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Abstract

A particular challenge to water safety in populous intertropical regions is the lack of reliable

faecal indicators to detect microbiological contamination of water, while the numerical rela-

tionships of specific viral indicators remain largely unexplored. The aim of this study was to

investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41,

and human adenoviruses (HADV) in Mexican surface water systems to assess sewage con-

tamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage geno-

types in water samples and quantified by qPCR and RT-qPCR. Virus and water quality

indicator variances, as analyzed by principal component analysis and partial least squared

regression, followed along the major percentiles of water faecal enterococci. FRNA bacteri-

ophages adequately deciphered viral and point source water contamination. The strongest

correlation for HADV was with FRNA bacteriophage type II, in water samples higher than

the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacterio-

phage genotypes I and III virus indicator performances were assisted by their associations

with electrical conductivity and faecal enterococci. In combination, our methods are useful

for inferring water quality degradation caused by sewage contamination. The methods used

have potential for determining source contamination in water and, specifically, the presence

of enteric viruses where clean and contaminated water have mixed.

Introduction

Waterborne enteric viruses inflict a heavy disease burden on developing countries. Enteric

viruses negatively impact the quality of life for people and reduce their productivity and the

number of days spent working. Enteric virus emissions to water bodies and the low infectious

doses required represent a major obstacle to further mortality reductions in children younger

than five years of age. The incidence of enteric viruses in children can be very high, as revealed
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by the presence of one viral agent in 43% of the children living in developing countries where

most diarrhea attributable deaths occur, being rotavirus the most common pathogen in chil-

dren, followed by norovirus in all countries [1]. Indeed, a relationship was found between the

number of hepatitis cases and monsoons in India [2], thus highlighting the prominence of the

waterborne route for enteric viruses. In addition, a relationship was found between the num-

ber of gastroenteritis outbreaks, and heavy rainfall and runoff events in the USA [3] and across

the world [4]. Nevertheless, at least 50% of the gastroenteritis cases in the USA have an

unknown causal agent [5].

It is widely accepted that inadequately treated wastewater and sewer discharges are the

primary means by which enteric viruses gain entry to the environment via combined sewer

overflows and/or cross connections [6]. It appears that urban conglomerates emit the high-

est number of viral particles of enteric virus to water bodies, and this finding is related to the

size of a population, the number of people connected to the sewerage system, and the sewage

treatment level [7]. Consequently, virus transmission through contact with contaminated

water sources [8], such as effluent impacted recreational ponds or beaches [9,10], or via

irrigation water carrying wastewater [11], is still a major water safety concern in many

countries.

Much effort has been made to develop consistently good molecular indicators of bacteria

or viruses to assist water quality assessment with improved sensitivity. However, such meth-

ods have not been systematically evaluated for use in tropical countries with medium

incomes [6]. In such settings, evaluation of the sensitivity and accuracy of the various molec-

ular indicators is helpful for determining water quality and source [12,13,14]. Successful

day-to-day water quality monitoring relies on rapid molecular identification of waterborne

pathogens and determination of their spatial-temporal distributions. Molecular quantifica-

tion of viruses or bacteriophages is likely to be the only reliable method that is sufficiently

fast to act as an early warning system to enable corrective action to be applied in a timely

manner in regions with tropical environmental waters [15]. Therefore, we sought to assess

the usefulness of multivariate principal component analysis (PCA) and partial least squared

(PLS) regression as a descriptor of virological water quality and an indicator of contamina-

tion or service failure in Mexico, respectively. We employed PCA and PLS regression to

explore the relationship between faecal enterococci and the presence of two types of com-

monly used molecular indicators, FRNA bacteriophages (genotypes I to III) and human ade-

noviruses (HADV), in four Mexican surface water systems. FRNA bacteriophage genotypes

I to III have been consistently shown to be associated with sewage contamination of surface

water [16,17,18]. Their presence in water is frequently correlated with the presence of enteric

viruses in a number of water sources [19], while it is ever present in the water used for drink-

ing water production [20].

Robust molecular methods for HADV (causative agents of respiratory infections and spo-

radic conjunctivitis [21]) and HADV41 (which causes up to 20% of the diarrhea cases in chil-

dren under five years of age) detection/quantification have been widely applied and, in

contrast to enterovirus qPCR, their number and concentration are statistically associated with

effluent dominated waters [22]. In contrast, various water quality indicators have been ana-

lyzed according to the relative frequencies of faecal enterococci in a number of water matrices.

The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage

genotypes, adenovirus 41, and human adenoviruses (HADV), in Mexican surface water sys-

tems to assess sewage contamination. All microorganisms referred in the manuscript are faecal

indicators, while FRNA bacteriophages and adenovirus are also virus indicators as a cell host is

needed for replication.
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Materials and Methods

Experimental design

Multivariate analysis compared the following indicators: faecal enterococci, viruses, and the

physicochemical variables controlling the structure of the data, according to the major faecal

enterococci percentiles, defined as each 10 and/or 25 percentile break from maximum CFU/

100 mL at Central Mexico sampling point. The strategy, allowed us to perform comparison

regardless the water system origin of each sample (S1 Table). The physicochemical and bac-

teria-specific properties for FRNA bacteriophage genome groups I and III were assessed for

28 samples. In one third of the samples, FRNA bacteriophage group II, HADV, and the

genome variants of HADV41, were also quantified by reverse transcription-polymerase

chain reaction (RT-qPCR) and quantitative real-time polymerase chain reaction (qPCR)

analyses.

Water sources

Samples were collected from the following four Mexican surface water systems: the Magdalena

River and the Cuitzmala River (natural systems), the Xochimilco altitude wetland (a semi-nat-

ural system mostly comprising a canal lentic system within Mexico City), and the Mezquital

Valley (a man-made system). These four water systems, which represent the various types of

water systems in Central Mexico and are located in the intertropical region of the country,

have faecal contamination and conditions that facilitate the establishment of microbial niches.

No specific permissions were required to enter these locations because they are natural bodies

of water with open access. Field studies did not involve endangered or protected species The

Magdalena River, which is a peri-urban system located in the area surrounding Mexico City,

flows through a forested area and is used as a source for drinking water production. Upon

entering the urban area, the river receives municipal wastewater discharges [23]. In contrast,

the Cuitzmala River water system flows through a tropical area with a small population and is

located on the coast in Jalisco State in Western Mexico [24]. The Xochimilco wetland is remi-

niscent of the Mexico basin lacustrine system [25]; it is a managed aquatic system recharged

with treated wastewater and receives storm water during rainy season. In a connected distant

area, agriculture is practiced in a region known as the Mezquital Valley (Hidalgo State,

Mexico); here, a significant proportion of the municipal wastewater from Mexico City is dis-

charged without treatment [26].

Sample collection

According to the faecal enterococci colony counts determined previously, a total of either 1-L

or 20-L water samples were collected in triplicate in autoclaved polypropylene bottles, and

were then transported to the laboratory at 4˚C for virus concentration (S2 Table). Next, the

samples were processed following standard procedures within 6 h of collection as described by

[27]. The 20-L water samples were concentrated by ultrafiltration with polycarbonate ultra-fil-

ters (Hemoflow F80A, Fresenius Medical Care, Waltham, MA, USA), using a perfusion rate of

1700 mL/min, as described by Hill et al. [28] while adenovirus detection required further con-

centration (10,000 X), using Amicon centrifugal units (30,000 MWCO; Merck Millipore, Bil-

lerica, MA, USA). Then, the samples were concentrated to a 200-mL final volume, and stored

in 40-mL aliquots. Afterwards, RNA was extracted from the 100X concentrated sample to eval-

uate the FRNA bacteriophage genotypic groups present using RT-qPCR. Subsamples were fro-

zen and stored at −70˚C [29], after which the DNA was extracted.
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Water characterization

Physicochemical analyses. Physicochemical parameters such as dissolved oxygen, pH,

electrical conductivity, and temperature, were determined for the four water systems, in situ.

The following sensors were used: Rox optical dissolved oxygen (mg/L) sensor, pH 6561 sensor,

temperature (˚C), electrical conductivity (μS/cm), and total dissolved solids (mg/L) (YSI Inc.,

Yellow Spring, OH, USA). The sensors were calibrated according to the manufacturer’s

instructions. The parameters were measured in situ using a YSI6600V2 water quality sonde

(YSI Inc.).

Faecal enterococcus counts. Faecal enterococci counts were determined by the membrane

filtration method 9230C, according to the 21st edition of Standard Methods for the Examina-

tion of Water and Wastewater. Briefly: membrane filters (0.45 mm cellulose acetate, Millipore

MF type HA) were placed on KF Streptococcus agar for streptococci/enterococci. Incubation

was performed with a WTB Binder brand incubator at 35˚C for 48 h according to APHA [27].

This is a quantitative method to determine the number of colony forming units (CFU) on a

membrane, as described previously [27]. The bacterial counts were expressed as the base-10

logarithm of the number of CFU per 100 mL.

Viral quantification

Extraction of viral DNA and RNA. Following the manufacturer’s instructions, viral

nucleic acids were extracted from samples using QIAamp Viral RNA Mini Kit (Qiagen,

Valencia, CA, USA) and QIAamp DNA Stool mini kit (Qiagen) for viral RNA and DNA,

respectively. In addition to spin protocol in kit and the regular washing steps, glycogen co-pre-

cipitation was employed to remove any environmental inhibitors present in the samples while

PCR inhibition was assessed by dilution series [29,30]. Finally all extracts were stored at −70˚C

until use.

Reverse transcription of FRNA bacteriophages. To obtain first strand in a two-step RT-

qPCR, Superscript III first strand synthesis system was used according to manufacturer

instructions, with minor modifications. After 5 min at 65˚C and secondary structure elimina-

tion in a 5 μL solution containing 2μL RNA, and 1μL specific reverse oligonucleotides (2μM)

—to match 3´end of specific FRNA genotype template sequence as described by Ogorzaly

et al. (2006, 2007)—SuperScript III reverse transcriptase (Life technologies, Invitrogen, Carls-

bad, CA, USA) was added, plus 1.5 μL MgCl2, (25mM), 1.5 μL DTT0.1M, and 1μL10x RT-

buffer [31,32]. Next, cDNA-reverse transcriptase product was synthesized at 50˚C for 1 h in a

thermocycler (GeneAmp PCR system 9700, Life technologies, Applied Biosystems, Foster

City, CA, USA). Finally, the enzyme was heat inactivated at 95˚C for 5 min.

Quantification of HADV, HADV41 and FRNA bacteriophage genotypes I

to III by qPCR and RT-qPCR

Standards, RT-qPCR and qPCR curves for the viral indicators. Bacteriophage MS2

(ATCC 15597-B1), FRNA genotype I (GI), and Qβ (ATCC 23631-B1) FRNA genotype III

(GIII), were cultured from stock vials purchased from American Type Culture Collection

(ATCC, http://www.lgcstandards-atcc.org/). Propagation took place using Escherichia coli host

(ATCC 23631) culture during log phase, as in ISO method 10705–1. FRNA genotypes GI, GII,

and GIII RNA fragments, were RT-PCR amplified, sequenced, and subjected to GenBank

database Basic Local Alignment Search Tool analysis after plasmid construction to ensure high

sequence identity homology to FRNA bacteriophage and enteric virus specific sequence [33].

RNA, extracted and converted into cDNA was cloned into a pCR2.1 TOPO vector (TOPO TA

Reliable Viral Indicators of Water Quality
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Cloning Kit, Invitrogen Life Science Technologies), following manufacturer instructions.

HADV and HADV41 DNAs were purchased from ATCC VR-930D. Specific endpoint PCR

DNA amplicons were subsequently cloned into a plasmid vector (pCR2.1-TOPO) using the

one-shot chemical transformation method described by the manufacturer (TOPO TA Cloning

Kit for Sequencing). The plasmid construct was column-purified and adjusted to 2×108 copies

per μL for use as a standard stock solution for qPCRs. Standards were diluted to 101–105 copies

per qPCR reaction of standard curve to calibrate the concentrations of the target gene detected

in the FRNA genotype. The primers and minor groove binding probes originally designed by

Ogorzaly [31,32] were synthesized by Applied Biosystems; 500 nmol of each primer and 250

nmol of each hydrolysis probe were used for the monoplex assays. Amplification curves for

HADV and HADV41 were constructed for genome quantification as previously described

[34,35,36] (Table 1).

For each HADV, a qPCR was performed in a 20-μL volume with 10 μL TaqMan Master

Mix, 1 μL each of 10 μM forward and reverse primers, 0.6 μL 10 μM hydrolysis probe, and

5 μL of a DNA sample or standard. The thermal profile consisted of one cycle at 95˚C for 15

min, followed by 45 cycles at 95˚C for 15 s, 55˚C for 33 s, and 72˚C for 33 s. The qPCR pro-

gram for HADV41 consisted of 15 min at 95˚C, followed by 45 cycles at 95˚C for 15 s, 60˚C

for 33 s, and 72˚C for 33 s. The FRNA genotypes were amplified using the following program:

15 min at 95˚C, followed by 45 cycles at 95˚C for 15 s and 60˚C for 60 s. All the samples were

amplified using a 7500 Real-Time PCR System (Life technologies Applied Biosystems). Each

sample (i.e., viral DNA extracts or cDNA reverse transcripts) and standard controls were run

in triplicate. All bacteriophage and virus quantitation by qPCR included a negative control

reaction mixture (PCR-grade H2O without template).

Table 1. Primers and probes used for RT-qPCR and qPCR genome quantification of the virus indicators used in this study.

Viral

indicators

Primers and probes Sequence Author Reference

FRNA bacteriophage genotype

Group I GI forward 5´-TCGATGGTCCATACCTTAGATGC-3´ Ogorzaly et al. [31, 32]

GI reverse 5´-ACCCCGTTAGCGAAGTTGCT-3´

Probe for GI FAM-CTCGTCGACAATGG-MGBNFQ

Group II GII forward 5´-TGCAAACCTAACTCGGAATGG-3´

GII reverse 5´-AGGAGAGAACGCAGGCCTCTA-3´

Probe for GII FAM-TCCCTCTATTTCCTC-MGBNFQ

Group III GIII forward 5´-CCGCGTGGGGTAAATCC-3´

GIII reverse 5´-TTCTTACGATTGCGAGAAGGCT-3´

Probe for GIII FAM-AAGCGGGTGCAGTT-MGBNFQ

Human Adenovirus

HADV JTVXF 5´-GGACGCCTCGGAGTACCTGAG-3´ Jothikumar et al. [34]

JTVXR 5´-ACIGTGGGGTTTCTGAACTTGTT-3´

JTVXP probe FAM-CTGGTGCAGTTCGCCCGTGCCA-BHQ

Genotype 41 HAdV-F4041-hex157f 5´-ACCCACGATGTAACCACAGAC-3´
CACTTTGTAAGAATAAGCGGTGTC

Jiang et al., modified by

Xagoraraki et al.

[35] [36]

HAdV-F41-hex246r 5´-CACTTTGTAAGAATAAGCGGTGTC-3´

probe

HAdV-F4041-hex214rprobe

FAM-CGACKGGCACGAAKCGCAGCGT-BHQ-1

FAM = 6-Carboxyfluirescein. MGB-NFQ = Minor Groove Binder moiety-Nonfluorescent quencher. BHQ = Black Hole Quencher. I = Inosine. K = G + T.

doi:10.1371/journal.pone.0170399.t001

Reliable Viral Indicators of Water Quality

PLOS ONE | DOI:10.1371/journal.pone.0170399 January 23, 2017 5 / 16



Statistical analysis

The concentrations of the microorganisms were log10-transformed and linearity was assessed

using Excel 2010 software (Microsoft Corporation, Redmond, WA, USA). Multivariate statisti-

cal analyses were performed using XLSTAT software version 13.4.03 (Addinsoft, France).

Sample data were ordered into major percentiles according to the faecal enterococci water

quality logarithm. Parallels in the enteric virus indicators along the faecal enterococci percen-

tiles were examined by PCA and factor analysis to explore the variable physicochemical rela-

tionships between the pollution hypothesis and molecular indexes (FRNA groups I, II, and III,

HADV and HADV41) for the sampling points. Finally, the most important variables identified

by PLS regression—recommended regression method when collinearity is expected—included

samples around each faecal enterococci major percentile and uphold PCA when low sample

number [37,38].

Results

Viral index: FRNA bacteriophages, HADV and genotype 41

FRNA genotype I, II, and III bacteriophages were detected and quantified by RT- qPCR (Fig

1). FRNA genotypes I and III had similar values, unlike FRNA genotype III (FRNAGIII),

which was predominant over FRNA genotype I in most of the water quality faecal enterococci

log percentile groups, especially those higher than the 50th percentile. The proportions were

not constant in all of the water samples. FRNAGIII was not detected in any samples from the

Cuitzmala River; however, there were fewer bacteriophages present in the sampling points

from this river, compared with samples from the same faecal enterococci percentile. The

genome numbers were higher for FRNA bacteriophages within the 10th faecal enterococci per-

centile samples because of the sample origin: wastewater filtered through soil that emerged at

the Cerro Colorado Spring, in the Mezquital Valley.

FRNA bacteriophage genotype II genome counts consistently outnumbered those of FRNA

genotypes I and III and were nearly twice the FRNA genotype I log genome count. The mini-

mum number of positive enterococci samples for HADV (HADV = 1.82 log genomes/100

mL) and HADV41 (ADV41 = 2.73 log genomes/100 mL) was 3.76 logFE. The ADV41/HADV

ratio ranged from 0.76 in the semi-urban agricultural area to 0.66 near the treated wastewater

point source in the Xochimilco tropical high-altitude wetland. The ratio of 0.54 in the Magda-

lena River urban area indicates that ADV41 represented at least half of the total number of

HADVs. No samples showed PCR amplification inhibition.

PCA of 28 samples covering the whole spectra of water quality that we assessed resulted in

65% of the variance explication by the first two components. They showed major loadings of

conductivity and dissolved oxygen variables, followed by FRNA genotype I and III loadings to

PCA. Faecal enterococci constituted the less explanatory variable. PCA arranged the eight vari-

ables studied herein into two clusters (Fig 2). FRNA bacteriophage genotype I, genotype III,

and faecal enterococci variables formed a cluster while conductivity and total dissolved solids

separated from the rest of the variables. All the variables seemed to be anti-correlated to the

dissolved oxygen variable coordinate loadings. The temperature variable vector on the coordi-

nate plane was perpendicular to that of dissolved oxygen.

PLS regression models for FRNA bacteriophage genotype I and III genome counts showed

that dissolved oxygen and temperature are the most important variables explaining genotype I.

However, dissolved oxygen concentration is also a significant variable for the FRNA genotype

III genome count in PLS regression, conductivity, and faecal enterococci variables. It also

adjusts the model of complete composite of samples (S1 and S2 Figs). Factor analysis and PLS

Reliable Viral Indicators of Water Quality
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regression for each of the major faecal enterococci deciles across the different sample origins

showed that at least 76% of the variance was explainable and the percentage was higher if the

samples belonged to the same aquatic system. The first decile, the most oxygenated one,

showed FRNA bacteriophage genotype I and conductivity variable vectors parallel to each

other. It also showed that GIII was the closest to faecal enterococcus. However, the proximity of

FRNA bacteriophage genotype I and/or III to faecal enterococci varied along the major per-

centile sample clusters included in this analysis. The PLS regression showed that the FRNA

genotype III was mostly associated with those surface water samples taken downstream of a

waste water treatment plant or sewerage input; however, the segregation of the data was not

absolute. Therefore, a subset composed of a third of the samples representing the water quality

spectra of the whole set was assessed to include HADV, HADV41, and FRNA genotype II viral

indicators. We repeated the multivariate analysis for the complete subset (Fig 3) and for the

faecal enterococci cluster samples at the 50th percentile (Fig 4). Either 76% or 93% of the vari-

ance was explained by the first two factors of the analysis, from which FRNAGI, conductivity,

and total dissolved solids had the highest nominal contributions followed by FRNAGII and

Fig 1. Log number of the distribution of faecal indicators from tropical water samples.

doi:10.1371/journal.pone.0170399.g001
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FRNAGIII. Regardless of the number of samples included, dissolved oxygen was anti-corre-

lated to the rest of the variables. FRNA bacteriophage genotype II seems to best characterize

decay in the dissolved oxygen concentration variable, because both follow almost the same

continuous line in the plot (Fig 3). Variable vectors describe a fan shape through the second

and the third Cartesian plane quadrants, giving a mirrored image with pH, virus indicators

and FRNA bacteriophage genotype II in the (positive, negative) quadrant. The temperature

variable vector ran parallel to the Y axis (F1), while the counts for the FRNA bacteriophage

genotype III genome variable and the faecal enterococci variable had the highest values on

both axes and were located next to each other on the plane. FRNA bacteriophage genotype I

Fig 2. Principal component analysis bi-plot showing dispersion of vector physicochemical parameters, faecal

enterococci, and FRNA bacteriophages I and III among tropical water samples.

doi:10.1371/journal.pone.0170399.g002
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was more closely associated with conductivity as determined from the proximity of these items

on the plot, and in the representative subset it was only associated with faecal enterococci in

the higher than 50th percentile area of the plot. Multivariate analysis of the higher than 50th

percentile samples rendered similar results. However, the anti-correlation for the dissolved

oxygen variable to FRNA bacteriophage genotype II and the correlation between HADV,

HADV41 and FRNA bacteriophage genotype II genome number variables were strengthened.

Respective loadings of FRNA bacteriophage genotypes I and III graphically locate the genotype

I vector besides the faecal enterococci vector, while genotype III is located halfway between

faecal enterococci and the human-specific HADV and HADV41 viral indicators.

Fig 3. Principal component analysis bi-plot showing the vector proximity for the physicochemical, faecal enterococci,

FRNA bacteriophages genotype II, human adenovirus, and adenovirus 41 among selected tropical water samples.

doi:10.1371/journal.pone.0170399.g003
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Discussion

Molecular tools for accurate quantification of the biological indicators of contamination with

waterborne enteric viruses are urgently needed for timely alerts of water safety breaches in

populated areas of tropical countries [37]. Incidental transmission of enteric viruses via recrea-

tional bathing water and contaminated drinking water poses a real threat to public health

because of the large number of enteric viruses emitted, wastewater usage in agriculture, inade-

quate wastewater treatment, infrastructure maintenance, and operational deficiencies

[38,39,40]. Consistently, urban rivers are receiving higher loads of faecal contamination

[41,42], becoming part of sewer system. In wastewater, a highly variable amount of bacterial

indicators has been reported [43]; as for suspended particle size, concentrations reaching as

Fig 4. Principal component analysis bi-plot showing the vector proximity for the FRNA bacteriophages genotypes, along

with the reduced variance for human adenovirus and human adenovirus 41 in higher than 50th percentile faecal

enterococci percentiles in the tropical water samples.

doi:10.1371/journal.pone.0170399.g004
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high as 108/100 mL have been reported at Mezquital Valley [44]. Differentiating non-point

contamination to which enteric viruses don’t correlate at all has been a major challenge

[45,46]. Incoming from animal sources, and indicator habituation to water environment may

exert a different risk than CSO effluent discharge. Similarly, unpredictable heavy rainfall can

also increase virus emissions into water sources, but only up to 20% of bacterial indicators are

from wastewater [47]. Therefore, where practicable, corrective measures should be employed

to avoid the unintentional mixing of recreational water and source water used for potable

water supply with virus-contaminated sewer overflows, sewage, or effluent from wastewater

treatment plants. However, ensuring that these waters remain separate requires indicator

monitoring systems that overcome the specific limitations of monitoring bacteria, particularly

in tropical middle-income and developing countries. Accurate and reliable identification of

point and diffuse contamination in a water system requires an indicator that can provide infor-

mation on the contamination point in time and space, be sensitive enough to identify trace

amounts of wastewater, and be fast enough to quantify the bacterial indicator to avoid a service

safety failure, thereby limiting the risk of enteric virus spread to the population to an accept-

able threshold.

In the present study, FRNA bacteriophages absolute genomes were detected by RT- qPCR

amplification of conserved sequences using primer sets previously probed in water environ-

ment assessments. Quantifiable amounts of specific product were detected in samples from the

four Mexican water systems (the Magdalena and Cuitzmala natural river systems, the semi-

natural Xochimilco altitude wetland system, and the man-made Mezquital Valley system) that

were examined (S5–S12 Figs). Multivariate analysis was used to compare the data obtained for

the faecal enterococci and indicator viruses and the physicochemical variables controlling the

structure of the data. Follow-up of the molecular indicator variance through the gradient on

the graph showed a wide area where the viral indicators were concentrated (Figs 3 and 4),

which narrowed as the faecal percentile increased. Above the 50th percentile mark, mainly

including the sewerage input sampling points, we found that HADV, gastroenteritis-related

genotype 41, and FRNA genotype II, behaved in a similar fashion. However, as with other

studies that have attempted to find a single indicator that can precisely explain the presence of

enteric virus, it is clear that as the system becomes more complicated and contains a lower

than 50th percentile value, pollution hypothesis should be interpreted cautiously in a site by

site analyses. Although, the vector representing FRNA bacteriophage genotype II is closer to

HADV vector than any other, the long distance between them reflects the fact that detection in

the same samples is not as common, neither is it for ADV41. We conclude that detection of

complete set of molecular indicators could be used as a precautionary measure for accurate

discrimination between wastewater and wastewater mixtures [33,48].

Previous studies [12,18] measuring the absolute number of genomes for various molecular

indicators have reported similar results to our own (S3 and S4 Figs). However, the diversity of

water origin within a wide water quality spectrum allows a number of conclusions to be drawn

from the relationships of the water quality variables and the molecular virus indicators.

As well as quantifying the levels of various viral indicators, we also conducted in situ mea-

surements of various physicochemical parameters such as dissolved oxygen, pH, electrical

conductivity, and temperature, in the four water systems. Dissolved oxygen was unique in

showing an inverse correlation with the other parameters we measured, particularly the molec-

ular indicators of viruses. This behavior might be partly explained by the role of oxygen in

virus inactivation [41,49]; otherwise it just shows the inverse relation between oxygen concen-

tration and consuming organic matter, which is mostly in particulate form and aggregate virus

particles [50]. Nevertheless, the FRNA bacteriophage genotype II genome number increment

clearly showed water quality degradation within the 50th percentile for faecal enterococci and
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subsequent samples of examined set, and was also associated closely with HADV and

HADV41 genome counts. Such a relationship between viral indicators has been reported

previously [12] for river water that receives wastewater. However, the extent to which the rela-

tionship is maintained has now been determined. When the water samples under the 50th per-

centile were included in the PCA analysis, the samples containing HADV were potentially

identified by a combination of pH, conductivity, and FRNA genotype II interval values, all of

them known indicators of wastewater abrupt water quality change.

In our analyses, the position of the FRNA bacteriophage genotype I values over the 50th

percentile is nearest to the faecal enterococci genome number; hence, there is no advantage

in using this genotype to indicate the presence of virus in comparison with genotypes II and

III. In the lower percentiles, FRNA bacteriophage genotype I and conductivity coordinates

approached each other, probably reflecting a slow sustained increment of ions caused by

weathering and non-point sources [42]. In consequence, there was a conductivity increase,

concurrent with the extended persistence of FRNA bacteriophages genotype I in contact

with their host in old [43] rather than fresh wastewater input. Even so, it seems that with the

FRNA bacteriophage genotype III, which is less resistant than FRNA genotypes I and II,

there is a loss of ability to indicate the presence of HADV, as it is probably removed from

the highest percentiles being the most distant in the lowest percentiles. Nonetheless, this

genotype is associated with faecal enterococci in mixed non-point sources. Like in Vergara,

et al., (2015), the media of FRNA GIII number of genomes was quite below that of genotypes

I and II [18]; however, media of genotype II outnumbered that of genotype I, probably due

to urban wastewater predominance at most of the sampling points. Detailed analysis of

FRNA bacteriophage genotype III genomic variation has shown its specific association with

wastewater or animal sources [44]; however, this distinction was beyond the scope of this

study.

A limitation of this study was the small number of water samples in the first deciles that

capture the transitory nature of the emissions [45]; this resulted in an incomplete descrip-

tion of the virus distribution. Secondly, since samples were obtained from various aquatic

systems, the results should not be extrapolated a priory, but advantages of each molecular

indicator, should be addressed locally to suit specified water quality use. However, use of

biological indicators as proxy measures for the presence of enteric viruses and water quality

breaches in Central Mexico is supported by FRNA bacteriophage genomes being detected in

spring water used as a source for the production of potable water in the Mezquital Valley

area. In conclusion, Molecular indicator quantitation combined with multivariate statistical

analyses showed functionality at inferring water quality degradation caused by sewage con-

tamination. FRNA bacteriophage genotypes II and III, as well as HADV, can be used as

indicators as long as the faecal enterococci numbers are above the 50th percentile in mixed

waters contaminated with sewage. These indicators may provide a useful early warning sys-

tem for the contamination arising from sewage sources in water systems, or for recent con-

tamination via virus emission, particularly in tropical water environments that are affected

by enteric pathogens. Looking ahead, implementation of molecular indicators for proxy

measurement of virus pollution in fresh wastewater to bring about reductions in the trans-

mission of waterborne enteric bacteria and viruses in middle-income countries is techni-

cally feasible.
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cloning and qPCR standardization.

Reliable Viral Indicators of Water Quality

PLOS ONE | DOI:10.1371/journal.pone.0170399 January 23, 2017 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170399.s014


Author Contributions

Conceptualization: LJRAH MMH.

Formal analysis: LJRAH MMH CDA.

Funding acquisition: MMH GCR YLV.

Investigation: LJRAH MMH GCR YLV.

Methodology: CDA MMH LJRAH.

Project administration: MMH GCR YLV.

Resources: MMH YLV.

Supervision: LJRAH MMH CDA YLV.

Validation: LJRAH YLV.

Visualization: LJRAH CDA MMH.

Writing – original draft: LJRAH MMH YLV.

Writing – review & editing: LJRAH YLV GCR MMH.

References
1. Ramani S, Kang G (2009) Viruses causing childhood diarrhoea in the developing world. Curr Opin Infect

Dis 22: 477–482. PMID: 19633550

2. Kumar T, Shrivastava A, Kumar A, Laserson KF, Narain JP, Venkatesh S, et al. (2015) Viral Hepatitis

Surveillance—India, 2011–2013. Morb Mortal Wkly Rep (MMWR) 64: 758–762.

3. Curriero FC, Patz JA, Rose JB, Lele S (2001) The association between extreme precipitation and water-

borne disease outbreaks in the United States, 1948–1994. Am J Public Health 91: 1194–1199. PMID:

11499103

4. Guzman Herrador BR, de Blasio BF, MacDonald E, Nichols G, Sudre B, Vold L, et al. (2015) Analytical

studies assessing the association between extreme precipitation or temperature and drinking water-

related waterborne infections: a review. Environmental Health 14: 29. doi: 10.1186/s12940-015-0014-y

PMID: 25885050

5. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United

States. Rev Environ Contam Toxicol 192: 117–158. PMID: 18020305

6. Okoh AI, Sibanda T, Gusha SS (2010) Inadequately treated wastewater as a source of human enteric

viruses in the environment. Int J Environ Res Public Health 7: 2620–2637. doi: 10.3390/ijerph7062620

PMID: 20644692

7. Kiulia NM, Hofstra N, Vermeulen LC, Obara MA, Medema G, Rose JB (2015) Global occurrence and

emission of rotaviruses to surface waters. Pathogens 4: 229–255. doi: 10.3390/pathogens4020229

PMID: 25984911

8. Ye XY, Ming X, Zhang YL, Xiao WQ, Huang XN, Cao YG, et al. (2012) Real-time PCR detection of

enteric viruses in source water and treated drinking water in Wuhan, China. Curr Microbiol 65: 244–

253. doi: 10.1007/s00284-012-0152-1 PMID: 22645016

9. Sinclair RG, Jones EL, Gerba CP (2009) Viruses in recreational water-borne disease outbreaks: a

review. J Appl Microbiol 107: 1769–1780. doi: 10.1111/j.1365-2672.2009.04367.x PMID: 19486213

10. Maurer CP, Simonetti AB, Staggemeier R, Rigotto C, Heinzelmann LS, Spilki FR (2015) Adenovirus,

enterovirus and thermotolerant coliforms in recreational waters from Lake Guaiba beaches, Porto Ale-

gre, Brazil. J Water Health 13: 1123–1129. doi: 10.2166/wh.2015.277 PMID: 26608773

11. Ferrer A, Nguyen-Viet H, Zinsstag J (2012) Quantification of diarrhea risk related to wastewater contact

in Thailand. Ecohealth 9: 49–59. doi: 10.1007/s10393-012-0746-x PMID: 22311100

12. Ogorzaly L, Tissier A, Bertrand I, Maul A, Gantzer C (2009) Relationship between F-specific RNA

phage genogroups, faecal pollution indicators and human adenoviruses in river water. Water Res 43:

1257–1264. doi: 10.1016/j.watres.2008.12.011 PMID: 19121532

Reliable Viral Indicators of Water Quality

PLOS ONE | DOI:10.1371/journal.pone.0170399 January 23, 2017 14 / 16

http://www.ncbi.nlm.nih.gov/pubmed/19633550
http://www.ncbi.nlm.nih.gov/pubmed/11499103
http://dx.doi.org/10.1186/s12940-015-0014-y
http://www.ncbi.nlm.nih.gov/pubmed/25885050
http://www.ncbi.nlm.nih.gov/pubmed/18020305
http://dx.doi.org/10.3390/ijerph7062620
http://www.ncbi.nlm.nih.gov/pubmed/20644692
http://dx.doi.org/10.3390/pathogens4020229
http://www.ncbi.nlm.nih.gov/pubmed/25984911
http://dx.doi.org/10.1007/s00284-012-0152-1
http://www.ncbi.nlm.nih.gov/pubmed/22645016
http://dx.doi.org/10.1111/j.1365-2672.2009.04367.x
http://www.ncbi.nlm.nih.gov/pubmed/19486213
http://dx.doi.org/10.2166/wh.2015.277
http://www.ncbi.nlm.nih.gov/pubmed/26608773
http://dx.doi.org/10.1007/s10393-012-0746-x
http://www.ncbi.nlm.nih.gov/pubmed/22311100
http://dx.doi.org/10.1016/j.watres.2008.12.011
http://www.ncbi.nlm.nih.gov/pubmed/19121532


13. Wong K, Fong TT, Bibby K, Molina M (2012) Application of enteric viruses for fecal pollution source

tracking in environmental waters. Environ Int 45: 151–164. doi: 10.1016/j.envint.2012.02.009 PMID:

22537583

14. Levy K, Nelson KL, Hubbard A, Eisenberg JN (2012) Rethinking indicators of microbial drinking water

quality for health studies in tropical developing countries: case study in northern coastal Ecuador. Am J

Trop Med Hyg 86: 499–507. doi: 10.4269/ajtmh.2012.11-0263 PMID: 22403326

15. Jang J, Di DY, Han D, Unno T, Lee JH, Sadowsky MJ, et al. (2015) Dynamic changes in the population

structure of Escherichia coli in the Yeongsan River basin of South Korea. FEMS Microbiol Ecol 91.

16. Havelaar AH, van Olphen M, Drost YC (1993) F-specific RNA bacteriophages are adequate model

organisms for enteric viruses in fresh water. Appl Environ Microbiol 59: 2956–2962. PMID: 8215367

17. Cole D, Long SC, Sobsey MD (2003) Evaluation of F+ RNA and DNA coliphages as source-specific

indicators of fecal contamination in surface waters. Appl Environ Microbiol 69: 6507–6514. doi: 10.

1128/AEM.69.11.6507-6514.2003 PMID: 14602607

18. Vergara GG, Goh SG, Rezaeinejad S, Chang SY, Sobsey MD, Gin KY (2015) Evaluation of FRNA coli-

phages as indicators of human enteric viruses in a tropical urban freshwater catchment. Water Res 79:

39–47. doi: 10.1016/j.watres.2015.04.022 PMID: 25965886

19. Flannery J, Keaveney S, Rajko-Nenow P, O’Flaherty V, Dore W (2013) Norovirus and FRNA bacterio-

phage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters. Water

Res 47: 5222–5231. doi: 10.1016/j.watres.2013.06.008 PMID: 23850211

20. Lodder WJ, van den Berg HH, Rutjes SA, de Roda Husman AM (2010) Presence of enteric viruses in

source waters for drinking water production in The Netherlands. Appl Environ Microbiol 76: 5965–5971.

doi: 10.1128/AEM.00245-10 PMID: 20622124

21. Mena KD, Gerba CP (2009) Waterborne adenovirus. Rev Environ Contam Toxicol 198: 133–167. doi:

10.1007/978-0-387-09647-6_4 PMID: 19253037

22. Aslan A, Xagoraraki I, Simmons FJ, Rose JB, Dorevitch S (2011) Occurrence of adenovirus and other

enteric viruses in limited-contact freshwater recreational areas and bathing waters. J Appl Microbiol

111: 1250–1261. doi: 10.1111/j.1365-2672.2011.05130.x PMID: 21854513

23. Mazari-Hiriart M, Perez-Ortiz G, Orta-Ledesma MT, Armas-Vargas F, Tapia MA, Solano-Ortiz R, et al.

(2014) Final opportunity to rehabilitate an urban river as a water source for Mexico City. PLoS One 9:

e102081. doi: 10.1371/journal.pone.0102081 PMID: 25054805

24. Sanchez-Azofeifa GA, Quesada M, Cuevas-Reyes P, Castillo A, Sanchez-Montoya G (2009) Land

cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico.

Forest Ecology and Management 258: 907–912.

25. Mazari-Hiriart M, Ponce-de-Leon S, Lopez-Vidal Y, Islas-Macias P, Amieva-Fernandez RI, Quinones-

Falconi F (2008) Microbiological implications of periurban agriculture and water reuse in Mexico City.

PLoS One 3: e2305. doi: 10.1371/journal.pone.0002305 PMID: 18509453

26. de Anda J, Shear H (2008) Challenges Facing Municipal Wastewater Treatment in Mexico. Public

Works Management & Policy 12: 590–598.

27. Eaton AD, Clesceri LS, Rice EW, Greenberg AB (2005) Standard Methods for the Examination of

Water: American Public Health Association, American Water Works Association and Water Environ-

ment Federation.

28. Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, et al. (2005) Development of a

rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with

sodium polyphosphate and surfactants. Appl Environ Microbiol 71: 6878–6884. doi: 10.1128/AEM.71.

11.6878-6884.2005 PMID: 16269722

29. King C, Debruyne R, Kuch M, Schwarz C, Poinar H (2009) A quantitative approach to detect and over-

come PCR inhibition in ancient DNA extracts. Biotechniques 47: 941–949. doi: 10.2144/000113244

PMID: 20041847

30. Rodriguez RA, Thie L, Gibbons CD, Sobsey MD (2012) Reducing the effects of environmental inhibition

in quantitative real-time PCR detection of adenovirus and norovirus in recreational seawaters. J Virol

Methods 181: 43–50. doi: 10.1016/j.jviromet.2012.01.009 PMID: 22326277

31. Ogorzaly L, Gantzer C (2006) Development of real-time RT-PCR methods for specific detection of F-

specific RNA bacteriophage genogroups: application to urban raw wastewater. J Virol Methods 138:

131–139. doi: 10.1016/j.jviromet.2006.08.004 PMID: 16997389

32. Ogorzaly L, Gantzer C (2007) Erratum to Development of real-time RT-PCR methods for specific detec-

tion of F-specific RNA bacteriophage genogroups: application to urban raw wastewater. J Virol Methods

143: 122.

Reliable Viral Indicators of Water Quality

PLOS ONE | DOI:10.1371/journal.pone.0170399 January 23, 2017 15 / 16

http://dx.doi.org/10.1016/j.envint.2012.02.009
http://www.ncbi.nlm.nih.gov/pubmed/22537583
http://dx.doi.org/10.4269/ajtmh.2012.11-0263
http://www.ncbi.nlm.nih.gov/pubmed/22403326
http://www.ncbi.nlm.nih.gov/pubmed/8215367
http://dx.doi.org/10.1128/AEM.69.11.6507-6514.2003
http://dx.doi.org/10.1128/AEM.69.11.6507-6514.2003
http://www.ncbi.nlm.nih.gov/pubmed/14602607
http://dx.doi.org/10.1016/j.watres.2015.04.022
http://www.ncbi.nlm.nih.gov/pubmed/25965886
http://dx.doi.org/10.1016/j.watres.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23850211
http://dx.doi.org/10.1128/AEM.00245-10
http://www.ncbi.nlm.nih.gov/pubmed/20622124
http://dx.doi.org/10.1007/978-0-387-09647-6_4
http://www.ncbi.nlm.nih.gov/pubmed/19253037
http://dx.doi.org/10.1111/j.1365-2672.2011.05130.x
http://www.ncbi.nlm.nih.gov/pubmed/21854513
http://dx.doi.org/10.1371/journal.pone.0102081
http://www.ncbi.nlm.nih.gov/pubmed/25054805
http://dx.doi.org/10.1371/journal.pone.0002305
http://www.ncbi.nlm.nih.gov/pubmed/18509453
http://dx.doi.org/10.1128/AEM.71.11.6878-6884.2005
http://dx.doi.org/10.1128/AEM.71.11.6878-6884.2005
http://www.ncbi.nlm.nih.gov/pubmed/16269722
http://dx.doi.org/10.2144/000113244
http://www.ncbi.nlm.nih.gov/pubmed/20041847
http://dx.doi.org/10.1016/j.jviromet.2012.01.009
http://www.ncbi.nlm.nih.gov/pubmed/22326277
http://dx.doi.org/10.1016/j.jviromet.2006.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16997389


33. Wolf S, Hewitt J, Greening GE (2010) Viral multiplex quantitative PCR assays for tracking sources of

fecal contamination. Appl Environ Microbiol 76: 1388–1394. doi: 10.1128/AEM.02249-09 PMID:

20061455

34. Jothikumar N, Cromeans TL, Hill VR, Lu X, Sobsey MD, Erdman DD (2005) Quantitative real-time PCR

assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl Environ

Microbiol 71: 3131–3136. doi: 10.1128/AEM.71.6.3131-3136.2005 PMID: 15933012

35. Jiang S, Dezfulian H, Chu W (2005) Real-time quantitative PCR for enteric adenovirus serotype 40 in

environmental waters. Can J Microbiol 51: 393–398. doi: 10.1139/w05-016 PMID: 16088334

36. Xagoraraki I, Kuo DH, Wong K, Wong M, Rose JB (2007) Occurrence of human adenoviruses at two

recreational beaches of the great lakes. Appl Environ Microbiol 73: 7874–7881. doi: 10.1128/AEM.

01239-07 PMID: 17933924

37. Wallace J, Champagne P, Hall G (2016) Multivariate statistical analysis of water chemistry conditions in

three wastewater stabilization ponds with algae blooms and pH fluctuations. Water Res 96: 155–165.

doi: 10.1016/j.watres.2016.03.046 PMID: 27038585

38. Fons-Castells J, Tent-Petrus J, Llaurado M (2016) Simultaneous determination of specific alpha and

beta emitters by LSC-PLS in water samples. J Environ Radioact.

39. Pruss-Ustun A, Bartram J, Clasen T, Colford JM Jr., Cumming O, Curtis V, et al. (2014) Burden of dis-

ease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective

analysis of data from 145 countries. Trop Med Int Health 19: 894–905. doi: 10.1111/tmi.12329 PMID:

24779548

40. Simmons FJ, Xagoraraki I (2011) Release of infectious human enteric viruses by full-scale wastewater

utilities. Water Res 45: 3590–3598. doi: 10.1016/j.watres.2011.04.001 PMID: 21570703

41. Line DE (2013) Effect of development on water quality for seven streams in North Carolina. Environ

Monit Assess 185: 6277–6289. doi: 10.1007/s10661-012-3024-z PMID: 23307048

42. Lata P, Ram S, Agrawal M, Shanker R (2009) Enterococci in river Ganga surface waters: propensity of

species distribution, dissemination of antimicrobial-resistance and virulence-markers among species

along landscape. BMC Microbiol 9: 140. doi: 10.1186/1471-2180-9-140 PMID: 19615089

43. Lucas FS, Therial C, Goncalves A, Servais P, Rocher V, Mouchel JM (2014) Variation of raw wastewa-

ter microbiological quality in dry and wet weather conditions. Environ Sci Pollut Res Int 21: 5318–5328.

doi: 10.1007/s11356-013-2361-y PMID: 24271734

44. Chavez A, Jimenez B, Maya C (2004) Particle size distribution as a useful tool for microbial detection.

Water Sci Technol 50: 179–186.

45. Colford JM Jr., Wade TJ, Schiff KC, Wright CC, Griffith JF, Sandhu SK, et al. (2007) Water quality indi-

cators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 18:

27–35. PMID: 17149140

46. Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, et al. (2010) The

BEACHES Study: health effects and exposures from non-point source microbial contaminants in sub-

tropical recreational marine waters. Int J Epidemiol 39: 1291–1298. doi: 10.1093/ije/dyq084 PMID:

20522483

47. Passerat J, Ouattara NK, Mouchel JM, Rocher V, Servais P (2011) Impact of an intense combined

sewer overflow event on the microbiological water quality of the Seine River. Water Res 45: 893–903.

doi: 10.1016/j.watres.2010.09.024 PMID: 20934197

48. Dorevitch S, Pratap P, Wroblewski M, Hryhorczuk DO, Li H, Liu LC, et al. (2012) Health risks of limited-

contact water recreation. Environ Health Perspect 120: 192–197. doi: 10.1289/ehp.1103934 PMID:

22030231

49. Hanjra MA, Blackwell J, Carr G, Zhang F, Jackson TM (2012) Wastewater irrigation and environmental

health: implications for water governance and public policy. Int J Hyg Environ Health 215: 255–269.

doi: 10.1016/j.ijheh.2011.10.003 PMID: 22093903

50. Hejkal TW, Wellings FM, Lewis AL, LaRock PA (1981) Distribution of viruses associated with particles

in waste water. Appl Environ Microbiol 41: 628–634. PMID: 7224627

Reliable Viral Indicators of Water Quality

PLOS ONE | DOI:10.1371/journal.pone.0170399 January 23, 2017 16 / 16

http://dx.doi.org/10.1128/AEM.02249-09
http://www.ncbi.nlm.nih.gov/pubmed/20061455
http://dx.doi.org/10.1128/AEM.71.6.3131-3136.2005
http://www.ncbi.nlm.nih.gov/pubmed/15933012
http://dx.doi.org/10.1139/w05-016
http://www.ncbi.nlm.nih.gov/pubmed/16088334
http://dx.doi.org/10.1128/AEM.01239-07
http://dx.doi.org/10.1128/AEM.01239-07
http://www.ncbi.nlm.nih.gov/pubmed/17933924
http://dx.doi.org/10.1016/j.watres.2016.03.046
http://www.ncbi.nlm.nih.gov/pubmed/27038585
http://dx.doi.org/10.1111/tmi.12329
http://www.ncbi.nlm.nih.gov/pubmed/24779548
http://dx.doi.org/10.1016/j.watres.2011.04.001
http://www.ncbi.nlm.nih.gov/pubmed/21570703
http://dx.doi.org/10.1007/s10661-012-3024-z
http://www.ncbi.nlm.nih.gov/pubmed/23307048
http://dx.doi.org/10.1186/1471-2180-9-140
http://www.ncbi.nlm.nih.gov/pubmed/19615089
http://dx.doi.org/10.1007/s11356-013-2361-y
http://www.ncbi.nlm.nih.gov/pubmed/24271734
http://www.ncbi.nlm.nih.gov/pubmed/17149140
http://dx.doi.org/10.1093/ije/dyq084
http://www.ncbi.nlm.nih.gov/pubmed/20522483
http://dx.doi.org/10.1016/j.watres.2010.09.024
http://www.ncbi.nlm.nih.gov/pubmed/20934197
http://dx.doi.org/10.1289/ehp.1103934
http://www.ncbi.nlm.nih.gov/pubmed/22030231
http://dx.doi.org/10.1016/j.ijheh.2011.10.003
http://www.ncbi.nlm.nih.gov/pubmed/22093903
http://www.ncbi.nlm.nih.gov/pubmed/7224627

