and analytical variation in determina-
tion of the aroma phenotype, make it difficult for breeders and researchers to efficiently
use the available data in their research. This review summarized the state of the art on
the understanding of tomato aroma genetics and provides a tool that can be used by
breeders and researchers to collect additional evidence for the robustness of their QTL
data. The identified QGRs, especially when defined by the overlapping of QTLs from dif-
ferent sources, represent the regions that most likely contain genetic elements that regulate
tomato aroma. The QGRs differ from each other by two major parameters—the size and
the number of studies contributing to it. The smaller the size of a resulting QGR and the
higher the number of studies referring to it suggests a high robustness of such a QGR in
a breeding program. Some of the QGRs, however, appeared to be quite large. This most
likely indicates the presence of multiple genetic factors controlling the levels of (related)
aromatic compounds in such a region, although we cannot exclude the possibility that,
in some cases, a large QGR is caused by inaccurate prediction of a QTL due to experimental
and/or methodological differences, as mentioned above. For a breeder such large QGRs
could indicate a need for further inspection and dissection of the respective QGR in selected
donor material, using high-resolution (fine) mapping approaches.

There are various potential applications of these data in practical breeding and breed-
ing research:

(i) The QTL information presented in this review can be directly used to support marker-
assisted breeding programs aimed at introgressing large-effect aroma QTLs into elite
germplasm, for example using the donors indicated in Table S5.

(ii) The current development of pangenome projects paves the way for a new step in
tomato breeding research. Advances in computational genomics and long-read
sequencing allow an easier and more comprehensive investigation of the genetic
variation in tomato collections worldwide. This makes it possible to identify genetic
elements that are missing in the reference genome and to discover and use novel
markers—such as Structural Variants (SVs) and Present Absent Variants (PAVs) [190].
Thanks to the ongoing reduction in sequencing costs, large sets of genotypes can nowa-
days be re-sequenced, allowing the application of SV markers in GWAS projects [191,
192]. Furthermore, SV identification in large sets of genotypes can lead to downstream
breeding approaches. For example, SV-based linkage mapping can be applied by
genotyping mapping populations using SV markers that showed polymorphism in
the parental lines [193]. Furthermore, SV studies may help to get more insight in
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the mechanisms leading to a certain phenotype [26,65,194,195], pinpointing the best
donors for a certain allele cross. By providing a comprehensive set of candidate genes
for tomato aroma, our review may guide researchers and breeders in the selection of
the most interesting genes that can be investigated for structural variation.

(iii) The data in this review can be used to support the identification and use of the
key genes underlying these QTLs. In combination with available (pan)genomic and
transcriptomic information candidate genes present in the QTL regions can be selected
and tested for their effects in vivo using either stable transgenic approaches such as
CRISPR-CAS9 mediated gene editing or quicker transient overexpression or silencing
in tomato fruit. This may not only lead to the identification of the causal genes
controlling a trait, but also to the detection of the causal genetic variants underlying
trait variation. Such variants, also called functional markers, are the best possible
molecular markers for MAS, since they are functionally linked to the trait rather
than genetically linked and their use as marker does not need validation in other
populations, which is always required with genetically-linked markers [196].

(iv) The information on large effect aroma QTLs provided in this review can alo be used
to improve the performance of genomic prediction models, since both genetically-
linked markers and in particular functional markers have been shown to significantly
improve the prediction power of GP models compared to the use of random neutral
markers [197].

Last but not least we hope that this review may facilitate the development of more
tasty tomatoes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/226/s1, Figures S1–S4: Gene expression (Euclidean heatmap) of the candidate genes
identified in this review; Tables S1–S4: QGRs, Candidate Genes and Candidate Genes expressed in
tomato fruit for the four classes of VOCs; Table S5: QTLs reported in literature (biosynthetic pathway,
QGR, the QTL’s original name, related compound, chromosome, correlated markers, their position
in cM and bp, their p-value, their LOD score, the SolycID of the gene in which the markers have
been found, the percentage of explained variation by the QTL, the effect, donor parent, the crossing
population or association panel used, and the reference of the primary resource).
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181. Biała, W.; Jasiński, M. The phenylpropanoid case-it is transport that matters. Front. Plant Sci. 2018, 9, 9. [CrossRef]
182. Koeduka, T.; Fridman, E.; Gang, D.R.; Vassão, D.G.; Jackson, B.L.; Kish, C.M.; Orlova, I.; Spassova, S.M.; Lewis, N.G.;

Noel, J.P.; et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of
a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 2006, 103, 10128–10133. [CrossRef]

183. Tieman, D.; Zeigler, M.; Schmelz, E.; Taylor, M.G.; Rushing, S.; Jones, J.B.; Klee, H.J. Functional analysis of a tomato salicylic acid
methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010, 62, 113–123. [CrossRef]

184. Mageroy, M.H.; Tieman, D.M.; Floystad, A.; Taylor, M.G.; Klee, H.J. A Solanum lycopersicum catechol-O-methyltransferase involved
in synthesis of the flavor molecule guaiacol. Plant J. 2012, 69, 1043–1051. [CrossRef]

185. Tikunov, Y.; Molthoff, J.; De Vos, R.C.; Beekwilder, J.; Van Houwelingen, A.; Van Der Hooft, J.J.; Vries, M.N.-D.; Labrie, C.W.;
Verkerke, W.; Van De Geest, H.; et al. Non-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit.
Plant Cell 2013, 25, 3067–3078. [CrossRef]

186. Klee, H.J.; Tieman, D.M. The genetics of fruit flavour preferences. Nat. Rev. Genet. 2018, 19, 347–356. [CrossRef]
187. Rigano, M.M.; Raiola, A.; Docimo, T.; Ruggieri, V.; Calafiore, R.; Vitaglione, P.; Ferracane, R.; Frusciante, L.; Barone, A.

Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum) lines carrying different
Solanum pennellii wild chromosomal regions. Front. Plant Sci. 2016, 7. [CrossRef] [PubMed]

188. Kim, A.Y.; Kim, H.M.; Ma, S.H.; Park, S.Y.; Dat, M.T.; Jang, G.; Joung, Y.H. The promoter of tomato Histidine decarboxylase A is
fruit-specific, and its expression is stably maintained in fruits during ripening. Plant Biotechnol. Rep. 2019, 13, 43–50. [CrossRef]

189. Kumar, R. Evolutionary trails of plant group ii pyridoxal phosphate-dependent decarboxylase genes. Front. Plant Sci. 2016, 7.
[CrossRef] [PubMed]

190. Wellenreuther, M.; Mérot, C.; Berdan, E.; Bernatchez, L. Going beyond SNPs: The role of structural genomic variants in adaptive
evolution and species diversification. Mol. Ecol. 2019, 28, 1203–1209. [CrossRef] [PubMed]

191. Guo, J.; Cao, K.; Deng, C.; Li, Y.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; Guan, L.; et al. An integrated peach genome
structural variation map uncovers genes associated with fruit traits. Genome Biol. 2020, 21, 258. [CrossRef] [PubMed]

192. Zhang, Z.; Mao, L.; Chen, H.; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; et al. Genome-wide mapping of structural
variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 2015, 27, 1595–1604.
[CrossRef]

193. Shen, X.; Liu, Z.-Q.; Mocoeur, A.; Xia, Y.; Jing, H.-C. PAV markers in Sorghum bicolour: Genome pattern, affected genes and
pathways, and genetic linkage map construction. Theor. Appl. Genet. 2015, 128, 623–637. [CrossRef] [PubMed]

194. McHale, L.K.; Haun, W.J.; Xu, W.W.; Bhaskar, P.B.; Anderson, J.E.; Hyten, D.L.; Gerhardt, D.J.; Jeddeloh, J.A.; Stupar, R.M.
Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol. 2012, 159, 1295–1308.
[CrossRef] [PubMed]

195. Gabur, I.; Chawla, H.S.; Lopisso, D.T.; Von Tiedemann, A.; Snowdon, R.J.; Obermeier, C. Gene presence-absence variation
associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Sci. Rep. 2020, 10, 4131. [CrossRef]
[PubMed]

196. Salgotra, R.K.; Stewart, C.N. Functional markers for precision Plant breeding. Int. J. Mol. Sci. 2020, 21, 4792. [CrossRef] [PubMed]
197. Fu, Y.-B.; Yang, M.-H.; Zeng, F.; Biligetu, B. Searching for an accurate marker-based prediction of an individual quantitative trait

in molecular plant breeding. Front. Plant Sci. 2017, 8, 1182. [CrossRef] [PubMed]

http://doi.org/10.1199/tab.0152
http://doi.org/10.3389/fpls.2018.01610
http://doi.org/10.1073/pnas.0603732103
http://doi.org/10.1111/j.1365-313X.2010.04128.x
http://doi.org/10.1111/j.1365-313X.2011.04854.x
http://doi.org/10.1105/tpc.113.114231
http://doi.org/10.1038/s41576-018-0002-5
http://doi.org/10.3389/fpls.2016.01484
http://www.ncbi.nlm.nih.gov/pubmed/27757117
http://doi.org/10.1007/s11816-018-00512-1
http://doi.org/10.3389/fpls.2016.01268
http://www.ncbi.nlm.nih.gov/pubmed/27602045
http://doi.org/10.1111/mec.15066
http://www.ncbi.nlm.nih.gov/pubmed/30834648
http://doi.org/10.1186/s13059-020-02169-y
http://www.ncbi.nlm.nih.gov/pubmed/33023652
http://doi.org/10.1105/tpc.114.135848
http://doi.org/10.1007/s00122-015-2458-4
http://www.ncbi.nlm.nih.gov/pubmed/25634103
http://doi.org/10.1104/pp.112.194605
http://www.ncbi.nlm.nih.gov/pubmed/22696021
http://doi.org/10.1038/s41598-020-61228-3
http://www.ncbi.nlm.nih.gov/pubmed/32139810
http://doi.org/10.3390/ijms21134792
http://www.ncbi.nlm.nih.gov/pubmed/32640763
http://doi.org/10.3389/fpls.2017.01182
http://www.ncbi.nlm.nih.gov/pubmed/28729875

	Introduction 
	Construction of a Unified QTL Map of Tomato Aroma 
	Fatty Acids Derived Volatiles (FA VOCs) 
	Biosynthesis of FA VOCs 
	QTLs for FA VOCs 
	FA VOCs’ Candidate Genes 

	Branched-Chain Amino Acids Derivatives (BCAA VOCs) 
	Biosynthesis of BCAA VOCs 
	QTLs for BCAA VOCs 
	BCAA VOC Candidate Genes 

	Carotenoid-Derived VOCs 
	Biosynthesis 
	QTLs for Apocarotenoid VOCs 
	Apocarotenoid VOCs’ Candidate Genes 

	Phenylalanine-Derived Volatiles (Phe VOCs) 
	Biosynthesis of Phe VOCs 
	QTLs for Phe VOCs 
	Phe VOCs’ Candidate Genes 

	Concluding Remarks 
	References

