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We thank Ladner and colleagues for their conversation about
standardizing viral genome sequences derived from high-

throughput (HT) sequencing technology. In their editorial “Stan-
dards for Sequencing Viral Genomes in the Era of High-
Throughput Sequencing,” published in the May-June 2014 issue
of mBio (1), they raise standardization issues and propose the
development of categories to define viral genome assemblies.
These are timely discussion points that will likely foster more ro-
bust repositories of viral genome sequences. At the same time,
their discussion will likely raise additional issues that are impor-
tant to address in the coming years.

Among a number of issues, Ladner et al. describe the use of HT
sequencing as an approach to globally screen viral stocks for mi-
crobial contamination. Contamination is an important issue here
since the isolation and maintenance of viral stocks in host tissue
culture cells and the manufacturing of vaccines in mammalian
species lend themselves to potential microbial contamination.
Screening biologicals for safety and purity using HT sequencing
has already proven useful, as exemplified by the identification of
noninfectious viral sequences in several live-attenuated viral vac-
cines, including the identification of porcine circovirus in a hu-
man rotavirus vaccine preparation (2). HT sequencing was also
recently used to identify the causative agent of the mysterious
Theiler’s disease in horses inoculated with equine-derived biolog-
icals (3). In this case, the resulting culprit was identified as a novel
virus, Theiler’s disease-associated virus (TDAV) (3). In addition
to viral contaminants, Mycoplasma sp. is a common contaminant
in cell culture that can be transferred to viral stocks. Nanobacte-
rium sp. was previously identified in 100% of cattle serum in a U.S.
herd (4), which likely led to the contamination of cell cultures
where it was found to interfere with cell growth (5). Without a
doubt, the high sensitivity and specificity of HT sequencing lend
themselves exceedingly well to the detection of a broad range of
genetic material across organisms. Despite this potential, there is
an unassumed impediment to this technology that needs to be
addressed.

In the past several years, our laboratory has interrogated HT
sequencing data sets for the identification and characterization of
viral and bacterial pathogens (6–10). In the course of our investi-
gations, we noted surprisingly high levels of a spectrum of micro-
bial genetic materials in nearly every sample that we have ana-
lyzed, including samples that were thought to be pristine. In the
work of Strong et al. (11), we describe the pervasiveness of micro-
bial reads in sequencing data across cohorts, sample types (e.g.,
cell line or biopsy material), and study protocols. In that study, we
determine that the bulk of microbial reads did not represent bona
fide infections and likely originated from sample preparation/se-
quencing procedures. Some sources of contamination have been

identified by other groups and include microbes present in ultra-
pure water systems (12) and NIH-CQV virus contamination from
silica column-based nucleic acid extraction kits (13–17). In our
work, we proposed possible nucleic acid contamination of library
preparation reagents such as polymerases and nucleotides that are
typically made in bacteria (11). In addition, we have observed
likely contamination across RNA/cDNA samples (11, 18). Such
contaminants can easily impact reported findings, as illustrated by
the inadvertent inclusion of microbial sequences in assembled
worm genomes and other eukaryotic genomes (12, 19).

Due to the sensitive nature of HT sequencing, microbial reads
derived from sample/sequencing procedures will inevitably lead
to data misinterpretations and false-positive findings. Conversely,
identifying bona fide microbial contaminations in a background
of false contaminations can be cumbersome and/or challenging.

HT sequencing will likely be transformative for microbial de-
tection. Nevertheless, until we fully understand the sources of
contamination and work to eradicate these sources, we need to
implement stringent, well-controlled sequencing and analysis
pipelines. Reducing or eradicating these false contamination
sources will lead to easier interpretation and greater data veracity.
These false contamination issues can likely be addressed, but the
first step in this process is to acknowledge that they exist.
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