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Abstract

Cardiovascular diseases are a leading cause of death worldwide. After an ischemic injury,

the myocardium undergoes severe necrosis and apoptosis, leading to a dramatic degrada-

tion of function. Numerous studies have reported that cardiac fibroblasts (CFs) play a critical

role in heart function even after injury. However, CFs present heterogeneous characteristics

according to their development stage (i.e., fetal or adult), and the molecular mechanisms by

which they maintain heart function are not fully understood. The aim of this study is to

explore the hypothesis that a specific population of CFs can repair the injured myocardium

in heart failure following ischemic infarction, and lead to a significant recovery of cardiac

function. Flow cytometry analysis of CFs defined two subpopulations according to their rela-

tive expression of vascular cell adhesion molecule 1 (VCAM1). Whole-transcriptome analy-

sis described distinct profiles for these groups, with a correlation between VCAM1

expression and lymphangiogenesis-related genes up-regulation. Vascular formation assays

showed a significant stimulation of lymphatic cells network complexity by VCFs. Injection of

human VCAM1-expressing CFs (VCFs) in postinfarct heart failure rat models (ligation of the

left anterior descending artery) led to a significant restoration of the left ventricle contraction.

Over the course of the experiment, left ventricular ejection fraction and fractional shortening

increased by 16.65% ± 5.64% and 10.43% ± 6.02%, respectively, in VCF-treated rats. Histo-

logical examinations revealed that VCFs efficiently mobilized the lymphatic endothelial cells

into the infarcted area. In conclusion, human CFs present heterogeneous expression of

VCAM1 and lymphangiogenesis-promoting factors. VCFs restore the mechanical properties

of ventricular walls by mobilizing lymphatic endothelial cells into the infarct when injected

into a rat heart failure model. These results suggest a role of this specific population of CFs

in the homeostasis of the lymphatic system in cardiac regeneration, providing new informa-

tion for the study and therapy of cardiac diseases.
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Introduction

Coronary artery diseases are a leading cause of morbidity and mortality worldwide. Following

ischemia, affected myocardial tissues undergo massive remodeling including apoptosis of resi-

dent cells and replacement by non-contractile structures in an attempt to prevent wall rupture.

The electromechanical properties of the resultant scar lead to degraded functionality of the

whole organ, and eventually to heart failure. The restoration of cardiac function thus requires

alteration of both the tissue structure and its electromechanical properties.

Various strategies have been developed to respond to this clinical challenge, including the

promotion of angiogenesis [1], transplantation of progenitor cells [2], transplantation of

embryonic stem (ES)/induced pluripotent stem (iPS) cell-derived cardiomyocytes [3], induc-

tion of transdifferentiation of resident cells into cardiomyocytes [4], and reprogramming of

stem cells [5]. Despite impressive progress, these methods have generated limited clinical

impact. Their low clinical efficacy might be explained by the focus of these strategies on mobi-

lizing cardiomyocytes while neglecting complementary aspects such as restoring the electro-

mechanical properties of the ventricular wall or the local structure of the circulatory system.

This situation calls for an innovative therapeutic approach to restore myocardial function in

patients with heart failure.

Among resident cells of the myocardium [e.g., cardiac fibroblasts (CFs), cardiomyocytes,

endothelial cells, and vascular smooth muscle cells], CFs are particularly critical for maintain-

ing heart function in health and disease [6,7]. They participate in the structural organization of

the tissue by regulating extracellular matrix (ECM) homeostasis and modulating the prolifera-

tion/cell death balance, autophagy, adhesion, and migration of numerous other types of cells

[8]. The myocardial ECM plays a central role in the distribution of signaling and structural

proteins, and extensively influences the behavior of all cardiac cells [9]. Thus, CFs significantly

influence electrophysiological properties, secretion of growth factors and cytokines, and blood

vessel formation in the myocardium [10]. Based on this evidence, the capacity of CFs to inter-

act with other cells and modulate the overall tissue characteristics has been successfully used in

myocardium bioengineering [11,12]. Moreover, in cardiac tissue engineered from induced

pluripotent stem cells, the presence of CFs is mandatory for the establishment of functional

grafts for cardiac regenerative therapies [13].

By contrast, in pathological states, keloid-like translocation of cardiac fibroblasts is the lead-

ing cause of cardiac fibrosis in the infarcted necrotic tissue. Progressive increase in this process

can disrupt systolic heart function and lead to left ventricular hypertrophy. Moreover, CFs

respond to numerous factors, including proinflammatory cytokines (i.e., TNF-α, IL-1, IL-6,

TGF-β), platelet-derived growth factor (PDGF), connective tissue growth factor, vasoactive

peptide systems [particularly angiotensin II and endothelin-1 (EDN-1), as well as natriuretic

peptides], and hormones (e.g., noradrenaline). CFs also promote cardiac remodeling and

heart failure via blood pressure elevation, cardiomyocyte apoptosis, and inflammation

[6,14,15]. These processes involve interactions with T lymphocytes as regulators of the cardio-

fibroblast/myofibroblast transition and subsequent ECM remodeling [16].

In this manner, CFs make “positive” and “negative” contributions to cardiac development,

repair, and pathogenesis. However, the CF-derived factors that maintain myocardial function

have not yet been described precisely. Moreover, since CFs originate from several sources

(e.g., myocardial niche, circulation, and epithelial-to-mesenchymal transition) [10,17], they

constitute a heterogeneous population and therefore have a wide variety of functions. Identify-

ing these CF subpopulations and characterizing their roles in cardiac physiology is essential

not only for understanding heart development and pathogenesis but also for developing

therapies.
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The present study aimed to demonstrate the critical role of a specific population of CFs

expressing vascular cell adhesion molecule 1 (VCAM1; VCFs) in the restoration of cardiac

function in heart failure following myocardial infarction. It is well known that angiogenesis

restores cardiac function after myocardial infarction [1]. Additionally, numerous studies have

reported that cardiac lymphatic vessels play a key role in maintaining fluid homeostasis, which

is critical for healthy heart contraction [18]. Recently, targeting cardiac lymphatic vasculature

is thought to provide a therapeutic benefit to heart function after myocardial infarction

[19,20]. Thus, we hypothesized that VCFs might have the potential to improve cardiac func-

tion in heart failure by triggering angiogenesis and/or lymphangiogenesis. Therefore, CFs

were distinguished and characterized based on their relative expression of VCAM1. VCFs

were injected into a postinfarct heart failure rat model, and their influence on cardiac tissue

structure and organization over 18 weeks was successfully identified.

Materials and methods

The authors declare that all supporting data are available within the article and Online Data

Supplement. Raw data are available on FigShare at https://figshare.com/projects/Supporting_

data_for_PLOS_ONE_Iwamiya_2020_/80726.

Antibodies and reagents for magnetic-activated cell sorting (MACS),

fluorescence-activated cell sorting (FACS), vascular formation assay, and

immunohistochemistry

The antibodies and reagents used in MACS and FACS, staining, vascular formation assay, and

immunohistochemistry are listed in S1 Table.

Expansion of human fetal CFs and isolation of VCFs and VCAM1-negative

CFs (VNCFs)

Human fetal CFs were purchased from Cell Applications (San Diego, CA) and cultured with

HFDM-1(+) medium (Cell Science & Technology, Osaka, Japan) supplemented with 1% (v/v)

Newborn Calf Serum (NBCS). After initial expansion (passage 3–5), fibroblasts were incubated

with a biotin-conjugated anti-CD106 (VCAM1) antibody and anti-biotin microbeads for the

isolation of VCFs and VNCFs by MACS (autoMACS Pro Separator, Miltenyi Biotec; using the

Posseld2 protocol).

Immunoprofiling, staining, and immunohistochemistry

Characterization of cells. Cells were fixed in 4% paraformaldehyde and kept in phos-

phate-buffered saline (PBS, Fujifilm Wako Pure Chemical) before incubation with primary

and secondary antibodies (for 30 min each). Cells were characterized by FACS for various

known markers of fibroblasts, cardiomyocytes, mesenchymal stem cells (MSCs), cardiac stem

cells (CSCs), epicardium, and endothelium. Regarding FACS analysis of proteins localized in

the cytoplasm, cells were permeabilized with 0.1% saponin (Nacalai Tesque, Kyoto, Japan) in

PBS for 15 min after fixation and before incubation with primary antibodies. FACS analyses

were performed with a MACSQuant Analyzer following the manufacturer’s instructions (Mil-

tenyi Biotec).

Characterization of tissues. Heart sections were fixed with formalin and embedded in

paraffin. The tissue structure and organization were observed using hematoxylin and eosin

(H&E) stain. Collagen fibers were stained with Sirius Red (SR). The extent of fibrosis was mea-

sured by the ratio of the area of SR-stained fibers to the area of H&E-stained tissues (whole
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section), using HALO software following the manufacturer’s instructions (Indica Labs, Albu-

querque, NM). The density of blood vessels in fibrous regions was estimated by immunostain-

ing of von Willebrand Factor (vWF). The number of blood vessels stained in fibrous areas was

counted with the software NDP.view+ following the manufacturer’s instructions (Hamamatsu

Photonics, Shizuoka, Japan).

For immunohistochemical staining, paraffin heart sections were triple stained with cardiac

troponin T (cTnT), prospero-related homeobox 1 (Prox-1), and 4’,6-diamidino-2-phenylin-

dole (DAPI). Images were acquired using an IN Cell Analyzer 2200 (GE Healthcare, Princeton,

NJ) and an FV1200 confocal microscope (Olympus, Tokyo, Japan). Prox-1-positive cells in the

infarcts (i.e., cTnT-negative regions) of each sample were counted using ImageJ.

Whole transcriptome analysis

The RNA sequencing procedure was outsourced to GENEWIZ (South Plainfield, NJ), and the

subsequent analysis was carried out in-house. RNA-seq data are available on ArrayExpress at

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9161. The whole transcriptome

analysis procedure is described in S1 Text. Principal component analysis (PCA) data are avail-

able on GitHub at https://github.com/Metcela-Code/PCA/releases/tag/v1.0.

Endothelial and lymphatic endothelial vascular formation assay

To perform endothelial tube formation assay, human umbilical vein endothelial cells

(HUVECs) were purchased from PromoCell (Heidelberg, Germany) and cultured with the

EGM-2 BulletKit (Lonza, Basel, Switzerland). After initial expansion (3–5 passages), we

assessed the direct effects of fibroblasts on angiogenesis by co-culturing two types of fibroblasts

(i.e., VCF and VNCF) with endothelial cells as previously reported [21]. Briefly, HUVECs

were co-cultured with each type of fibroblasts at a ratio of 1:12 using the EGM-2 BulletKit

(HUVECs = 2.0 × 104 cells/cm2; Fibroblasts = 2. × 105 cells/cm2). After 3 days, co-cultures

were fixed with 4% paraformaldehyde and immunostained with antibodies listed in S1 Table.

Images were acquired using an IN Cell Analyzer 2200.

To perform lymph endothelial tube formation assay, human cardiac microvascular endo-

thelial cells (HMVEC-Cs) were purchased from Lonza (Basel, Switzerland) and cultured with

the EGM-2MV BulletKit (Lonza). After initial expansion (3–5 passages), HMVEC-Cs were co-

cultured with each type of fibroblasts at the same ratio as that in the endothelial tube formation

(1:12) using the EGM-2MV BulletKit. After 3 days, co-cultures were fixed with 4% paraformal-

dehyde and immunostained with antibodies listed in S1 Table. Images were acquired using an

IN Cell Analyzer 2200.

The topography of tubes in the micrographs was analyzed using the macro “Angiogenesis

Analyzer for ImageJ” (v. 1.0.c, Gilles Carpentier, 2012; available online: http://imagej.nih.gov/

ij/macros/toolsets/Angiogenesis%20Analyzer.txt). Briefly, in Icy (v. 2.0.3.0; BioImage Analysis

Lab, Institut Pasteur), the channel of interest was extracted, and the background was sub-

tracted. Discontinuities of cell membranes due to staining were corrected by applying an

anisotropic PDE-based filter (Icy plugin: “Membrane Filter”, v. 0.1.0.1) [22]. Then, the ROI

was defined by enhancing and normalizing the contrast of the filtered images and subtracting

the background. Finally, the resulting image was analyzed with the Angiogenesis Analyzer

macro. The detailed protocol is available online at dx.doi.org/10.17504/protocols.io.bhtaj6ie.

Animal experiments

Animal experiments were performed by LSI Medience (Tokyo, Japan), and were approved by

the Animal Experiment Committee (Approval number: 2018–1002). F344/N Jcl-rnu/rnu rats
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were purchased from Japan SLC (Shizuoka, Japan). All efforts were made to minimize animal

suffering. The experimental procedure is described in S2 Text. Briefly, myocardial infarction

was induced in male rats (9 weeks old, 133.4–175.0 g) by 30-min occlusion of the left anterior

descending artery as previously reported [23,24]. One week after the operation, the cardiac

function baseline was acquired by M-mode echocardiography, and rats presenting a left ven-

tricular ejection fraction (LVEF) inferior to 55% were considered representative of heart fail-

ure. With an anticipated mean LVEF of 70% [intermediate between the normal value (90%)

and heart failure models (LVEF: 50 ± 5%)] and an anticipated mean left ventricular fractional

shortening (LVFS) of 37.5% [intermediate between the normal value (55%) and heart failure

model (20 ± 5%)], as well as using the type I (α = 0.05) and type II (β = 0.1) error rates, the

minimal size of each experimental group was calculated to be two subjects. Here, groups

included at least four animals.

The rats underwent a cell injection protocol with a new thoracotomy as previously reported

[25]. Animals were distributed into three groups following different experimental protocols:

injection of human VCFs (+ VCF; 2 × 106 cells in 50 μl of DMEM supplemented with NBCS at

10% v/v; n = 4), injection of vehicle (control group; 50 μl of DMEM supplemented with NBCS

at 10% v/v; n = 4), and a group which had open heart surgery without ischemia/reperfusion

injury and also received no injection (sham; n = 6). As infarcts were large, doses were delivered

to two positions on the border of the scar. After injection, cardiac function was monitored by

echocardiography every two weeks for 18 weeks. At the end of the monitoring period, animals

were sacrificed and tissue samples were collected.

Data analysis

Data are presented as the mean ± standard deviation (SD) or mean ± standard error (SE). The

statistical significance of the difference between two groups was determined by Student’s t-
test. Because the three experimental groups are of different sizes and unknown distributions,

statistical analysis was performed using the non-parametric Kruskal–Wallis test, followed by

Dunn’s post hoc test. Computation was performed in R (v3.5.1).

Results

VCAM1 expression distinguishes two subpopulations of CFs

Human fetal CFs were cultivated onto 10 cm-diameter dishes for initial expansion. CFs exhib-

ited a flat and spindle-shaped morphology typical of the fibroblastic phenotype (Fig 1A). CFs

strongly expressed fibroblast markers: CD90 in 97.36 ± 0.14% of cells, vimentin in

98.70 ± 0.06%, α-SMA in 97.19 ± 0.15%, DDR2 in 99.62 ± 0.04%, fibronectin in 97.47 ± 0.04%,

and pan-cadherin in 96.06 ± 0.15% (n = 3). Conversely, very few cells expressed cardiomyocyte

markers cTnT or α-actinin (2.52 ± 1.33% and 1.35 ± 0.40%, respectively; n = 3), ruling out the

presence of cardiomyocytes in this population (Fig 1B).

Additional characteristics of CFs were defined by high-throughput cell profiling for the co-

expression of CD90 and various MSC markers [26–28]: integrin subunit beta 1 (CD29), CD44,

5’-nucleotidase ecto (CD73), endoglin (CD105), vascular cell adhesion molecule 1 (VCAM1,

CD106), PDGF receptor alpha (CD140A), STRO-1, and activated leukocyte cell adhesion mol-

ecule (CD166). The expressions of a set of MSC-negative markers (i.e., CD34, CD11b, CD19,

CD45, and HLA-DR) and c-Kit (CD117) was also assessed. Although CFs shared some charac-

teristics with MSCs, they presented a specific profile in which MSC markers such as CD140A

and STRO-1 were not detected (Fig 1C).

Similarly, the expression of CSC markers (i.e., ATP-binding cassette subfamily G member 2

(CD338), NK2 homeobox 5 (NKX2.5), ISL LIM homeobox 1 (Isl1), and GATA-binding
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protein 4 (GATA4)) was evaluated. CFs are also positive for most of the CSC markers but not

for CD338. CFs also shared characteristics with CSCs, but the lack of expression of critical

CSC markers such as CD338 in CFs distinguished the two lineages. Additionally, the

Fig 1. Characterization of CFs. A, Micrographs of plated CFs cultured for five days (scale bars: 500 μm (5X) and 100 μm (20X)). B, Cell immunoprofiling showing the

expression of several markers of fibroblasts (i.e., CD90, vimentin, α-SMA, DDR2, fibronectin, and pan-cadherin) and cardiomyocytes (i.e., cTnT and α-actinin). C, Cell

immunoprofiling revealing the expression of MSC markers (i.e., CD29, CD44, CD73, CD105, VCAM1, CD140a, STRO-1, CD117, and CD166), CSC (i.e., CD338,

NKX2.5, Isl1, and GATA4), epicardium and epicardium-derived cells (EPDC; i.e., CD46, WT1, TBX18, and MEF2C), and endothelial cell markers (i.e., CD54, CD31,

and CD144) plotted against CD90 expression.

https://doi.org/10.1371/journal.pone.0237810.g001
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expression of several markers of EPDCs (i.e., CD46, WT1 transcription factor (WT1), T-

box 18 (TBX18), and myocyte enhancer factor 2C (MEF2C)) was evaluated, and CFs presented

an EPDC-like profile. CFs also expressed some endothelial markers such as intercellular adhe-

sion molecule 1 (CD54), but other endothelial markers were expressed over various patterns:

platelet and endothelial cell adhesion molecule 1 (CD31) was detected over a broad intensity

range, and VE-cadherin (CD144) was not detected (Fig 1C).

Overall, the absence of various MSC-specific markers confirms that these fibroblasts are

not similar to MSCs, and the detection of numerous cardiac-specific markers confirms that

these cells have a cardiac origin. Moreover, the expression profile of VCAM1 defines these

cells as heterogeneous. Although all lineage-specific markers followed a unimodal distribution

in the cell population, VCAM1 showed a clear bimodal distribution, enabling the distinction

of two subpopulations: VCFs and VNCFs.

VCFs have potential roles in triggering blood and lymphatic vessel

formation

To examine whether the CFs expressing or not VCAM1 have different influences on cardiac

function, the transcriptome profile of each population was analyzed by RNA sequencing

(n = 3). Two populations were isolated by MACS according to the differential expression of

VCAM1, and the purity of VCFs and VNCFs was confirmed by FACS (Fig 2A). Whole-tran-

scriptome analysis confirmed that VCFs and VNCFs have substantially distinct profiles, with

2286 genes presenting significantly different expression (|log2FC|� 1 and adjusted p� 0.05;

Fig 2B). Genes differentially expressed in the two populations were ranked by principal com-

ponent analysis (PCA; Fig 2C and 2D) according to their influence on PC1 (i.e., loading

score). Each loading score was expressed as a percentage of the most important one, and the

last percentile was selected for further investigation (504 candidate genes). This new list was

matched to the gene sets “cardiovascular system development” (Gene Ontology 0072358) and

“heart failure” (Comparative Toxicogenomic Database D006333). After filtration, 37 candidate

genes remained (S2 Table). Notably, VCAM1 was ranked 108th in the last percentile list but

was not part of GO:0072358 (cardiovascular system development). In the filtered list, 13 genes

were upregulated in VCFs [i.e., MYLK, THY1, NR2F2, NRP1, PDGFRB, EGR1, TBX3, CAV1,

JUN, Vascular endothelial growth factor C (VEGFC), PTK2B, RAMP1, and FLT1]. We manu-

ally searched bibliographical databases and confirmed that all these genes are related to angio-

genesis, vascular inflammation/permeability or vascular contraction (i.e., MYLK [29], THY1

[30], NR2F2 [31], NRP1 [32–34], PDGFRB [35], EGR1 [36], TBX3 [37], CAV1 [38], JUN [39],

VEGFC [40], PTK2B [41], RAMP1 [42], and FLT1 [33]), and lymphangiogenesis (i.e., THY1

[43], NR2F2 [31], NRP1 [32,34], PDGFRB [44,45], CAV1 [46], VEGFC [19,20,47], RAMP1

[42], and FLT1 [48]). Conversely, many of the genes expressed at higher levels in VNCFs were

linked to the ECM-producing myofibroblast phenotype, to the profibrotic signaling (i.e.,

ACTA2 (alpha smooth muscle actin) [49], CCL2 [50], collagens (COL5A1, COL4A1 and

COL4A2) [51], CXCL8 [52], HES1 [53]), to the endothelial mesenchymal transition (EMT)

induction (i.e., markers of cardiac EMT ALDH1A2 [54], ANGPTL4 [55], EDN1 [56], WT1

[54], CDH2 (N-cadherin) [57,58]), and to the TGF-β signaling (i.e., ITGAV [59], TGFBI [60],

KLF5 [61,62], TGFBR2 [60], PTGS2 [63]). However, inhibitory SMADs (SMAD6/7) regulating

the TGF-β superfamily signaling were also expressed at higher levels in VNCFs [54]. Overall,

bioinformatics analysis suggests that VCFs express paracrine factors that potentially trigger

blood and/or lymph vessel formation.

To define the capacity of VCFs to induce angiogenesis or lymphangiogenesis, we assessed

endothelial or lymph endothelial vascular network formation. Endothelial cells (i.e., HUVECs)
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Fig 2. The functional role of differences between VCFs and VNCFs in blood and lymph vessel formation. A, Micrographs of CFs, VCFs, and VNCFs cultured for

five days, and corresponding immunoprofiling for VCAM1. Gray peaks correspond to the expression pattern of isotype control. B, Heatmap of transcriptome showing

the specific profiles of VCFs and VNCFs. C–D, Scree plot and PC1-2 plot of genes differentially expressed in VCFs and VNCFs showing a clear clustering of both cell

types along PC1.

https://doi.org/10.1371/journal.pone.0237810.g002

PLOS ONE Fibroblast-mediated cardiac recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0237810 September 16, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0237810.g002
https://doi.org/10.1371/journal.pone.0237810


do not form any tubes in standard culture (Fig 3A, CF(-)). However, some structures appear

in co-cultures with V(N)CFs (Fig 3A, 3B). The co-culture of HUVEC with VCFs leads to the

formation of significantly longer tubes than with VNCFs (Fig 3B, total vessel length). Other

network characteristics are comparable in both culture conditions. Similarly to HUVECs,

HMVEC-Cs (comprising almost exclusively cardiac lymph endothelial cells as confirmed by

FACS against podoplanin and VE-cadherin, S1 Fig) do not spontaneously form any tubes (Fig

3C, CF (-)). However, these cells react strongly to the presence of VCFs to form complex net-

works. In these conditions, the co-culture of HMVEC-Cs with VCFs leads to the formation of

significantly longer tubes than with VNCFs. Moreover, other network characteristics are also

significantly increased by VCFs compared to VNCFs. Finally, the complexity of the network,

Fig 3. Evaluation of the capacity of VCFs and VNCFs to induce angiogenesis or lymphangiogenesis by tube formation assay. A, Micrographs of cultures of

HUVECs only (CF (-)) and co-cultures of HUVECs/V(N)CFs (n = 6 per condition; staining: VE-cadherin (green), vimentin (red), and Hoechst 33258 (blue);

scale bars: 500 μm (4X) and 200 μm (10X)). B, Visualizations of the analysis of tube topography (upper panel) and plots of critical parameters (t-test, p< 0.05

(�) versus + VNCF; lower panel). C, Micrographs of cultures of HMVEC-Cs only (CF (-)) and co-cultures of HMVEC-Cs/V(N)CFs (n = 5 per condition;

staining: VE-cadherin (green), vimentin (red), and Hoechst 33258 (blue); scale bars: 500 μm (4X) and 200 μm (10X)). D, Visualizations of the analysis of tube

topography (upper panel) and plots of critical parameters (t-test, p< 0.01 (��) versus + VNCF; lower panel).

https://doi.org/10.1371/journal.pone.0237810.g003
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represented by the length of master vessels and the number of junctions, is highly superior in

co-cultures of HMVEC-Cs/VCFs than in any other tested combinations. This observation sug-

gests that while HUVECs only form isolated tubes, HMVEC-Cs create an intricate network

under the influence of VCFS.

VCFs improve the recovery of myocardial function after surgically induced

heart failure

To assess whether VCFs have the potential to improve cardiac function after heart failure by

triggering angiogenesis and/or lymphangiogenesis, heart failure was induced in rats by ligation

of the left anterior descending artery. A schematic of the experimental procedure is presented

in Fig 4A. Echocardiography in rats of the sham-treated group showed that the high amplitude

left ventricular anterior wall motion was maintained throughout the whole monitoring period

(Fig 4B). Conversely, rats of the vehicle-treated control group presented dramatically reduced

left ventricular wall motion at all monitoring points, confirming the successful induction of

the infarct model, and had a slight further degradation over the course of the experiment (Fig

4B). Rats treated with VCFs presented the same initial (pre-cell administration, 0 weeks of

treatment) reduction of wall motion as rats in the vehicle-treated control group, but VCF

administration led to an improvement in wall motion amplitude less than 1 month after treat-

ment (Fig 4B, S2 Fig).

Consistent with the improvement of anterior wall motion, VCF-treated rats presented a

substantial increase in LVEF and LVFS. Sham-treated rats presented an LVEF and LVFS of

approximately 90% of 55% respectively. After infarct and before the injections, LVEF and

LVFS were drastically reduced to 50% and 20%, respectively, in both the vehicle- and VCF-

treated groups. Although improvement was observed in the VCF-treated group at the first

monitoring point (2 weeks post-injection), a significant difference between the vehicle- and

VCF-treated groups emerged by 4 weeks of treatment. From roughly 10 weeks after injection

onward, the LVEF and LVFS plateaued in both groups. The final LVEF values 18 weeks after

injection were 64.35% ± 6.15% in VCF-treated rats and 38.40% ± 0.41% in vehicle-treated con-

trol animals. The final LVFS values were 29.90% ± 4.35% in the VCF-treated group and

14.90% ± 0.20% in the vehicle-treated control group (Fig 4C and 4D). Over the course of the

experiment, LVEF and LVFS increased by 16.65% ± 5.64% and 10.43% ± 6.02%, respectively,

in VCF-treated rats and decreased by 14.53% ± 1.23% and 7.33% ± 3.66% in the vehicle-treated

control group (Fig 4E and 4F). Although a return to physiological LVEF and LVFS was not

achieved in this study, VCF treatment provided a significant improvement over the control

from four weeks after injection that improved even further and then was maintained until the

end of the experiment.

Left ventricular end-systolic and end-diastolic volumes (LVESV and LVEDV respectively)

were measured in all groups. In the sham-treated group, LVESV was stable at less than 50 μl

throughout the 18 weeks of monitoring. In the vehicle-treated control group, the LVESV con-

tinually increased to 469.00 ± 108.60 μl. VCF treatment limited the increase to

278.75 ± 77.27 μl, with a significant effect relative to the vehicle-treated group observed eight

weeks after injection. However, all groups showed the same evolution of LVEDV throughout

the experiment (Fig 4G and 4H). Finally, VCF treatment improved the left ventricular anterior

wall thickness in diastole (LVAWd) to 1.76 ± 0.39 mm, similar to that in the sham-treated

group (1.56 ± 0.02 mm). In contrast, the LVAWd was continuously degraded in vehicle-

treated control animals (0.80 ± 0.03, Fig 4I). Values and statistical analyses of all echocardio-

graphic measurements are detailed in S3 Table. VCFs thus appear to improve heart function

by enhancing ventricular wall contractility.
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Fig 4. Improvement of cardiac function by VCFs after surgically induced heart failure. A, Schedule of surgery and post-surgery operations. VCFs or vehicle

were injected into injured tissues one week after infarct. Sham-operated animals had only open-heart surgery without ischemia. Echocardiogram of the left

ventricle was performed every 2 weeks over an 18-week period post-injection. At the end of the monitoring period, animals were sacrificed and histological

samples were collected. B, Representative M-mode echocardiograms of several monitoring points (0 weeks: pre-cell administration). C–D, LVEF and LVFS at

each monitoring point (mean ± SE, non-parametric Kruskal Wallis test followed by the Dunn post hoc test, p< 0.01 (††) versus sham-treated group, p< 0.01
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VCFs stimulate the mobilization of lymphatic endothelial cells in the

infarct zone

The tissue remodeling capacity of VCFs was assessed by histological analysis of hearts collected

after 18 weeks of treatment. H&E and SR staining were performed on transverse sections of

ventricles.

Microscopic observation revealed similar histological structures in control and VCF-treated

groups. SR staining revealed the presence of fibrotic structures in the infarcted tissues of both

groups (Fig 5A). The extent of fibrosis (i.e., the ratio of the surface area of SR-stained tissue to

the whole surface area of the section) was not significantly different between the VCF- and

vehicle-treated groups (Fig 5B). The fibrosis ratio was 10.49 ± 1.21% and 13.57 ± 4.84% in the

vehicle- and VCF-treated groups, respectively (Fig 5C). Additionally, the immunostaining of

von Willebrand Factor (vWF) for estimation of the density of blood vessels in the fibrotic area

(number of vessels per mm2) suggested a slight increase in the number of blood vessels in

infarcts of VCF-treated rats, but did not show significant difference between the two groups

(Fig 5B). The vascular density was 27.93 ± 11.97 vessels/mm2 and 38.07 ± 8.12 vessels/mm2 in

the vehicle- and VCF-treated groups, respectively (Fig 5C).

(��), p< 0.05 (�) versus control group). E–F, Delta in LVEF and LVFS values between the end of the experiment (18 weeks) and prior to cell administration (0

weeks) (p< 0.01 (††) versus sham-treated group, p< 0.01 (��) versus control group). G–I, LVESV, LVEDV, and LVAWd at each monitoring point (p< 0.01

(††), p< 0.05 (†) versus sham-treated group, p< 0.01 (��), p< 0.05 (�) versus control group).

https://doi.org/10.1371/journal.pone.0237810.g004

Fig 5. Effect of VCF treatment on fibrosis and angiogenesis in infarcted tissues. A, Hematoxylin and eosin (H&E) and Sirius Red (SR) staining of heart sections 18

weeks post-injection (scale bars: 2 mm). B, Micrographs of injured regions in SR stained or vWF stained heart sections (scale bars: 200 μm). C, Quantification of fibrosis

extent and blood vessel density in control and VCF-treated groups (NS: no significant difference).

https://doi.org/10.1371/journal.pone.0237810.g005
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Thus, to test whether the dramatic improvement of mechanical properties and function

was caused by the lymphangiogenesis effects of VCFs as suggested by the transcriptome analy-

sis and lymph vessel formation assays (Figs 2 and 3), we performed immunostaining of cTnT

and Prox-1 in heart sections. Prox-1 is a transcription factor specific to lymphatic endothelial

cells (LECs) that is necessary for lymphangiogenesis and the maintenance of lymphatic vessels

[64]. VCF-treated groups showed enrichment of LECs in and around infarcted tissues (Fig 6A

and 6B). Higher-magnification confocal microscopic images showed that VCFs appeared to

efficiently mobilize LECs (Fig 6C and 6D). Imaging analysis was performed to assess the

mobilization of LECs in control or VCF-treated infarcts. VCF treatment significantly pro-

moted the mobilization of LECs by 63.18 ± 25.61 times (number of Prox-1(+) cells) compared

to the control medium injection alone. Moreover, 67.10 ± 20.67% of the cells recruited to the

infarcts in the VCF-treatment groups were LECs. These findings suggest that VCFs restore

cardiac function after heart failure following myocardial infarction by inducing

lymphangiogenesis.

Discussion

CFs have recently been shown to maintain proper heart function through multiple interactions

with resident cells of the myocardium even after cardiac injury and cardiac diseases [6,8–10].

However, in pathological states, CFs are also the principal determinants of cardiac fibrosis and

eventually lead to cardiac remodeling and heart failure [14,15]. Thus, CFs show completely dif-

ferent characteristics depending on the conditions of the heart tissue environment. The factors

and mechanisms regulating normal heart function have yet to be described precisely. In this

study, we hypothesized that CFs are a heterogeneous population of cells, and we demonstrated

that a specific population of CFs expressing VCAM1 presented an up-regulation of blood and/

or lymph vessel formation-related genes compared with CFs not expressing VCAM1. Vascular

formation assays showed VCFs are more efficient at stimulating lymphangiogenesis than

angiogenesis. Therefore, we focused on the lymph vessel formation ability of VCFs and

showed their ability to restore cardiac function on heart failure following myocardial infarc-

tion by triggering lymphangiogenesis.

Several recent studies have suggested that CFs are a heterogeneous cell population and that

such heterogeneity is caused by the distinct origins of those cells. CFs originate from resident

fibroblasts, from bone marrow-derived progenitor cells (MSCs), from CSCs, from EPDCs via

an epithelial-to-mesenchymal transition, or from endothelial cells via an endothelial-to-mes-

enchymal transition [10,17,65]. In this study, we performed high-throughput cell profiling for

the co-expression of CD90 and various CF lineage markers to determine the heterogeneous

characteristics of human CFs. CFs shared some characteristics with their originating cell type

(e.g., MSCs, CSCs, EPDCs, and endothelial cells). Interestingly, we found that two populations

of CFs could be distinguished based on their expression of VCAM1 (Fig 1C). VCAM1 is the

ligand for α4β1 integrin, which is known to exist as both a transmembrane protein and in a

soluble form. Several groups, including ours, have reported that VCAM1 is expressed in cardi-

omyocytes [66], CSCs [2], and CFs [67]. Soluble VCAM1 secreted from murine CSCs demon-

strated cardioprotective effects in mouse through the α4β1 integrin-mediated activation of

Akt, ERK, and P38MAPK in cardiomyocytes [2]; this phenomenon has also been reported to

be critical for heart development [68,69]. Another study showed that mouse CFs induced the

proliferation of mouse ESC-derived cardiomyocytes via the two forms of VCAM1, which led

to an increase in functionality of bioengineered myocardial tissues [67]. Therefore, we hypoth-

esized that VCAM1 from human CFs might be involved in heart protection and cardiac cell

proliferation. However, our bioinformatics analysis of RNA sequencing unexpectedly
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Fig 6. Effect of VCFs on the lymphatic vasculature of the infarct. A, Localization of lymphatic endothelial cells (LECs) in hearts of vehicle control (left) and VCF-

treated groups (right): cTnT (green), Prox1 (red), and nucleus (blue) (scale bars: 2 mm). B, Magnification on the infarcted area: cTnT (green), Prox1 (red), nucleus

(blue). C, Magnification of areas indicated on B. Micrographs 4, 5, and 6 (from VCF-treated animals) show the important migration of LECs into the infarcted area

compared to micrographs 1, 2, and 3 (from vehicle-treated animals) (scale bars: 500 μm). D, Magnification of areas indicated on C. Micrographs D, E, and F (from VCF-

treated animals) show the important migration of LECs into the infarcted area compared to micrographs A, B, and C (from vehicle-treated animals) (scale bars:

200 μm). E, Number of LECs in injured regions of each group. Bar graphs depict the fold increase in Prox-1(+) cells in the infarcts. The value for vehicle-treated animals

was set as 1.0 (n = 4, p< 0.01 (��)). F, The percentage of mobilized-LECs in the infarcts expressing Prox-1. The value for vehicle-treated animals was set as 1.0 (n = 4,

p< 0.01 (��)).

https://doi.org/10.1371/journal.pone.0237810.g006
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suggested that CFs expressing VCAM1 (VCFs) might have an effect on the positive regulation

of blood and/or lymph vessel formation (S2 Table). Additionally, vessel formation assays

revealed that VCFs significantly improved the length of vessels and the complexity of the net-

work of lymphatic endothelial cells (Fig 3).

These results suggested the new hypothesis that VCFs enhance heart function in postinfarct

heart failure by regulating lymphangiogenesis.

Angiogenesis is a complex blood vessel formation process. Numerous studies have reported

that therapeutic angiogenesis, which improves blood flow, revascularization, and myocardial

function, is one of the most promising treatments for cardiovascular disease [1]. Lymphangio-

genesis is also an important process for the maintenance of normal organ homeostasis and

wound healing. Cardiac lymphangiogenesis plays a central role in maintaining fluid homeosta-

sis for healthy heart contraction [18]. Recent studies have suggested that lymphangiogenesis

improves cardiac function and healing by draining accumulated fluids and maintaining the

physiological interstitial fluid equilibrium [19,20,70]. These studies, together with our RNA

sequencing data, suggested that VCFs have a favorable expression of genes related to the regu-

lation of blood and/or lymph vessel formation. For example, vascular endothelial growth factor

receptor 1 (FLT1) and neuropilin 1 (NRP1) are VEGF receptors or co-receptors, that act as

modulators of VEGF-dependent signaling for angiogenesis or lymphangiogenesis [32–34].

Additionally, the PDGF/PDGFR axis is known as an important regulator of blood vessel devel-

opment and lymphangiogenesis [44,45]. VEGF-C has been identified as a key molecule in car-

diac angiogenesis and lymphangiogenesis through the activation of the VEGFC/VEGFR-3

pathway, leading to the improvement of cardiac function after myocardial infarction

[19,20,47]. Conversely, VNCFs express genes promoting cardiac remodeling. Indeed, genes

up-regulated in VNCFs compared to VCFs were involved in ECM-producing myofibroblast

phenotypes, profibrotic signaling, and EMT induction. In particular, ACTA2 [49], TGF-β sig-

naling related proteins (ITGAV [59], TGFBI [60], KLF5 [61,62], TGFBR2 [60], and PTGS2

[63]), and markers of cardiac EMT (ALDH1A2 [54], ANGPTL4 [55], EDN1 [56], WT1 [54],

and CDH2 (N-cadherin) [57,58]) are well-known as profibrotic factors [55,62,71,72]. EDN1 is

a protein that CFs accumulate through cardiac EMT in diabetic hearts [73]. It also promotes

collagen synthesis in the senescent fibroblasts and promotes cardiac EMT, leading to myocar-

dial fibrosis [74]. ITGAV, expressed by fibroblasts, is a well-known key regulator of fibrogen-

esis that acts by activating TGF-β signaling through its interaction with a linear arginine-

glycine-aspartic acid-binding motif that is present on the latency-associated peptide in ECM

[59]. Additionally, SMADs (SMAD6 and 7), inhibitors of the TGF-β superfamily signaling

[54], were also more expressed in in VNCFs than in VCFs. Although we did not interpret

these conflicting results, VNCFs might play a role in regulating ECM and cardiac EMT by

responding to the status of the in vitro/in vivo environment. Moreover, endothelial/lymph

endothelial vessel formation assays showed the capacity of VCFs and VNCFs to induce the cre-

ation of lymphatic tube networks. These data support the new hypothesis that VCFs, by

enhancing lymphatic vessel formation, may restore cardiac function in heart failure following

myocardial infarction.

Indeed, we found that injected VCFs led to a significant improvement in heart contractile

function in rats after surgically induced heart failure. Over the course of the experiment (18

weeks after injection), VCF administration produced a definite improvement in left ventricu-

lar anterior wall motion, LVEF, and LVFS (Fig 4B–4F). The necrosis following infarction

causes a decrease of the thickness of the ventricular wall, but VCFs treatment maintained this

parameter close to physiological values (Fig 4I), suggesting an improved protection of injured

tissues. Similar to the in vitro vessel formation assay (Fig 3), this favorable effect was not

induced by angiogenesis (Fig 5) but by lymphangiogenesis (Fig 6).
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Lymphangiogenesis attenuates inflammatory disorders and cardiac fibrosis by inhibiting

the swelling and the formation of interstitial edema following muscular necrosis [18,75,76]. In

this study, VCF treatment appeared to efficiently mobilize LECs in the infarct zone (Fig 6), but

there was no significant difference between the VCF and control groups in the extent of fibro-

sis (Fig 5). Similarly, Trincot et al. reported that adrenomedullin overexpression induces

mouse cardiac lymphangiogenesis after myocardial infarction, but the area of fibrosis is not

changed [70]. Although further studies are necessary to understand the relations between lym-

phangiogenesis and fibrosis, regulatory T cells seems involved as they have been shown to

improve cardiac function after myocardial infarction via the inhibition of inflammation and

the attenuation of interstitial fibrosis [16,77]. We suspect that the maintenance of immune bal-

ance by VCF-induced lymphangiogenesis might have been insufficient because we used F344/

N Jcl-rnu/rnu rats immunologically lacking T-cell functions for the animal experiments.

Another possibility is that paracrine factors from VCFs might be insufficient for reducing

fibrosis resulting from long-term inflammation, although VCFs can improve heart contractile

function.

This study has a few limitations. We used cells isolated from human fetal hearts as the CFs.

Although almost all of these cells resembled fibroblasts morphologically and were positive for

fibroblast markers, we cannot exclude the possibility that these populations also contained

other cell types. Additionally, 2286 genes were differentially expressed between in VCFs and

VNCFs; thus, it is reasonable to assume the contribution of pathways other than angiogenesis

and lymphangiogenesis such as cardiac protection or cardiac proliferation. Additionally, the

analysis of vessel formation in vitro do not represent perfectly the structure of the network. In

this experiment, angiogenesis analysis was performed on a 2D projection (1 micrograph) of a

3D microtissue (co-culture); thus, part of the volume information is lost, which led to segmen-

tation of the network. Moreover, because the lymphangiogenic effect was evaluated by the

same method as previously reported for angiogenesis [21], the protocol may be sub-optimized.

Finally, no immune cells were integrated into the in vitro experiments presented here.

Immune cells such as macrophages contribute to the process of lymphatic remodeling by stim-

ulating lymphangiogenesis [78]. In health, lung injury leads to the activation of CD11b+ mac-

rophages, which transdifferentiate into LECs [79–81].

Moreover, the mechanisms of lymphatic endothelial cell-fibroblast signaling have not yet

been elucidated. As mentioned above, VEGFC, which is listed in S2 Table as a gene upregu-

lated in VCFs, is involved in cardiac lymphangiogenesis through the activation of the VEGFC/

VEGFR-3 pathway leading to the improvement of cardiac function after myocardial infarction

[19,20,47]. However, it is unclear whether VCFs have the potential to improve the signal trans-

duction of the VEGFC/VEGFR-3 axis; therefore, rapamycin (therapeutically available as siroli-

mus)-treated rats should be investigated to confirm the involvement of the signaling pathways.

Rapamycin inhibits the expression of VEGFC and significantly suppresses tumor-related lym-

phangiogenesis and lymph node metastasis in mammals [81]. Finally, it remains elusive

whether VCFs are also present in the human adult heart, and whether they provide similar

effects on heart failure.

In summary, these results demonstrate that a specific population of cultured human fetal

heart-derived fibroblasts expressing VCAM1 has a role in lymphangiogenesis, and that a treat-

ment with VCFs restores cardiac contractile functions on heart failure following myocardial

infarction by mobilizing lymph endothelial cells into the infarct. Understanding the molecular

mechanism mediating lymphangiogenesis may provide new insights in cardiac development

and pathogenesis, and lead to new options in the field of heart regeneration. Our next challenge

is to demonstrate these effects with human adult heart-derived fibroblasts and identify the

molecular signaling mechanisms that trigger lymphangiogenesis after treatment with VCFs.
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