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Functional connectivity network (FCN) calculated by resting-state functional magnetic
resonance imaging (rs-fMRI) plays an increasingly important role in the exploration
of neurologic and mental diseases. Among the presented researches, the method
of constructing FCN based on Matrix Variate Normal Distribution (MVND) theory
provides a novel perspective, which can capture both low- and high-order correlations
simultaneously with a clear mathematical interpretability. However, when fitting MVND
model, the dimension of the parameters (i.e., population mean and population
covariance) to be estimated is too high, but the number of samples is relatively quite
small, which is insufficient to achieve accurate fitting. To address the issue, we divide the
brain network into several sub-networks, and then the MVND based FCN construction
algorithm is implemented in each sub-network, thus the spatial dimension of MVND
is reduced and more accurate estimates of low- and high-order FCNs is obtained.
Furthermore, for making up the functional connectivity which is lost because of the
sub-network division, the rs-fMRI mean series of all sub-networks are calculated, and
the low- and high-order FCN across sub-networks are estimated with the MVND based
FCN construction method. In order to prove the superiority and effectiveness of this
method, we design and conduct classification experiments on ASD patients and normal
controls. The experimental results show that the classification accuracy of “hierarchical
sub-network method” is greatly improved, and the sub-network found most related to
ASD in our experiment is consistent with other related medical researches.

Keywords: functional connectivity network, resting-state functional magnetic resonance imaging, matrix variate
normal distribution, autism spectrum disorder, hierarchical sub-network method
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INTRODUCTION

Functional connectivity networks (FCN), usually calculated
from resting-state functional magnetic resonance imaging (rs-
fMRI), using blood oxygenation level dependent (BOLD) signals
as neurophysiological indicators, are playing an increasingly
important role in exploring the working mechanism of the brain
and investigating the brain’s functional variations of some mental
disorders, such as autism spectrum disorder (ASD) (Felouat
and Oukid-Khouas, 2020; Sun et al., 2021), major depressive
disorder (Mousavian et al., 2020), Alzheimer’s disease (Jones
et al., 2012; Wang et al., 2017), and its early stage, i.e., mild
cognitive impairment (Chen et al., 2016; Zhang et al., 2020), et al.

FCN is a weighted network based on the graph theory, which
takes the regions of interest (ROIs) in the brain as the nodes,
the correlation of the rs-fMRI time series between different ROIs
as the functional connectivity (FC) and the FC strength as the
weight of the edge (Smith et al., 2013). Among all the methods for
FC estimation, the most classic and popular example is Pearson’s
Correlation (PC) (Chen et al., 2016; Zhao et al., 2018; Sun
et al., 2021). So far, it has been commonly known that the brain
network structures and edge weights of the patients are different
from those of the normal population due to the occurrence of
pathological changes (Greicius et al., 2003).

At present, researchers have proposed many FCN models
for disease diagnosis, which can be roughly divided into two
categories. The first class is the so-called “low-order FCN” (Zhou
et al., 2018b) that can only reflect FC characteristics between
any two ROIs. For example, the conventional FCN assumes
that all the rs-fMRI time series are static during the whole
scanning period. Under such assumption, FC is quantified with
the correlation (e.g., Pearson’s correlation) between a pair of rs-
fMRI time series derived from two ROIs (Achard, 2006). The
dynamic FCN overcomes the drawback that the conventional
FCN cannot reflect the dynamic information of brain activity.
Based on the sliding window strategy, the rs-fMRI time series
are divided into a set of short time series fragments, and the
conventional FCN is constructed on each fragment. This can
capture dynamic FC changes over time to a certain extent (Kudela
et al., 2017). Notice that the low-order FCNs only calculate the
pairwise correlation between two brain ROIs while fail to reflect
deeper linkage mechanism involving multiple ROIs inside the
brain. And the functional connectivity involving multiple ROIs
may contain complementary information to low-order FC. The
second class of FCN model is the so-called “high-order FCN”
(Song et al., 2020) that can capture deeper brain information
by designing FC model of multiple ROIs. For example, on the
basis of dynamic FCN, Chen et al. (2016) and Zhao et al. (2018)
took each FC time series as the network node and the correlation
coefficient of FC time series of each ROI pair as the edge weight to
construct a high-order FCN, which fills the interaction between
paired ROI and other ROI pairs. Zhang et al. (2016) proposed
a novel method to capture second-level relationship between
two brain regions using inter-regional resemblance of the FC
topographical profiles, which complements the discovery of more
biologically meaningful inter-group differences. Furthermore,
Zhao et al. (2020) combined inter-regional resemblance of the

FC topographical profiles with dynamic network and central
moment to explore dynamic and high-order relationships
between two brain regions, which mines the dynamic FC
relationship of multiple ROIs from multiple perspectives. Of
note, the above methods all share the “correlation’s correlation”
strategy. In addition, in the literatures, many authors (e.g., Zhang
et al., 2016, 2017) have presented the importance of high-order
FC and explained potential biological meanings of high-order FC
networks in dedicated studies. Since this paper mainly focuses
on the applications of high-order FCNs for diagnosis, detailed
discussion about general biological meanings of high-order FC
networks can be found in these published works.

Zhou et al. (2018a) proposed a novel FC estimation method
based on Matrix Variate Normal Distribution (MVND) theory.
Compared with other higher-order models, MVND-based FCN
can simultaneously obtain both low- and high-order FCNs
with a clear mathematical explanation, and has demonstrated
superior performance in identifying MCI patients from NCs.
Specifically, the FCN sequence is constructed with the sliding
window strategy, and then the so-constructed FCNs are taken as
the samples to estimate the final low-order and high-order FCNs.
In other words, each FCN is regarded as a random variable matrix
(RVM) which obeys MVND, and all the FCNs in the sequence are
taken together as the sample population to fit an MVND model.
Like the other models mentioned above, Zhou’s work is an FCN
construction method based on fully brain network (FBN). So, we
use the term “fully network FCN method” to refer to the method
presented by Zhou et al. (2018a).

However, the “fully network FCN method” has the problem
of “high dimension but small sample,” which makes it actually
impossible to fit an MVND model accurately. Theoretically,
when fitting any distribution, the more samples there are, the
more accurate the distribution will be. Besides, the higher spatial
dimension where the distribution is located, the more samples
will be needed in a fitting task. However, there exist the following
facts in the “fully network FCN method”: (1) each FCN is
represented as a 116 × 116 matrix. (2) Each rs-fMRI time series
contains only 137 volumes at most leading that no more than 137
FCNs can be generated even through the sliding window strategy.
In fact, it is almost impossible to fit such a high-dimensional
distribution with such a small number of samples.

In general, for fitting a more accurate MVND, either reducing
the dimension of the RVM or increasing the number of RVM
will be helpful. In other words, the fitting accuracy of MVND
can be improved by reducing the ratio between the dimension
of RVM and the number of RVM. However, as mentioned
above, it is impossible to generate more than 137 FCNs through
sliding windows even in extreme cases, then increasing the
number of RVM is not feasible. Therefore, we put forward
the “hierarchical sub-network method” to improve the “fully
network FCN method” from the perspective of reducing the
dimension of RVM in this paper. Specifically, the brain network
is divided into several sub-networks, and each sub-network
contains only part of rs-fMRI time series. Firstly, the MVND
based FCN construction algorithm is implemented in each sub-
network, so as to reduce the spatial dimension of MVND and
obtain more accurate estimates of intra-sub-network low- and
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high-order FCNs. Furthermore, the rs-fMRI mean series of all
sub-networks are obtained, and the low- and high-order FCN
across sub-networks are estimated according to the same strategy
to compensate for the loss of FC information caused by sub-
network division.

We propose the “hierarchical sub-network method” based on
the following two motivations. On one hand, the ratio of the
dimension of RVM to the number of RVM can be effectively
decreased, so as to improve the fitting effect of MVND through
the sub-network strategy. In fact, in this paper, the brain is
divided into six relatively independent sub-networks according
to the BrainNet Viewer software (Xia et al., 2013) like: the default
mode network (DMN), the execution and attention network
(EAN), etc. In other word, each sub-network is a relatively
independent functional area and just contains a little part of
ROIs. We take the largest sub-network as an example to illustrate
the effectiveness of this method in improving MVND fitting. The
largest sub-network only contains 26 ROIs, so in the MVND-
based FCN construction method, RVM is expressed as a 26 × 26
matrix. Each ROI measured 170 signal elements, the ratio of
the dimension of RVM to the number of RVM is 3.97 in our
method, while in the “fully network FCN method,” as analyzed
earlier, the RVM is represented as a 116 × 116 matrix and the
dimension quantity ratio of RVM is 79.15. Therefore, our method
can reduce the difficulty of MVND fitting from the perspective of
spatial dimension.

On the other hand, although the sub-network strategy can
achieve more accurate fitting of MVND and more accurate
extraction of FC information in sub-networks, we have to
point out the fact that merely building FCN in sub-networks
inevitably loses FC information of ROIs across different sub-
networks, which can be understood more clearly by comparing
FC information captured in fully network (Figure 1A) and sub-
network (Figure 1B) of brain. Figure 1A represents the eight
FCs among the six ROIs before network division. Figure 1B
reflects that the attention to FC information of ROI within the
sub-network ignores the two FCs belonging to ROI of different
networks. In this paper, we defuse this problem skillfully through
the correlation of any pair of sub-networks. Specifically, we first

average all the rs-fMRI time series in each sub-network to get 6
(the number of sub-networks) mean time series, and then take all
sub-networks as nodes to construct the low- and high-order FCN
with MVND based FCN construction method. Corresponding
to intra-sub-network features, these features are called inter-
sub-network features. Finally, both intra-sub-network features
and inter-sub-network features are used as the basis for autism
classification experiments.

In summary, the advantages of the “hierarchical sub-network
method” are as follows: first, combining the MVND-based
FCN construction method with functional sub-networks can
reduce the spatial dimension of MVND and achieve more
accurate fitting of MVND; Second, capturing intra-sub-network
features and inter-sub-network features from macro and micro
perspectives to achieve the full expression of FC information in
brain networks. In order to verify that the “hierarchical sub-
network method” is superior to the “fully network FCN method,”
we apply both methods to the Autism Brain Imaging Data
Exchange (ABIDE) database for individual based classification
between ASD patients and NCs.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
In this study, 92 rs-fMRI images of subjects with ages ranging
from 7 to 15 years old from the publicly available Autism Brain
Image Data Exchange Database (ABIDE) (Di Martino et al., 2014)
are used, including 45 ASD patients and 47 NCs In order to avoid
the influences of the heterogeneity of multi-site data on the results
due to the difference in medical device, collection protocol, etc.,
we chose 45 ASD patients (36 males and 9 females) and 47 NC
subjects (36 males and 11 females) with ages ranging from 7 to
15 years old. The mean frame-wise displacement was computed
to describe head motion for each individual. The individuals
were excluded if their mean FD is larger than 1 mm (Lin et al.,
2015; Ray et al., 2015). All these considered subjects had no
excessive head motion with a displacement of < 1.5 mm or an
angular rotation of < 1.5 in any of three directions. The detailed

FIGURE 1 | The comparison of the FC information captured in fully network (A) and sub-network (B) of brain. The dots represent ROIs and the red lines represent
FCs. Yellow dots and green dots depict two different sub-networks.
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demographic information of these subjects is summarized in
Table 1. As shown in Table 1, there are no significant differences
(p > 0.05) in gender, age, and FIQ between two groups.

The observed rs-fMRI images are scanned at New York
University (NYU) Langone Medical Center using a 3 -T Siemens
Allegra scanner with the following parameters: flip angle = 90,
33 slices, TR/TE = 2,000/15 ms, 180 volumes, and voxel
thickness = 4 mm. More details on the data collection, exclusion
criteria, and scan parameters can be obtained from the ABIDE
website.1

The acquired rs-fMRI data is preprocessed by the Statistical
Parametric Mapping (SPM8) software.2 Then, the brain is
parcellated into 116 ROIs using the Automated Anatomical
Marker (AAL) atlas (Tzourio-Mazoyer et al., 2002), and the
average rs-fMRI time series for each ROI are calculated and
expressed as a data matrix X ∈ R170 × 116, where 170 denotes
the total number of temporal image volumes and 116 denotes the
total number of brain ROIs.

The Pipeline of the “Hierarchical
Sub-Network Method”
The pipeline of our proposed “hierarchical sub-network method”
is shown in Figure 2, which mainly includes the following
four steps: (1) Sub-network division. The division labels of the
sub-network are obtained according to the BrainNet Viewer
software (Xia et al., 2013), and the rs-fMRI time series of each
subject are divided into 6 groups according to the division
labels. (2) Intra-sub-network feature extraction. In each sub-
network, the FCN sequence is constructed with sliding window,
and the MVND is fitted with the FCN sequence being the
RVM sample to obtain the intra-sub-network features. (3) Inter-
sub-network feature extraction. The mean time series of each
subnetwork is calculated, and then the low-order and high-
order FCNs of the fully network are estimated synchronously
with the MVND-based FCN construction method. (4) Feature
normalization, feature selection and feature fusion. The features
obtained in steps (2)—(3) are normalized. Then we use T-test

1http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

TABLE 1 | Demographic information of the subjects.

Characteristic NC ASD p-value

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1 ± 2.3 11.0 ± 2.3 0.773b

FIQ (mean ± SD) 106.8 ± 17.4 113.3 ± 14.1 0.0510b

ADI-R (mean ± SD) 32.2 ± 14.3c - -

ADOS (mean ± SD) 13.7 ± 5.0 - -

FD (mm)(mean ± SD) 0.14 ± 0.05 0.15 ± 0.07 0.36b

ASD, autism spectrum disorders; NC, normal control; M, male; F, female; FIQ, Full
Intelligence Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADOS, autism
diagnostic observation schedule.
aThep-value was obtained byχ2-test.
bThe p-value was obtained by two-sample two-tailed t-test.
cTwo patients do not have the ADI-R score.

and LASSO algorithms to select the most relevant features for the
classification task. (5) ASD classification. We use SVM with linear
kernel for ASD classification.

In the following subsections, we describe the above steps
in detail. The meanings of the mathematical symbols are that
bold uppercase letters represent matrices (i.e., M), regular
uppercase letters represent total values (i.e.,M), bold lowercase
letters represent vectors (i.e., m), and regular lowercase letters
represent scalars (i.e., m).

Dividing the Brain Into Sub-Networks
For each subject, we define
xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N) as the average
rs-fMRI time series across all voxels belonging to the i-th
ROI, where M denotes the total number of temporal image
volumes, and N denotes the total number of ROIs. According
to the experimental data mentioned above, here M = 170
and N = 116. Divide all ROIs into U different sub-networks
{�1, �2, · · · , �u, · · · , �U}, where U consists of index i if
xi is included in the u-th sub-network. In the current study,
the 116 ROIs in the Automated Anatomical Labeling (AAL)
template were divided into six common functional networks
according to the BrainNet Viewer software (Xia et al., 2013):
the default mode network (DMN), the execution and attention
network (EAN), the sensorimotor network (SMN), the visual
network (Visual), the subcortical nuclei (SBN) regions and the
cerebellum (Cerebel), so here U = 6. Of note, we choose this
division method for the following two reasons. On one hand,
the generated six sub-networks based on the BrainNet Viewer
software have clear biological explanation, which makes this
study have a broader medical reference value. On the other hand,
dividing six sub-networks is enough to satisfy the dimensionality
reduction needs of this study. Since the number of ROIs varies in
each sub-network, we can use Nu to denote the total number of
ROIs in the u-th sub-network. Figure 3 gives an intuitive view of
the division of the sub-network. In section “Discussion,” we also
discuss the sub-network division method based on similarity.

Constructing the Functional Connectivity
Network Time Series With
Sliding-Window Strategy
In Figure 4, step 1 illustrate the construction of the FCN time
series with sliding-window strategy vividly. Let the correlation
between the i-th and the j-th ROIs be:

cij = corr(xi, xj) (1)

Then, an FCN can be established using the classical method
by taking xi as nodes and cij as weights of edges. Here, cij is the
weight of the edge connecting the i-th ROI and the j-th ROI. In
the u-th sub-network, i, j ∈ �u, the total number of nodes of
FCN is Nu, thus FCN can be expressed as a symmetric matrix,
defined as follows:

Wu =
(
cij
)
i, j ∈ �u (2)

where Wu ∈ RNu × Nu represents the FCN in the u-th sub-
network. Next, the sliding window strategy is introduced. The
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FIGURE 2 | The pipeline of the “hierarchical sub-network method.”

FIGURE 3 | Visualization of the location of each sub-network in brain.

FIGURE 4 | The MVND based FCN construction method. Where, step 1 shows the sliding-window strategy, step 2 shows the MVND based feature extraction.

entire rs-fMRI time series of all ROIs is divided into K segments
by window sliding, and corresponding FCNs are established
on each rs-fMRI time series segment, thus forming a sequence
containing K FCNs where K is determined by the window width
lw and step size ls of the sliding window.

Specifically, taking the u-th sub-network as an example,
the total number of ROIs is Nu, the total number of timing
image voxels is M, and a sequence containing K FCNs, denoted
by {W1

u, W2
u, · · · , WK

u }, will be obtained through the sliding

window strategy, where K =
[
M−lw
ls

]
+ 1,M = 170, lw and

ls are variable parameters.

Extracting the Intra-Sub-Network
Features
In Figure 4, step 2 displays the pipeline of the extraction
of intra-sub-network features. In each sub-network, we regard
the obtained FCN sequence as a sample population obeying a
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multivariate Gaussian distribution, then each FCN is regarded as
a random variable matrix sample, then

Wk
u ∼ N (Mu,6u) 1 ≤ k ≤ K (3)

where, Mu ∈ RNu × Nu is the population mean or mathematical
expectation, and 6u ∈ RN

2
u × N2

u is the population covariance of
Wu. As mentioned in the introduction, Mu and 6u correspond
to the low-order FC Features and high-order FC Features of
brain networks, respectively. Since the dimension of 6u is too
high, in order to avoid overfitting in the classification experiment,
and consistent with the method in Zhou et al. (2018a) we
replace the population variance with the form of Kronecker
product decomposition (Gupta and Nagar, 2000), i.e., 6 = C1

u ⊗

C2
u, where C1

u, C2
u ∈ RNu × Nu are positive semi-definite,

representing the column and row covariance matrices of Wu,
respectively. Since Wu is a symmetric matrix, C1

u = C2
u, we

can use Cu = C1
u = C2

u to replace 6u with the advantage of
not losing information, so as to achieve the dimension reduction
of 6u. Specifically, according to maximum likelihood estimation
(MLE) theory of MVND, in each sub-network, the MLE of Mu is

Mu =
1
K

K∑
k = 1

Wk
u (4)

The MLE of Cu can be achieved by the following iteration
formula:

Cu =
1

KNu

K∑
k = 1

(Wk
u −Mu)C−1

u ( Wk
u −Mu)

T
(5)

where, 1 ≤ k ≤ K, 1 ≤ u ≤ U.

Extracting the Inter-Sub-Network
Features
As mentioned in the introduction, after the sub-network division,
we must consider both intra-sub-network and inter-sub-network

features. The overview of the extraction of inter-sub-network
features is vividly illustrated in Figure 5 and the extraction
of inter-sub-network features is divided into two steps: (1)
Calculating the mean correlation time series for each sub-
network (see Figure 5A). (2) Estimating low- and high-order
FCNs simultaneously with the MVND based FCN construction
method from rs-fMRI mean time series (see Figure 5B). The
estimated low- and high-order FCNs are the inter-low-order
features and the inter-high-order features, respectively.

The inter-sub-network feature extraction method is equivalent
to the construction of FCN in the whole brain scale and the
FCN construction method is the same as that in the sub-network
scale. Both are constructed by MVND based FCN construction
method, which can be referred to section “Constructing the
FCN Time Series With Sliding-Window Strategy” and section
“Extracting the Intra-Sub-Network Features.” Here we describe
in detail the generation of mean time series of each sub-network
by taking the u-th subnetwork as an example.

The mean correlation time series yu of the u-th sub-network
can be calculated by averaging those rs-fMRI time series assigned
to this sub-network. Specifically, each element in yu is defined as:

ymu =
∑

i ∈ �u ymi
||�u||

, 1 ≤ m ≤ M (6)

Where, m represents the subscript of the element in yu, and
||u|| represents the total number of rs-fMRI time series contained
in the u-th sub-network.

Feature Normalization, Selection, Fusion,
and Classification
All the features we have obtained include the intra-sub-network
features and the inter-sub-network features, each of which
consists of both high-order features and low-order features. Let’s
call them f 1, f 2, f 3, and f 4. These four feature vectors are
acquired in different ways, so there are inevitably scale differences

FIGURE 5 | The overview of the extraction of inter-sub-network features. (A) Shows the calculation of rs-fMRI mean series. (B) Shows the pipeline of the extraction
of the inter-sub-network features.
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among different features. In order to treat each feature equally,
we normalize them in the same way. Here, f 1, f 2, f 3, and f 4
are normalized by the “min-max normalization” method,
respectively. Take f 1 as an example:

f ′1i =
f 1i −min(f 1)

max
(
f 1
)
−min(f 1)

(7)

Where, f 1 represents the vector of intra-sub-network high-
order features. f 1i represents the i-th element in f 1, min(f 1)
represents the minimum value in f 1, and max(f 1) represents
the maximum value in f 1. The four types of features obtained
by the “sub-network FCN method” just reflect the functional
connectivity relationship between or among ROIs from four
perspectives and they are complementary and homogeneous.
Therefore, our fusion method is to simply combine them as a
whole. In other words, the normalized feature data of four feature
vectors are concatenated and expressed as a long vector f, that is
f = [f ′1, f

′
2, f
′
3, f
′
4].

However, the intra-sub-network low-order features and the
inter-sub-network low-order features expressed by f 2 and f 4
exists as the form of FCN. FCN is a symmetric matrix, and the
repeated feature leads to redundancy. So, we vectorize their lower
off-diagonal-triangular parts to redefine the feature vectors. In
this way, the original feature represented by f is replaced by a
new one denoted by f a. Obviously, f a may still contain features
unrelated to ASD disease. In order to reduce the interference of
irrelevant features and improve the generalization performance,
we use the two-stage feature selection strategy to select a small set
of most discriminative features for ASD diagnosis.

The first step is to perform a two-sample t-test between NCs
and ASD subjects for each feature in the f a. Those features
whose p-value is smaller than a certain threshold are preserved.
At this point, we label the newly obtained feature set as f b. In
the second step, we apply the L1-norm regularized least squares
regression, known as LASSO (Tibshirani, 1996), to further select
the discriminative features from f b. Specifically, we used f lb to
denote the features of the l-th subject and Il to represent the
label of the l-th subject. If the l-th subject is a patient with ASD,
Il = 1; otherwise, Il = − 1. Let w represents the weight vector
for the feature selection task. The LASSO model is expressed by
mathematical formula as:

min
1
2

L∑
l = 1

∣∣∣∣∣∣Il − (f lb)
T

w
∣∣∣∣∣∣2

2
λ||w||1 (8)

Where, L represents the total number of subjects, and L = 92
in this experiment. λ is a parameter, controlling the model’s
sparsity based on the L1-norm regularization. The larger the
value of λ, the sparser the model is. Different from the t-test,
which selects feature separately, LASSO investigates all features
synchronously. The t-test method and the LASSO method select
features from different perspectives. As a binary classification
problem, the t-test method can effectively select the features with
high significance in ASD subjects and NC subjects. However,
t-test method treats each feature independently without taking
into account their inherent correlation, thus possibly resulting

in many redundant features. Therefore, we further use LASSO
method for the second selection which is able to consider the
relationship between features. Therefore, we combine the two
methods and design a two-stage feature selection strategy. We
use F to represent the final feature for classification. In the
classification phase, we use SVM (Chang and Lin, 2011) with
a simple linear kernel for ASD identification. SVM seeks a
maximum margin hyper-plane to separate the two kinds of
samples. By adjusting the hyperparameter γ, the empirical risk
of the training data and the complexity of the model can be
balanced, so as to obtain good generalization performance on
unlabeled test data.

Evaluation Methodology
We use nested fivefold cross-validation strategy which consists
of two nested loops to evaluate classification performance in
this experiment. In outer loop, 92 subjects are divided into 5
subsets of the roughly same size, where one subset is selected
as the test-set, and the other 4 subsets are used as the training-
set. In inner loop, the data of the training-set are combined
and redivided into five subsets of similar size, four of which
are used for tuning the hyperparameters and one for model
evaluation. The performance of our method is mainly affected
by three hyperparameters, they are p and λ in feature selection
and γ in SVM model. The optimal hyperparameters can be
determined when the average classification accuracy reaches its
optimum. we determine the optimal values for the parameters in
the following range: p∈ [0.01 : 0.01 : 0.1] , λ ∈ [0.1 : 0.1 : 0.9],
and γ ∈

[
2−4, · · · ,24]. When the optimal hyperparameters are

selected in inner loop, they are returned to the outer loop where
the model will be trained based on the training dataset and
evaluated on the testing dataset. Besides classification accuracy
(ACC), we use sensitivity or true positive rate (TPR), specificity
or true negative rate (TNR), positive predictive value (PPV), and
negative predictive value (NPV)3 to comprehensively evaluate the
classification performance of the two methods.

RESULTS

Autism Spectrum Disorder Classification
Performance
In this work, we compare the performance of the “hierarchical
sub-network method” and the “fully network FCN method”
in the ASD classification experiment. Specifically, we use the
fusion of all the features extracted by each method to perform
classification experiments. The experimental results are shown
in Table 2 and can be found with Sub-Fusion and Fully Fusion
as pointers. Furthermore, in order to analyze the influence
of different types of features in two compared methods on
the experimental results, we carry out separate experiments on
intra-sub-network high-order features, intra-sub-network low-
order features, inter-sub-network high-order features, inter-sub-
network low-order features, fully network high-order features
and fully network low-order features. In Table 2, they are

3https://en.wikipedia.org/wiki/Sensitivity\_and\_specificity
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TABLE 2 | ASD classification performance using different features.

Feature type ACC (%) TPR (%) TNR (%) PPV (%) NPV (%)

Sub-Intra-Low 74 ± 0.21 73 ± 0.33 75 ± 0.39 75 ± 0.38 73 ± 0.49

Sub-Intra-High 77 ± 0.30 73 ± 0.45 81 ± 0.14 79 ± 0.47 76 ± 0.12

Sub-Intra-Fusion 79 ± 0.49 76 ± 0.45 82 ± 0.23 81 ± 0.13 77 ± 0.25

Sub-Inter-Low 66 ± 0.30 62 ± 0.22 70 ± 0.21 67 ± 0.45 66 ± 0.00

Sub-Inter-High 72 ± 0.38 69 ± 0.22 74 ± 0.40 72 ± 0.09 71 ± 0.43

Sub-Inter-Fusion 73 ± 0.45 71 ± 0.45 72 ± 0.34 71 ± 0.11 72 ± 0.34

Sub-Fusion 81 ± 0.44 78 ± 0.30 83 ± 0.11 81 ± 0.45 80 ± 0.44

Fully Low 74 ± 0.30 78 ± 0.29 70 ± 0.30 71 ± 0.45 77 ± 0.37

Fully High 71 ± 0.45 65 ± 0.37 77 ± 0.45 72 ± 0.50 69 ± 0.25

Fully Fusion 75 ± 0.18 72 ± 0.34 74 ± 0.48 74 ± 0.22 73 ± 0.14

Con-static 74 ± 0.04 72 ± 0.23 76 ± 0.01 74 ± 0.05 73 ± 0.07

Con-dynamic 75 ± 0.12 73 ± 0.14 76 ± 0.29 74 ± 0.23 75 ± 0.08

Values highlighted in bold mean the best results.

abbreviated as Sub-Intra-High, Sub-Intra-Low, Sub-Inter-High,
Sub-Inter-Low, Fully High, and Fully Low. In addition, we
conduct experiments on the fusion of intra-sub-network features
and inter-sub-network features in the “hierarchical sub-network
method” and the results can be found with the pointer Sub-Intra-
Fusion and Sub-Inter-Fusion in Table 2. Finally, we experimented
with two traditional methods under the same data, and reported
the experimental results in Table 2. Traditional static FCN
method and low-order dynamic FCN method are abbreviated as
con-static and con-dynamic, respectively, in Table 2.

Table 2 shows the mean classification performance for each
compared feature type. From the experimental results shown
in Table 2, we can make the following judgments: (1) The
classification accuracy of the intra-sub-network low- and high-
order features of the “hierarchical sub-network method” (i.e.,
Sub-Intra-Low, Sub-Intra-High) is better than the corresponding
features extracted by the “fully-network FCN method” (i.e., Fully-
Low, Fully-High). (2) Both in the “hierarchical sub-network
method” and the “fully-network FCN method”, the classification
performance of fusion features is significantly better than those
of each type of features alone. (3) The performance of the
fusion features (i.e., Sub-Fusion) of the “hierarchical sub-network
method” is significantly higher than those (i.e., Fully-Fusion)
of the “fully-network FCN method”. (4) The classification
performance of the fusion of the Intra-sub-network features
extracted by “hierarchical sub-network method” (i.e., Sub-Intra-
Fusion) is significantly better than the fusion of features extracted
by "fully-network FCN method"(i.e., Fully-Fusion) . (5) Both the
“fully-network FCN method” and the “hierarchical sub-network
FCN method” perform better than the two traditional FCN
methods, and the “hierarchical sub-network FCN method” has
the most obvious advantages.

Influence of Parameters on Accuracy
In the “hierarchical sub-network method”, we use the sliding
window strategy to generate FCN sequences. There are two
key parameters of the sliding window strategy that have a
crucial impact on feature extraction and further affect the final
recognition accuracy. They are the window width (W) and

the step size (S) of the sliding window. In order to evaluate
the influence of these two parameters on the experimental
results, we conducted an ASD classification experiment under
different parameter combinations. The window width is set
as [30:10:120] and the step size is set as [1:1:12]. Figure 6
shows the average accuracy of ASD classification under different
parameter combinations. Referring to Figure 6, we can draw
the following conclusions: (1) Sliding window parameters have
great influence on classification performance. In the “hierarchical
sub-network method,” the maximum recognition accuracy is
obtained when the window width is 60 and the step size is 4;
The best performance of the “fully network FCN method” is
achieved when the window width is 50 and the step size is 7. (2)
In the performance comparison between the “hierarchical sub-
network method” and the “fully network FCN method” under the
same sliding window parameters, the “hierarchical sub-network
method” is superior to the “fully network FCN method” in the
majority of cases. (3) In each method, the best classification
performance is achieved on average when the window width is
between 50 and 90.

In addition, in the stage of feature fusion and classifier
training, three hyperparameters have great impact on the results,
that is, p-values in t-test, λ in lasso and γ in SVM. In this
experiment, we explored the effects of different combinations
of λ and γ on the results. Before that, the window width and
step size are fixed as 60 and 4, respectively, which are also the
parameter when the “hierarchical sub-network method” reaches
the maximum. Figure 7 shows the classification accuracy under
different combinations of λ and γ in the two methods when
the hyperparameter p = 1 of the t-test. From Figure 7, we
can see that hyperparameter λ and γ have significant influence
on the experimental results, and the effects are different in the
two experiments.

The Most Discriminative Sub-Networks
and Features for Autism Spectrum
Disorder Diagnosis
According to the feature selection method mentioned in Feature
normalization, selection, and classification,t-test and LASSO
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FIGURE 6 | Histogram of classification accuracy of the “hierarchical sub-network method” (A) and the “fully-network FCN method” (B) under various sliding window
parameters.

FIGURE 7 | Histogram of classification accuracy of the “hierarchical sub-network method” (A) and the “full-network FCN method” (B) under various
hyper-parameter combinations.
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are used to extract the most discriminative features from
the original features in two steps for the ASD classification
experiment. From all fivefold validation experiments, we take
out and analyze the features used for training classifier each
time. We trace each feature to each sub-network and count how
often each sub-network is tracked. According to the frequency,
the contribution of each sub-network to ASD recognition is
calculated. The higher the frequency, the greater the contribution
of the sub-network. Figure 8 shows the contribution and
distribution of different sub-networks. In order to have a more
vivid and deep impression, the distribution of sub-network
contribution is displayed on a surface rendering of the brain
using the BrainNet viewer software (see Figure 9). The larger
the volume of the ball, the greater the contribution rate of the
sub-network to ASD recognition. Each sphere represents an ROI,
we only use the set of spheres with the same color to represent
the sub-network to observe the relationship between each sub-
network and ASD.

Combined with Figures 8, 9, we can see that only four
sub-networks provide discriminative features for classification
experiments, and DMN is the sub-network that contributes the
most. This suggests that sub-network DMN is closely related to
the diagnosis of ASD. Sub-network SMN and Visual provide zero
contribution in this study, and precise judgments need further
research. In addition, we believe that tracing the FC features
that contribute most is also a convincing perspective to compare
the differences between the two methods. The intra-sub-network
low-order FCN and the fully network low-order FCN are used in
the classification experiment. Then t-test and LASSO regression
are used to select the features twice to get the final features
for training. This part of the feature is considered the most
discriminating. Each of these features represents an FC between
a pair of ROIs. The features extracted in 10 repeated experiments
are counted, and the top 10 features with the highest frequency
are selected and shown in Figure 10. The name of the ROIs and
brain anatomic areas shown in Figure 10 are referred to the file
(“Node\_AAL116.node”) provided by BrainNet Viewer software.

FIGURE 8 | The feature contribution rate of different sub-networks to classifier
training.

Although certain genes have been found to be involved in
ASD, the affected brain regions and the mechanisms behind
specific defects are still poorly understood. According to
Figure 10, except that the functional connections of REC in
the left FRO region and PreCG in the right FRO region are
selected by both methods, other features are different. The
functional connection features selected by the “hierarchical sub-
network method” are mostly concentrated in the FRO region.
In fact, current studies have confirmed the relationship between
FRO lesions and ASD disease (Scott-Van Zeeland et al., 2010;
Solso et al., 2016).

DISCUSSION

We proposed “hierarchical sub-network method” based on
MVND theory. This method not only inherits the advantages of
MVND based FCN construction, being able to simultaneously
obtain high-order features reflecting FC information among
multiple ROIs and low-order features reflecting FC information
between any two ROIs, but also improves the fitting effect of
MVND with the help of sub-network division, so as to capture the
functional connections of the brain more accurately and provide
more discriminative features. We believe that compared with
the “fully network FCN method,” the “hierarchical sub-network
method” can fully mine the disease-disturbed FCN variation
information and has a better performance in ASD classification
experiments. We will give a more detailed discussion on the
comparison of the two methods.

In order to have an intuitive understanding of the dimension
of features extracted by the “hierarchical sub-network method”
and the “fully network FCN method,” we select the dimension
of intra-sub-network low-order features and fully network low-
order features as the representative to display. In detail, we set the
window width parameter as 60 and the step size parameter as 1,
which is the combination of sliding window parameters when the
intra-sub-network-low-order features have the best performance
in ASD classification experiment.

We can take the area of the feature image as a reference
to perceive the dimension of the feature extracted by the two
methods. The larger the area, the higher the dimension. In
this experiment, the number of ROI in each sub-network is
as follows: 18 in SMN, 14 in Visual, 17 in EAN, 22 in DMN,
19 in SBC, and 26 in Cerebel. Each sub-network is shown
in order from top to bottom in Figure 11. We can see that
the intra-sub-network low-order feature dimensions extracted
by different sub-networks are, respectively, about 2.41, 1.45,
2.15, 3.60, 2.68, 5.02% of the fully network low-order feature
dimensions. Therefore, the “high dimensional but small-sample
of RVM” problem is greatly improved in the calculation of fitting
multivariate Gaussian distribution in each sub-network. Since the
MVND based FCN construction method generates a high-order
FCN and a low-order FCN with the same dimensions at one time,
the dimension comparison of the high-order FCNs in the two
methods is similar to that of the low-order FCNs. Overall, intra-
sub-network features are more concise and discriminative than
the fully network features.
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FIGURE 9 | The sub-network associated with ASD and the strength of its contribution to ASD.

FIGURE 10 | The comparison of the most discriminative features in the “hierarchical sub-network method” (A) and the “fully-network FCN method” (B). The left-side
of each diagram represents the left hemisphere of the brain, and the right-side represents the right hemisphere of the brain. In the inner circle, each line connects
two ROIs, and the thickness of the line represents the strength of its identification ability.

The results of ASD classification experiments show that:
(1) when the high-order and low-order features extracted by
the “hierarchical sub-network method” are trained separately,
the classification accuracy is higher than that of the “fully
network FCN method,” and the classification performance
of the “hierarchical sub-network method” is better than
that of the “fully network FCN method.” This means that
the “hierarchical sub-network method” can capture the FC
changes more accurately. There are two factors that play a
role together: first, in technology, the dimensionality of the
FCN is reduced due to the division of the sub-network, i.e.,
the dimension decline of RVM, which makes the MVND
fitting more accurately. Another factor is about the biological

mechanism. The sub-network division of the brain integrates
the ROIs which are closely related in function, and focuses
on observing the functional connection relationship among
the ROIs belonging to the same sub-network, so that the
information reflected by the RVM is more concise and
effective, and the extracted low-order features and high-
order features have a more discriminative power in ASD
classification experiment. (2) The fusion of features in each
method leads to better classification performance, respectively.
To be sure, high-order features and low-order features can
provide complementary information, which is the reason why
the fusion features have better classification performance in ASD
classification experiments.
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FIGURE 11 | The comparison of the feature dimension in both methods. (A) Shows the feature dimension of each sub-network. (B) Shows the feature dimension of
the fully-network.

In the experiment to explore the influence of sliding window
parameters on the classification accuracy, we found that the
classification results of the two methods were changed with
the combination of window width and step size parameters,
especially the window width. Short window width and long
window width have their own advantages and disadvantages.
Short window width can provide rich short-term dynamic change
information, but it is not stable due to the lack of low-frequency
cycle (Sakoğlu et al., 2010). Long window width can make FC
estimation more robust (Wang et al., 2018). From Figure 6,
we can see the phenomenon that the maximum classification
accuracy can be achieved in the middle length of the window
width. In addition, under the same parameter combination,
the “hierarchical sub-network method” is almost always more
accurate than that of the “fully network FCN method.” Since
the dimension of the RVM is lower in each sub-network, more
accurate fitting can be obtained. This proves in practice that the
superiority of the “hierarchical sub-network method” is not a
special result under special conditions.

To further demonstrate the validity of the “hierarchical sub-
network method” in the diagnosis of ASD disease, we trace
the sub-network to which the features of the classifier used for
training belong. The experimental results showed that features
in DMN was selected most frequently, suggesting that DMN
was closely related to the pathogenesis of ASD. We found that
this conclusion was basically consistent with the conclusion of
other studies (Rutter et al., 2009; Simon and Engstrom, 2015;
Churchill et al., 2018), and abnormalities of the DMN were

TABLE 3 | Experimental results of the application of similarity based sub-network
division.

Feature type ACC (%) TPR (%) TNR (%) PPV (%) NPV (%)

Intra-cluster 73 ± 0.91 77 ± 0.78 70 ± 0.21 71 ± 0.43 76 ± 0.74

Inter-cluster 61 ± 0.96 55 ± 0.56 68 ± 0.09 62 ± 0.50 61 ± 0.54

Cluster-Fusion 78 ± 0.26 77 ± 0.78 78 ± 0.72 77 ± 0.78 75 ± 0.72

commonly regarded as prominent ASD neurobiological features
(Padmanabhan et al., 2017). From a biomedical perspective,
DMN plays a crucial role in socially related stimuli because
it is involved in the mental state of self-reflective thinking
and considering the perspective of others, which is consistent
with the fact that ASD is characterized by difficulties in
social communication and interaction (Padmanabhan et al.,
2017). Some studies have reported that the widely decreased
of the FC in DMN in ASD not only contributes to the
core defect of ASD, but also has a significant impact on
the symptom severity (Assaf et al., 2010; Weng et al., 2010;
Kiselev, 2014). For example, Assaf et al. (2010) pointed out
that the decrease of functional connectivity in DMN of ASD
patients was negatively correlated with the severity of social and
communication disorders.

In this study, we choose the medical template as the
framework of sub-network division because of its advantage of
biological interpretation. Of note, this is not the only scheme
for sub-network partition. For example, ROI grouping based on
the similarity of rs-fMRI time series can also be used as a sub-
network division method. Specifically, k-means algorithm is used
to cluster rs-fMRI time series, and the number of sub-networks
is determined by specifying the number of clusters. By fixing the
number of clusters from 6 to 11, we try to apply the similarity
based sub-network division as an alternative to the “hierarchical
sub network,” and verify it in the classification experiments
of ASD and NC. When the number of clusters is fixed at 8,
the classification accuracy gets maximum, and the experimental
results are shown in Table 3. In order to distinguish from the
existing features, we use “intra-cluster” and “inter-cluster” to
represent the intra-sub-network and inter-sub-network features
in this method, respectively, and “Cluster-Fusion” to represent
the fusion features. From the results, the random division of
sub-networks according to the similarity of rs-fMRI time series
does not perform better than the existing methods, and as far
as we know, this method has two obvious shortcomings: first,
although it shows better performance, it cannot make a biological
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explanation for the results. Second, the number of clusters is not
easy to determine which is greatly affected by subjects.

CONCLUSION

This paper proposes a new strategy for mental illness diagnosis
based on FCN. The proposed method is based on the following
two considerations: Technically, the FCN based on MVND is not
well constructed in the fully network domain, and there exists the
problem of “high dimension but small sample of RVM.” From
the biological point of view, many mental diseases reflect the
sub-network property of brain function, and the aggregation of
functional linkage makes the diagnosis of diseases more targeted.
The results of ASD classification experiments show that the
“hierarchical sub-network method” is comparable to the “fully
network FCN method,” and the biomedical findings obtained are
consistent with other studies.

Besides Pearson’s correlation, we can also utilize other
candidates, such as Flexible Least Squares (FLS) method provided
by the DynamicBC toolbox, to construct low-order FC network.
In comparison with Pearson’s correlation, FLS method has the
advantage that more dynamic FC networks can be calculated by
avoiding the sliding-window approach. The influence of different
low-order FC networks to the performance of high-order FC
network will be one of our directions for further study. One
limitation of this work is that the ROIs corresponding to the
higher-order features cannot be traced in the ASD classification
experiment and this makes higher-order features useless for the
discovery of ASD lesions. Further exploration of physiological
markers of ASD and effective algorithms is our future work.
Another limitation is that the “hierarchical sub-network method”
could only explore the network-wise inter-network FCs, but
would miss the ROI-wise inter-network FCs. How to compensate
for the lost FCs with ROI-wise inter-network FCs needs to be
further explored.
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