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Abstract

Recent experiments showed that engineered Escherichia coli colonies grow and self-orga-

nize into periodic stripes with high and low cell densities in semi-solid agar. The stripes

develop sequentially behind a radially propagating colony front, similar to the formation

of many other periodic patterns in nature. These bacteria were created by genetically cou-

pling the intracellular chemotaxis pathway of wild-type cells with a quorum sensing module

through the protein CheZ. In this paper, we develop multiscale models to investigate how

this intracellular pathway affects stripe formation. We first develop a detailed hybrid model

that treats each cell as an individual particle and incorporates intracellular signaling via an

internal ODE system. To overcome the computational cost of the hybrid model caused by

the large number of cells involved, we next derive a mean-field PDE model from the hybrid

model using asymptotic analysis. We show that this analysis is justified by the tight agree-

ment between the PDE model and the hybrid model in 1D simulations. Numerical simula-

tions of the PDE model in 2D with radial symmetry agree with experimental data semi-

quantitatively. Finally, we use the PDE model to make a number of testable predictions on

how the stripe patterns depend on cell-level parameters, including cell speed, cell doubling

time and the turnover rate of intracellular CheZ.

Author summary

One of the central problems in biology is to understand the underlying mechanisms

responsible for spatial pattern formation in complex systems. This is a difficult task

because the essential mechanisms for pattern formation often involve multiple space

and time scales and are often buried in overwhelmingly complex physiological details.

Recently, synthetic biology has made it possible to investigate strategies of pattern forma-

tion in relatively simpler, but still complex, systems. Here we develop multiscale models

to help explain the role of intracellular signaling in the formation of stripe patterns in

engineered E. coli colonies.
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Introduction

Understanding the formation of regularly spaced structures, such as vertebrate segments, hair

follicles, fish pigmentation and animal coats, is a fundamental problem in developmental biol-

ogy [1–7]. These patterns involve the complex interaction of intracellular signaling, cell-cell

communication, cell growth and cell migration. The overwhelmingly complex physiological

context usually makes it difficult to uncover the interplay of these mechanisms. Synthetic biol-

ogy has recently been used to extract essential components of complex biological systems and

examine potential strategies for pattern formation [8–11].

One of these problems relate to the bacterium Escherichia coli. Recently in [12], the chemo-

taxis signaling pathway of E. coli has been engineered and coupled with a quorum sensing

module, leading to cell-density suppressed cell motility. When a suspension of the engineered

cells is inoculated at the center of a petri dish with semi-solid agar and rich nutrient, the colony

grows, moves outward and sequentially establishes rings or “stripes” with a high density of

cells behind the colony front (Fig 1A). These spatial patterns form in a strikingly similar way

as many periodic patterns in other biological systems. When the maximum density of the

motile front reaches a threshold, an immotile zone is nucleated. The immotile zone then

absorbs bacteria from its neighborhood to expand, forming alternating high and low density

zones. These patterns do not form when using wild-type E. coli; instead, the colony simply

expands outward and forms a uniform lawn. The goal of this paper is to use mathematical

models to elucidate the underlying mechanisms for this pattern formation, with a special focus

on the roles of intracellular signaling.

E. coli is an enteric gram-negative bacterium that moves by alternating forward-moving

“runs” and reorienting “tumbles”. It has 6-8 flagella on its surface that can rotate either clock-

wise (CW) or counterclockwise (CCW) (Fig 1B). If the majority of its flagella rotate CCW they

form a bundle and push the cell to run forward with a speed * 10 − 30μm/s. If some flagella

Fig 1. Sequential stripe formation in an engineered E. coli colony. (A) Concentric stripe patterns formed in experiments. Scale bar: 1 cm. (B) Run-

and-tumble movement. (C)The intracellular chemotaxis pathway of E. coli. MCP is the transmembrane receptors. The letters in the figure represents

the corresponding proteins involved in chemotaxis, e.g., A represents CheA. (D) The quorum-sensing module. (A), (D) Reproduced from Fig. 1 in Liu

et al, Science, Vol 334, 238–241, 2011 [12].

https://doi.org/10.1371/journal.pcbi.1006178.g001
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rotate CW they fly apart and the cell tumbles in place. E. coli can bias its movement in response

to external chemical signals, e.g, towards locations with higher concentration of chemoattrac-

tant or lower concentration of repellent, which is called chemotaxis. The molecular mecha-

nism of E. coli chemotaxis is summarized in Fig 1C. The transmembrane chemoreceptors

(denoted as MCP) form stable ternary complexes with the intracellular signaling proteins

CheA and CheW. CheA is an auto-kinase and also a kinase for the response regulators CheY

and CheB. The activity of CheA depends on the ligand-binding state of the receptor complex

as well as its methylation level: attractant-binding reduces CheA activity and methylation

increases it. The phosphorylated form CheYp binds to the flagella motor and increases the

probability of clockwise (CW) rotation. On the other hand, CheBp and CheR change the meth-

ylation state of the receptor at a slower rate: CheR methylates it and CheBp demethylates it.

Upon attractant binding, CheA activity is reduced immediately, leading to lower CheYp and

CheBp. Then a shift of the methylation-demethylation cycle gradually restores CheA activity

on a slower time scale.

In [12], the quorum-sensing module of bacterium Vibrio fischeriwas embedded into E. coli
and used to control the transcription of cheZ (Fig 1D). The engineered cell synthesizes and

secretes acyl-homoserine lactone (AHL), a small molecule that is freely diffusible across the

cell membrane and degrades rapidly. At high concentrations, AHL suppresses the transcrip-

tion of cheZ in an ultra-sensitive manner. If cheZ is suppressed, CheZ protein becomes

diluted as the cell grows and divides. Because CheZ is a dephosphorylation kinase of CheYp,

a reduction of CheZ protein can immediately lead to higher CheYp concentration and thus

more persistent tumbles of the cell. This, in turn, causes changes to the chemoreceptors as well

as to other proteins involved in chemotaxis, and triggers a non-classic chemotactic cellular

response. To quantify the effect of AHL in single cell movement, one must take into account

the whole chemotaxis pathway as well as CheZ turnover.

A phenomenological PDE model was used to explain the pattern formation process in [12]

and a simplified version was analyzed in [13]. The model consists of a system of reaction-diffu-

sion equations for the cell density, AHL and nutrient concentrations. The diffusion rate of the

cell population is assumed to be a switch-like function of the local AHL concentration. Since

the whole chemotaxis pathway is involved in the pattern formation process, it is unclear how

cell movement can be reduced to an anisotropic (or cross) diffusion process. Moreover, the

model does not address the role of intracellular signaling in stripe formation and cannot be

used to understand how the spatial structure of the high-density and low-density regions

depends on cell-level parameters.

To address these questions, we first developed a hybrid model for the stripe formation that

accounts for the behavior of individual cells. The model starts with a detailed description of

intracellular signaling, single cell movement and cell division. This individual-based compo-

nent is then coupled with reaction-diffusion equations for AHL and nutrient concentrations.

The multiscale nature of this model allows us to explore the relations between cellular pro-

cesses on a time scale of seconds to minutes and population dynamics on a time scale of hours.

Simulations of our hybrid model showed the same stripe patterns as observed in experiments,

but they are very time-consuming due to the large number of cells involved in the pattern for-

mation process. If cells double every 30 minutes, then during a typical time period for pattern

formation, e.g. 10 hours, the population size can grow 220� 106 times.

To overcome this computational challenge, we then derived a macroscopic PDE for the

cell density from the hybrid model, using asymptotic analysis and moment closure methods.

Parameters of the PDE model are fully determined using parameters of the hybrid model.

Numerical comparisons of the hybrid model and the PDE model showed quantitative agree-

ment in 1D under biologically-relevant parameter regimes. This justifies using the PDE model
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as a quantitative and predictive tool to understand the relation between population patterning

and cellular dynamics.

We then used our PDE model to investigate how concentric stripe patterns change when

cells are subject to other chemicals or mutations as discussed in [12]. Numerical simulations of

our PDE model in 2D with radial symmetry agree with experimental data semi-quantitatively.

Finally, we used our PDE model to make a number of predictions on how stripe formation

depends on cell-level parameters. Specifically, we investigated how the colony front speed, the

wavelength of the spatial pattern and the structure within a single spatial element depend on

the individual cell speed, cell doubling time as well as the rate of CheZ turnover. Our simula-

tions suggested that the individual cell speed and the cell doubling time primarily affect the

colony front speed and the pattern wavelength, while the the turnover rate of CheZ mainly

affects the spatial structure of each stripe.

Methods

We describe two mathematical models: hybrid model and PDE model in this section. The

structure of these models and their relation are shown in Fig 2. The initial and boundary con-

ditions are described in Results.

Fig 2. The structure of the hybrid model and the PDE model. The hybrid model includes an individual-based description for the cell dynamics,

including intracellular signaling, cell movement and cell growth. The cell density equation (Eq 17) in the PDE model is derived from the probability

density distribution for individual cells. The derivation is included in S2 Text. Both models use reaction-diffusion equations for the concentrations of

the quorum-sensing signal AHL denoted by h(x, t) and nutrient denoted by n(x, t).

https://doi.org/10.1371/journal.pcbi.1006178.g002
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Hybrid model

Each cell is described as an individual particle with location xi, velocity vi, and internal state yi.

The superscript i is the index for the cell. Cell signaling is modeled by an internal ODE system

for yi. Cell movement is modeled by a velocity jump process in which transition rates are func-

tions of yi. Cell growth is implemented by random creation of new daughter cells from mother

cells. The cell dynamics is then coupled with reaction-diffusion equations for h(x, t) and n(x, t).
A similar type of model was used to model pattern formation in the slime mold Dictyostelium
discoideum in [14]. Details of each component are given below. For simplicity of notation, we

omitted the superindex i below.

Intracellular signaling described by a system of ODEs. We adopt the mathematical model

for E. coli chemotactic signaling described in [15], and extend it to include the temporal dynam-

ics of total CheZ protein in response to extracellular AHL. The model in [15] is a simplified form

of the model derived in [16]. These models are based on the detailed biochemistry of the signal-

ing network and are derived rigorously from mass action kinetics and asymptotic analysis.

We denote the total concentration of CheZ protein, i.e., the sum of CheZ and CheZp, by

z(t). The dynamics of z is governed by protein production due to transcription and translation

as well as dilution due to cell growth. Let V(t) be the volume of a cell and kV be its growth rate.

Then between cell divisions we have V0 = kV V. If there is no production of CheZ protein, Vz
remains constant and

z0 ¼ � V 0z=V ¼ � kVz:

If we assume that the production rate of CheZ is constant in wild-type cells, then

z0 ¼ kVðZw � zÞ;

where Zw is the steady state of z. For the stripe-forming cells created in [12], high concentra-

tion of AHL can indirectly suppress the transcription of cheZ, resulting in a sharp decrease of

CheZ (Fig 1C). To model this effect, we take

z0 ¼ gðz; hÞ ¼
kVðZw � zÞ; if h < h0;

� kVz; if h � h0;

(

ð1Þ

where h0 is the threshold AHL level for the suppression of cheZ. Our simulations show similar

results when a smooth interpolation of g(z, h) was used instead, but the transition of the two

states has to be sharp.

We next couple CheZ dynamics with the rest of the chemotactic signaling pathway. Denote

the mean methylation level of the chemoreceptors bym. Based on [15], the equation ofm is gov-

erned by the methylation and demethylation reactions mediated by CheR (R) and CheBp (Bp) as

dm
dt
¼ f ðm; zÞ ¼ kRR 1 � A mð Þð Þ � kBpBpAðmÞ: ð2Þ

Here A(m) is the mean receptor activity:

AðmÞ ¼
1

1þ exp ½Nra0ðm0 � mÞ�
; ð3Þ

where m0 = 1 is the reference methylation level, α0 = 1.7 measures how the free energy of the

receptor complex depends on m, and Nr = 6 is the average number of nearest neighbors of the

receptor functioning units. Note that A(m) increases with m and has a sharp transition near

m = m0. In general, A is a function of both m and the ligand binding state of the receptors

The role of intracellular signaling in the stripe formation
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(see Eqn. 5.12 in [15]). The function A reduces to Eq (3) if there is no ligand-binding signal

involved as in this context. CheR concentration R is given by

R ¼
Rt

1þ KRTtð1 � AðmÞÞ
: ð4Þ

CheBp concentration Bp is implicitly given by a system of algebraic equations of Bp, Yp (con-

centration of CheYp) and Tp (concentration of CheAp-associated receptors), as

kAðTtAðmÞ � TpÞ � kYYTp � kBBTp ¼ 0;

kYYTp � mYYp � kZZYp ¼ 0;

kBBTp � mBBp ¼ 0;

ð5Þ

with

Y ¼
Yt � ð1þ KZZÞYp

1þ KYTp
; Z ¼

z
1þ KZYp

; B ¼
Bt � ð1þ KBpTtAðmÞÞBp

1þ KBTp
: ð6Þ

Here the constants Tt, Yt, Bt and Rt are the total concentrations of the corresponding pro-

teins; z� Zt is total CheZ given by Eq (1); and the k’s, K’s, and μ’s are reaction rate constants.

Eq (5) are derived from quasi-steady state approximations of Bp, Yp and Tp respectively, based

on the fact that the chemical reactions involving Bp, Yp and Tp occur on a time scale much

faster than the methylation and demethylation of the receptors. Eq (6) are derived from the

conservation conditions [15, 16].

In summary, the ODE model for each cell is a pair of differential equations for the internal

states y = (z, m) (CheZ concentration and receptor methylation level) coupled with several

nonlinear equations for the intracellular chemotaxis protein concentrations. The parameter

values for the model are summarized in Table 1. The parameters involved in chemotactic sig-

naling are taken from [15, 16], please see references therein.

Cell movement as a velocity-jump process with moving and resting states. E. coli cells

move by alternating between two movement states, running and tumbling. The speed of run-

ning is about 10 − 30μm/s, and during tumbling they stop immediately with almost no dis-

placement. For wild-type cells, the average tumbling time (0.1s) is much shorter than the

average running time (1s). For this reason, the tumbling time is frequently ignored in previous

models [17, 18]. However, for the engineered cells we consider here, intracellular CheZ can be

significantly lower than that of wild-type cells, leading to significantly longer tumbling. In this

case cell tumbling cannot be naively ignored.

Based on the above considerations, we describe the movement of each cell as an indepen-

dent velocity jump process with a moving state and a resting state. We assume cells can move

in any directions with constant speed s0 = 20μm/s. We denote the rate for a running bacterium

to stop and tumble by λ and the rate for a tumbling cell to start running by μ, i.e.,

RunÐ
l

m
Tumble:

We further assume that a cell chooses a new direction randomly with equal probability

after tumbling. Adding a slight directional persistence as observed in [19, 20] does not alter the

main results of the paper.

The turning rates λ and μ depends on the intracellular CheYp level (Yp). We determine

these rates using the following method that involves a voting process [21].

The role of intracellular signaling in the stripe formation
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An E. coli cell has several flagella and each flagellar motor can rotate either clockwise (CW)

or counter-clockwise (CCW). We denote the switching rates from CCW to CW by λf and

from CW to CCW by μf, i.e.,

CCWÐ
lf

mf
CW:

These rates have been estimated using experimental data [21, 22],

lf ¼ a1 exp ðb1YpÞ; ð7Þ

mf ¼ a2 exp ð� ðb2 � YpÞ
4
=cÞ; ð8Þ

where a1, b1, a2, b2 and c are constants specified in Table 2. The fitting is replotted in S1 Text

for readers’ convenience. We note that given z and m for each cell, Yp = Yp(m, z) can be solved

from (5) and used to determine λf and μf.
We assume that each cell has nf flagella that rotate independently. If at least w flagella rotate

CCW simultaneously then the cell runs forward; otherwise it tumbles in place. In reality differ-

ent flagella may interact with each other through the surrounding fluid, but we ignore this

effect for simplicity.

The probability of having exactly i flagella rotating CCW is given by

PiCCW ¼
nf

i

 !
mf

lf þ mf

 !i
lf

lf þ mf

 !nf � i

: ð9Þ

Table 1. Parameters for intracellular signaling. See [15, 16] for references.

Param. Description Values

kR Methylation rate mediated by CheR 3.82 × 10−2 s−1

kBp Demethylation rate mediated by CheBp 3.25s−1

kA Phosphorylation rate of Tp mediated by CheA 100s−1

kY Dephosphorylation rate of Tp mediated by CheY 130μM−1 s−1

kB Dephosphorylation rate of Tp mediated by CheB 7.5μM−1 s−1

kZ Dephosphorylation rate of Yp mediated by CheZ 8.45μM−1 s−1

μY Degradation rate of Yp 0.1s−1

μB Degradation rate of Bp 1s−1

KB Association constant for CheB phosphorylation 0.25μM−1

KBP
Association constant for receptor demethylation 6.5μM−1

KR Association constant for receptor methylation 0.15μM−1

KY Association constant for CheY phosphorylation 0.65μM−1

KZ Association constant for CheYp dephosphorylation 1μM−1

Bt total concentration of CheB 2μM
Rt total concentration of CheR 0.3μM
Tt total concentration of CheT 5/3μM
Yt total concentration of CheY 18μM
Zw CheZ concentration of wild type E. coli 1.23μM
h0 AHL threshold (nondimensional) 0.25

https://doi.org/10.1371/journal.pcbi.1006178.t001
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The probability for the cell to be in the run and tumble states are given by

Prun ¼
Xnf

i¼w

PiCCW; Ptumble ¼ 1 � Prun: ð10Þ

The probability for two flagella switching rotation simultaneously is very small; therefore

the switch from run to tumble primarily occurs when the cell has exactly w flagella rotating

CCW and one of them switches to CW direction. Based on these observations, λ can be esti-

mated as

lðm; zÞ ¼ wlf �
PwCCW
Prun

: ð11Þ

Similarly, a cell switches from tumble to run primarily when there are exactly w − 1 flagella

rotating CCW at that moment and one of the rest switches to CCW. This argument leads to

mðm; zÞ ¼ ðnf � wþ 1Þmf �
Pw� 1
CCW

Ptumble
: ð12Þ

Using nf = 8, w = 6 and total CheZ concentration 1.23μM, we obtain λ = 0.594s−1 and μ =

6.1143s−1 at basal CheYp level, which is consistent with experimental data for wild-type cells

(See S1 Text).

Cell growth. We assume that the growth rate of the cells is a linear function of the local

nutrient concentration n(x, t), i.e.,

kVðx; tÞ ¼ rnðx; tÞ: ð13Þ

Furthermore we model cell proliferation as a Poisson process, i.e., during the time interval

[t, t + dt), the probability for a cell to divide into two daughter cells is kV(x, t)dt. An alternative

approach is to introduce a cell cycle variable for each cell and divide it when it doubles in size

[23]. We tested both approaches numerically and found no visible difference. For this reason, we

used the Poisson process approach in this paper for the ease of mathematical analysis in S2 Text.

We assume that the cell doubling time is approximately 30 minutes at maximum nutrient

level and regard n(x, t) as the nutrient concentration normalized by its initial value. Therefore

we have r = ln2/(30min)� 3.85 × 10−4s−1 (Table 2).

AHL and nutrient dynamics. Denote the total number of bacteria at time t as nb. We

assume that AHL is secreted by each cell with a constant rate αd and degrades naturally. We

further assume that the nutrient is consumed by each cell at a rate proportional to the nutrient

Table 2. Parameters for cell movement and cell growth.

Param. Description Value

s0 cell speed 0.02mm � s−1

a1 coefficient in Eq (11) 0.0174001 s−1

b1 coefficient in Eq (11) 1.32887 μM−1

a2 coefficient in Eq (12) 12.0809 s−1

b2 coefficient in Eq (12) -5.83762 μM
c coefficient in Eq (12) 2892.12

nf total flagella number 8

w minimum number of CCW flagella needed to run 6

r cell growth rate 3.85 × 10−4s−1

https://doi.org/10.1371/journal.pcbi.1006178.t002
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concentration. Based on these assumptions, we have

@thðx; tÞ ¼ DhDhðx; tÞ þ ad

Xnb

i¼1

dðx � xiÞ � bhðx; tÞ;

@tnðx; tÞ ¼ DnDnðx; tÞ � gd

Xnb

i¼1

dðx � xiÞnðx; tÞ:

ð14Þ

The parameters for AHL and nutrient dynamics are listed in Table 3. Since different experi-

mental conditions can lead to different parameter values which were not reported in [12], they

effect the patterns and we will explore the parameters more later on.

PDE model

To reduce computational cost, we derived a PDE model from the hybrid model using moment

closure methods and asymptotic analysis. Let p(x, v,m, z, t) be the density of cells at position x,

with velocity v, internal states m and z, and at time t. Let p0(x, m, z, t) be the density of cells

resting at position x with internal states m and z. According to the hybrid model we have

@tpþ v � rxpþ @zðgðz; hÞpÞ þ @mðf ðm; zÞpÞ ¼ Qðp; p0Þ;

@tp0 þ @zðgðz; hÞp0Þ þ @mðf ðm; zÞp0Þ ¼ Q0ðp; p0Þ:
ð15Þ

Here g(z, h) and f(m, z) are the right-hand sides of Eqs (1) and (2), and

Qðp; p0Þ ¼ � lðm; zÞpþ mðm; zÞp0=jVj þ rnp;

Q0ðp; p0Þ ¼ lðm; zÞ
Z

V
pdv � mðm; zÞp0 þ rnp0;

ð16Þ

where V ¼ s0@B1
0
, λ(m, z), μ(m, z) are given by Eqs (11) and (12), and n = n(x, t) is the local

nutrient concentration. The first two terms in Q(p, p0) and Q0(p, p0) represent the density

change due to velocity jumps and the third terms are due to cell growth.

Let ρz(x, z, t) be the density of cells at position x with internal state z, then

rz ¼

Z

R
p0 þ

Z

V
pdv

� �

dm:

We derived the following approximating equation for ρz(x, z, t) from (15) and (16) (see S2

Text),

@tr
z ¼ rx � ðDðzÞrxr

zÞ � @zðgðz; hðx; tÞÞrzÞ þ rnrz: ð17Þ

Table 3. Parameters for AHL and the nutrient.

Param. Description Value

Dh diffusion coefficient of AHL 5 × 10−4mm2 � s−1

Dn diffusion coefficient of the nutrient 7.7 × 10−4mm2 � s−1

αd production rate of AHL per cell 10−6 s−1

β degradation rate of AHL 10−3 s−1

γd consumption rate of nutrient per cell 1.155 × 10−6 s−1

n0 Initial concentration of nutrient (non-dimensional) 1

https://doi.org/10.1371/journal.pcbi.1006178.t003
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Here h is the AHL concentration and

DðzÞ ¼
s2

0
m0ðzÞ

dl0ðzÞ½m0ðzÞ þ l0ðzÞ�
; ð18Þ

where d is the space dimension, and λ0(z) and μ0(z) are the switching frequencies when m
equals its quasi-steady state. We note that the intracellular chemotactic signaling enters into

Eq (17) through the quasi-steady state of m only. This is because the methylation time scale is

much smaller than the time scale for the change of z.
The derivation was based on time scale separation of the intrinsic biological processes: the

time scale for chemotactic signaling is seconds to minutes, the time scale for CheZ dynamics

is tens of minutes, and the time scale for the stripe formation is several hours. The derivation

involves moment closure methods and asymptotic analysis, similar to our previous works [15,

17, 18, 24].

The PDE model is formed by coupling Eq (17) with the continuous version of (14), namely,

@thðx; tÞ ¼ DhDhðx; tÞ þ arðx; tÞ � bhðx; tÞ;

@tnðx; tÞ ¼ DnDnðx; tÞ � grðx; tÞnðx; tÞ;
ð19Þ

where

rðx; tÞ ¼
Z

rzðx; z; tÞ dz:

The parameters of the PDE model are fully determined by those of the hybrid model. In

our simulations we choose the cell density scale to be ρs = 1000cells �mm−1. As a consequence,

α and γ can be calculated as α = αd ρs and γ = γd ρs.

Results

How does single cell dynamics depend on total CheZ

We first investigated how intracellular signaling and cell movement depend on the total con-

centration of CheZ protein (denoted as Zt in this section).

Dependence of intracellular signaling on total CheZ. CheYp is the intracellular protein

that binds to a cell’s flagellar motor and changes its rotation (Fig 1B). CheYp concentration

(Yp) depends on total CheZ (Zt) and the methylation state of the receptors (m) in a ultra-sensi-

tive manner. The relation was solved from (5) and (6) and plotted in Fig 3A. Total CheZ in a

cell changes on a much slower time scale (tens of minutes) than the methylation and demethyl-

ation of the cell receptors (several seconds to minutes). As a result, in the absence of external

receptor-binding signals, m and Yp are close to their steady states m� and Y�p . Figs 3B and 2C

plot m� and Y�p obtained using the ODE model (1)–(6). We note that these variables vary sig-

nificantly with Zt. This implies that cells can demonstrate chemotactic-like behavior if Zt
changes along their trajectories.

Dependence of cell movement on total CheZ. Assuming m = m�, we calculated the turn-

ing rates for a single flagellum (λf, μf) as well as for the whole cell (λ, μ) as a function of Zt. Fig

4A shows that λf and λ decrease with Zt, while μf and μ increase with Zt. The mean time frac-

tion that a single flagella spends in the CCW rotation is given by μf/(λf + μf), and the mean

time fraction that a cell spend in the running state is μ/(λ + μ). Fig 4B shows that these quanti-

ties are very sensitive to Zt and decrease significantly if Zt is reduced: cells spend 90% of their

time running if Zt = Zw� 1.23μM but only 25% if Zt is reduced to 1.11 μM. Moreover, the

velocity jump of a cell is more sensitive to Zt than the rotation direction change of a single
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flagellum due to the cooperative behavior of different flagella. These results reconfirm the sig-

nificance of the tumbling state in periodic stripe formation.

Fig 4C plots the effective diffusion coefficient for cell movement in 1D calculated using

Eq (18). Experimental measurements in [12] showed that the cell diffusion rate decreases

sharply with increasing cell density. Our calculation is consistent with experimental data and

gives an explanation of this relation at the molecular level: high cell density is associated with

high AHL concentration, which shuts off the production of CheZ inside the cells. This in turn

causes Zt to decrease and cells tumble in place extensively.

Quantitative agreement between hybrid and PDE models in 1D

If cells are initially seeded on a horizontal line in an agar plate, they will grow, spread out

laterally and form straight stripes of equal spacing (see Fig. S4 of [12]). Motivated by these

experiments, we first investigated the population pattern formation on a 1D domain [−L, L],

representing a cross-section of the stripe patterns, using the hybrid model and the PDE model.

Simulations suggest that both models predict the same spatial-temporal population dynamics

Fig 3. Dependence of intracellular signaling on total CheZ. (A) Yp as a function of Zt and m. (B) the stationary methylation levelm� as a function of

Zt; (C) the stationary CheYp concentration Y�p given different Zt. Parameter values are the same as in Table 1.

https://doi.org/10.1371/journal.pcbi.1006178.g003

Fig 4. (A) Dependence of the turning rates on Zt; (B) Mean time fraction of CCW rotation and cell running as a function of Zt. (C) Effective cell

diffusion coefficient calculated using Eq (18).

https://doi.org/10.1371/journal.pcbi.1006178.g004
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for the engineered stripe-forming mutants as well as wild-type cells as in experiments. More-

over, the derived PDE model agrees with the hybrid model quantitatively in biologically-rele-

vant parameter regimes.

To mimic the experimental setup, we assumed that all cells initially cluster near the center

(x = 0) with internal states at equilibrium, i.e., z = Zw and m = m0. Specifically, for the hybrid

model, we randomly put 500 cells in the domain according to the distribution

PðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p exp �

x2

2s2

� �

with σ = 2mm at t = 0. Correspondingly, for the PDE model, we took

rzðx; z; 0Þ ¼ r0PðxÞdðz � ZwÞ;

where ρ0 = 500cells �mm−1/ρs = 0.5 (ρs = 1000cells �mm−1 is the cell density scale). For both

models, we took the initial nutrient concentration to be a constant everywhere and assumed

that there was no AHL added in the domain, i.e.,

nðx; 0Þ ¼ 1; hðx; 0Þ ¼ 0:

We used no-flux boundary conditions throughout the paper. For AHL and nutrient con-

centrations, we imposedrh � n =rn � n = 0 at the boundary of the spatial domain, where n is

the outward normal vector. For individual cell movement, we assumed that once a cell reaches

the boundary, it bounces back with its velocity reflected by the boundary. In 1D, the cell direc-

tion simply reverses. For Eq (17), we chose the computational range z 2 [zmin, zmax] to be large

enough to include all possible CheZ concentrations such that ρz(x, zmin, t) = ρz(x, zmax, t) = 0.

In the x direction, we imposed thatrρz � n = 0 for all z.
We first simulated the cell population dynamics for the stripe-forming mutants with

parameters specified in Tables 1–3. Fig 5 presents the time course data of the cell density as

well as the distribution of the internal variable Zt. Panels A and B are the heat maps of the cell

density as a function of space and time. The normalized cell density for the PDE model was

obtained by integrating ρz over z. The normalized cell density for the hybrid model was calcu-

lated using histograms of the cell positions. Panels C-F present the detailed comparisons of the

normalized cell density in space (top) as well as the Zt distribution (bottom) given by the two

approaches at different time points. The Zt distribution was obtained by normalizing the cell

number in each rectangular grid with size 0.1mm × 0.03μM by 100 cells. In these simulations,

the AHL concentration h also shows the same stripe pattern as the cell density ρ, with peaks

and valleys coinsiding with those of ρ; while the nutrient forms a wave front at the colony

front, increasing from 0 to the initial normalized state.

Fig 5 shows that the total cell number grows significantly as cells divide. As the colony

grows, it propagates outward continuously with a more or less constant front speed. Mean-

while cells produce AHL continuously. As extracellular AHL concentration becomes high and

reaches the threshold h0 locally, the intracellular Zt at these locations start to drop. As a result,

cells at these locations spend more time in the tumbling stage and become less mobile. In con-

trast, cells in nearby regions with low AHL move more persistently until they migrate into a

high AHL region. The existence of high and low mobility regions leads to the sequential estab-

lishment of high-density stripes behind the colony front, similar to experiments.

As a comparison, we then simulated the population dynamics for wild-type cells that do not

secrete AHL, i.e., αd = α = 0 (Fig 6). In this case, cells grow, consume nutrients, and the colony

propagates outward with a constant wave front speed. However, stripes do not appear behind

the colony front.
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Fig 5. Sequential stripe formation in 1D for engineered mutants. (A) spatial-temporal evolution of the cell density recovered from averages of 6

realizations of the hybrid model. (B) the evolution of the cell density from the PDE model. (C)—(F): spatial plots of the cell density and Zt distribution

at t = 0h, t = 2h, t = 6h and t = 10h, respectively. Top: the normalized cell density ρ(x, t). Blue bars are obtained from histograms using the hybrid

model, averaged over 6 realizations. Red Lines are calculated from the PDE model. Bottom left: distribution of ρz(x, z, t) in space and time from the

hybrid model. Bottom right: ρz(x, z, t) from the PDE model. The parameters used here are the same as in Tables 1–3.

https://doi.org/10.1371/journal.pcbi.1006178.g005
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Figs 5 and 6 suggest quantitative agreement between the hybrid model and the PDE model.

This justifies using the PDE model for further investigations to save computational cost. We

also note that the colony front expansion speed for both the engineered mutant and wild-type

are identical. This is because the front speed is primarily determined by the growth and motil-

ity of cells at the colony front, where AHL does not reach the threshold h0 required for quo-

rum-sensing. Hence, cells therein have the wild-type phenotype for both cases.

Fig 6. Uniform colony expansion for wild-type cells. (A) spatial-temporal evolution of the cell density recovered from averages of 6 realizations of the

hybrid model. (B) The evolution of the cell density from the PDE model. (C)—(F) Spatial plots of the cell density at t = 0h, t = 2h, t = 6h and t = 10h,

respectively. Blue bars are obtained from histograms using the hybrid model averaged over 6 realizations. Red Lines are calculated from the PDE

model. In these simulations we used αd = α = 0. Other parameters are the same as in Tables 1–3.

https://doi.org/10.1371/journal.pcbi.1006178.g006
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Concentric stripe formation in 2D predicted by the PDE model

Stripe patterns on a plate. Using the PDE model, we next investigated how the concen-

tric stripe pattern in Fig 1 forms from a single inoculant in the center of the petri dish. Assum-

ing radial symmetry, the PDE model takes the following form

@tr
z ¼

1

x
@xðDðzÞx@xr

zÞ � @zðgðz; hðx; tÞÞr
zÞ þ rnrz;

@thðx; tÞ ¼
Dh

x
@xðx@xhðx; tÞÞ þ arðx; tÞ � bhðx; tÞ;

@tnðx; tÞ ¼
Dn

x
@xðx@xnðx; tÞÞ � grðx; tÞnðx; tÞ;

ð20Þ

where ξ 2 (0, R] is the polar coordinate. We imposed the following boundary conditions

@xrzð0; z; tÞ ¼ @xrzðR; z; tÞ ¼ 0; rzðx; 0; tÞ ¼ rzðx;Zmax ; tÞ ¼ 0;

@xhð0; tÞ ¼ @xhðR; tÞ ¼ 0; @xnð0; tÞ ¼ @xnðR; tÞ ¼ 0
ð21Þ

The initial conditions mimics the initial conditions in the experiments [12]

rzðx; z; 0Þ ¼
1

4
ffiffiffiffiffiffi
2p
p exp �

x
2

8

� �

dðz � ZwÞ; hðx; 0Þ ¼ 0; nðx; 0Þ ¼ 1: ð22Þ

According to the experiments in [12], the initial cell colony expanded for several hours

before its density reaches the threshold to form a stripe. Each stripe is composed of a high den-

sity part and a low density part with the average wavelength approximately 0.5cm. The average

time to form one stripe is around 200mins (see Fig 1). Simulations of our PDE model with

baseline parameters predict spatiotemporal dynamics that agrees with experiments semi-quan-

titatively (Fig 7).

Effect of CheZ inhibitor. In [12], the expression of cheZ gene was varied using an aTc-

inducible module. As aTc level increases, the CheZ mRNA level decreases gradually. At high

aTc level, the engineered E. coli colonies do not form the spatial stripe patterns as they grow.

Motivated by these experiments, we investigated how the population pattern formation

depends on the synthesis rate of CheZ protein. Specifically, we varied the parameter Zw in Eq

(1), which is the steady state of CheZ concentration in the absence of quorum-sensing effect.

Fig 8 shows that as Zw decreases, the colony expansion rate decreases and the stripe patterns

disappear, consistent with experimental data. In our simulations, small changes in Zw induce

large variances in the colony expansion rate. This is because the effective diffusion coefficient

of the cells is very sensitive to the total CheZ level (Fig 4C). The experiments in [12] measured

the correlation between CheZmRNA level and the pattern formation. We note that the magni-

tudes of changes in CheZ protein and CheZmRNA can be different in these experiments.

Effect of CheR CheB mutation. In [12], a secondary mutation was introduced to the

engineered cell line by knocking out the CheR and CheB genes. The purpose was to investigate

whether canonical chemotaxis induced by external ligands is a critical factor in the stripe pat-

tern formation. Cells can still swim and tumble, but cannot adapt to chemotactic signals

because the methylation level of the receptors are not modified. Experiments showed that

these mutants can still form sequential stripe patterns, but there was little discussion on how

the pattern differs from those formed by non-mutants (Fig S2(J) in [12]). The conclusion was

that canonical chemotaxis is not necessary for the spatial pattern formation.

We investigated this aspect numerically using the PDE model (Fig 9). Knocking out CheR,

CheB indicates that R, Bt and Bp are all zeros in (2)–(6). Thus according to our model, m
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remains a constant which depends on the initial methylation level of the cells. Due to muta-

tion, the cell turning rates and the effective cell diffusion coefficients are modified (A, B, C).

The effective cell diffusion coefficient is very sensitive to the methylation level m (C). This is

because the dependence of Yp on the methylation level m has a sharp transition, similar to Fig

3A. Simulations of the corresponding PDE model showed that the colony expansion rate and

the interior spatial pattern are both very sensitive to the initial methylation level of the cells:

Fig 7. Concentric stripe patterns in 2D predicted by the PDE model. (A) spatial density plots at t = 2.5h, t = 6.5h, t = 8.5h, t = 10.5h and t = 12.5h. (B)

Dynamics of the cell density in the radial direction predicted by the PDE model. (C) Dynamics of the cell density in the radial direction measured in

experiments. (C) Reproduced from Fig. S3 in SOM of Liu et al, Science, Vol 334, 238–241, 2011 [12]. Parameters used here are either directly taken

from Tables 1–3 or calculated using the conversion formulas.

https://doi.org/10.1371/journal.pcbi.1006178.g007

Fig 8. CheZ inhibitor disrupts the stripe pattern formation. The effect of CheZ inhibitor aTc is modeled by a reduction of total CheZ protein level

Zw. (A)–(C): cell density predicted by the PDE model at t = 20h with Zw = 0.81μM, Zw = 1.17μM and Zw = 1.23μM (no inhibitor), respectively. Other

parameters are the same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006178.g008
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small changes in m can lead to big differences in the population dynamics (D, E). In experi-

ments, the methylation level of each bacterium also fluctuates due to internal noise. These con-

siderations suggest that it is not justified to use this cell line to draw conclusions on whether

canonical chemotaxis is involved in the pattern formation process.

How does the stripe formation depend on cell-level parameters

We use three important features to characterize the spatial-temporal pattern: the colony front

propagation speed, the wavelength of the spatial stripes and the internal structure within a spa-

tial period. We investigated how these features depend on intracellular dynamics, cell move-

ment and cell growth.

We calculated the front speed as the average speed between t = 10 hr and 20 hr and the

wavelength as the average distance between the maximum densities of two successive high

density stripes (Fig 10A). To characterize the internal structure of the stripes, we defined the

height ratio and the density ratio of the stripes (Fig 9B and 9C). The height ratio is the mini-

mum density (h2) divided by the maximum density (h1) within a stripe. The density ratio is the

volume of the shaded region over the region defined by the rectangle ABCD, factoring in the

radially symmetric profile of the solution, i.e.,
R C
B xrðx; tÞ=h1dx. The height ratio measures the

Fig 9. The effect of CheR−1 CheB−1 double mutation. (A) Dependence of cell turning rates on Zt. (B) Mean time fraction that cell spends running as a

function of Zt, denoted as ~m. (C) Effective diffusion coefficients (Eq (18) for different Zt. The methylation levelm is kept constant for the mutant cells.

(D) and (E): cell density plots at t = 20h for mutant cells with m = 0.712 andm = 0.707 respectively. (F) cell density plot for the engineered cells without

secondary mutation as a comparison. Other parameters are the same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006178.g009
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fluctuations of the cell density in the spatial pattern; while the density ratio quantifies the area

fraction of the high-density regions when h2 is small.

Dependence on cell speed and cell doubling time. We investigated how the stripe pat-

tern depends on the individual cell speed (s0) and the cell doubling time (log2/r) by varying

the parameters s0 and r in (18) and (20). Simulations of the PDE model show that as the cell

speed increases, both the colony front speed and the pattern wavelength increase linearly (Fig

11A and 11B). If individual cells move faster near the colony front, the effective diffusion rate

of the population becomes larger and thus the colony spreads out faster. Indeed, our simula-

tion shows that the colony front speed is roughly proportional to the cell speed. As the cell

doubling time increases, the front speed decreases, but the pattern wavelength increases,

reflecting the slower growth of the total population size (Fig 11D and 11E). Our model predicts

a linear dependence of the front speed and the pattern wavelength as one varies the cell speed

(Fig 11B) or the cell doubling time (Fig 11E). The height ratio and the density ratio only

decrease slightly with the cell speed and doubling time (Fig 11C and 11F).

Dependence on the CheZ turnover rate. In our models, we associated the turnover rate

of CheZ protein with the cell growth rate kV, see Eq (1). We next investigated the effect of a

slower or faster CheZ turnover rate on the spatial patterning. To do that, we introduced a non-

dimensional parameter κ preceding the z-flux term in Eq (17), i.e.,

@tr
z ¼

1

x
@x DðzÞx@xr

z
� �

� k@z gðz; hðx; tÞÞr
zð Þ þ rrzn: ð23Þ

Mathematically speaking, κ parameterizes the convective speed in z, which corresponds to

the response speed of intracellular CheZ to the external signal AHL: κ = 1 represents the base-

line model, κ> 1 represents faster response, and κ< 1 represents slower response.

Fig 12A plots the cell density profiles at t = 20h with κ = 0.1, 0.6, 1, 3 and 10. For κ = 0.1,

CheZ concentration in cells does not change much over the whole computational time, and as

a result cells remain highly mobile and form no stripes. As κ increases, the spatial stripes

appear and become increasingly more prominent. Interestingly, both the colony front speed

and the wavelength of the spatial pattern do not change much given different κ (Fig 12B). In

contrast, the height ratio decreases to 0 as κ increases, due to the increase of the maximum cell

density in each stripe and the decrease of the minimum cell density (Fig 12C); while the den-

sity ratio shows a biphasic dependence on κ: it first decreases significantly as the height ratio

decreases and then increases as the height ratio becomes close to 0 and κ increases further. The

Fig 10. Schematic illustration of the front speed, wavelength, height ratio and density ratio.

https://doi.org/10.1371/journal.pcbi.1006178.g010
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rebound of the density ratio is primarily due to the widening of the high-density region in a

stripe. Finally, we note that when κ is small, the peak in each stripe has a more or less symmet-

ric shape (Fig 12D, blue); while as κ becomes large, the peak shows a higher density at locations

with smaller radii (Fig 12D, red).

Discussion

Synthetic biology has been used to design relatively simple systems to help understand how

regularly-spaced structures form in nature. In [12], E. coli was engineered to couple chemo-

taxis and quorum sensing and these cells establish sequential stripe patterns when grown in

semi-solid agar. In this paper, we developed multiscale models to help explain how these popu-

lation patterns arise and predict their dependence on cell-level parameters.

We first developed a hybrid model that takes into account great details of intracellular sig-

naling and movement of each individual cell. This model provides a method to connect cell-

level dynamics and population-level behavior in a quantitative manner, but simulating it is

very time-consuming as the cell number becomes large. To overcome this challenge, we math-

ematically derived a PDE model from our hybrid model. All the parameters of the PDE model

can be calculated from measurable cell-level parameters used in the hybrid model. The PDE

model matches the hybrid model quantitatively and is much more efficient in terms of compu-

tation. Our benchmark comparisons showed that the computation of the PDE model was over

Fig 11. Dependence on individual cell speed and cell doubling time. (A), (D) Dependence of the front speed and the pattern wavelength on the cell

speed and doubling time. (B), (E) The linear dependence between the pattern wavelength and the front speed. The cell speed or doubling time increases

along the directions of the arrows. (C), (F) The height ratio and the density ratio as functions of the cell speed and doubling time. All other parameters

are the same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006178.g011
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100 times faster than that of the hybrid model. This justifies using the PDE model as a quanti-

tative and predictive tool to explore the relation between population patterning and individual

behavior.

Simulations of our models showed that the stripes arise sequentially due to suppression of

CheZ in cells near the front of the expanding colony. At first, the self-secreted AHL reaches

the threshold concentration for quorum sensing at these regions. This turns off the production

of CheZ proteins in cells locally. The gradual drop of total CheZ inside these cells causes them

to tumble excessively. As more and more cells move into these regions and get trapped, a high-

density stripe develops. In the meantime, the colony grows and expands outward, and after

some time, another high-density stripe establishes at a larger radius for the same reason. The

self-trapping is due to the density-dependent suppression of motility, which has been studied

before in [13, 25]. The model in [13] eliminates CheZ level by enslaving it to the AHL level,

while the model in [25] directly links motility to the cell density, however both models are

qualitative. The main contribution of our model is that it can not only reproduce the pattern,

but also predict how the patterns varies when the individual cell signaling or movement

changes. The spatial-temporal dynamics predicted by our simulations match experimental

data semi-quantitatively.

We also made a number of predictions on the relation between the population patterns and

cell level dynamics. Our simulations showed that the individual cell speed and the cell dou-

bling time primarily affect the colony front speed and the wavelength of the stripe pattern (Fig

11). As the cell speed increases, the front speed and the pattern wavelength increases linearly.

As the cell doubling time increases, the front speed decreases while the pattern wavelength

Fig 12. The cell density profile for different CheZ turnover rate κ. (A) Spatial density plots at t = 20h with κ = 0.1, 0.6, 1, 10, respectively. (B)

Dependence of the front speed and wavelength on κ. (C) Dependence of the height ratio and density ratio on κ. (D) Plots of ρ(ξ, 20) for κ = 0.6 and 10.

All other parameters are the same as in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006178.g012
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increases. Moreover, the turnover rate of CheZ protein does not alter the colony front speed

and pattern wavelength, but changes the spatial structure of each stripe characterized by the

height ratio and density ratio (Fig 12). These predictions can be tested by further experiments.

Our PDE model gives a detailed characterization of the anisotropic movement of the whole

cell population in response to AHL. Cells with different intracellular CheZ concentration z
have different mobility coefficient, given by D(z) (Eq (18)). As a cell moves around, its internal

state evolves with the extracellular environment. The change of z in each cell leads to the aver-

age mobility change of the whole population. We note that if z can be approximated by its

steady state, which equals Zw if h< h0 and 0 otherwise, then Eq (17) can be “formally” reduced

to the anisotropic diffusion model used in [12]

@tr ¼ rx � ðrxð
�DðhÞrÞÞ þ rnr: ð24Þ

where �D is a step function of h. Specifically, we have ρz(x, t, z) = ρ(x, t)Q(x, t, z) with

Qðx; t; zÞ ¼
dðz � ZwÞ hðx; tÞ < h0;

dðzÞ hðx; tÞ � h0:

(

Integrating (17) with respect to z, one obtains Eq (24) with

�DðhÞ ¼
Z

DðzÞQðx; t; zÞ dz ¼
DðZwÞ h < h0

Dð0Þ h � h0:

(

However, during the stripe formation, CheZ turnover correlates with cell growth, which is

much slower than single cell movement and intracellular signal adaptation. As a result, CheZ

has a broad distribution among all cells and so it is far from its steady state (Fig 5). This suggest

that it is important for models to take into account the internal state of cells individually rather

than averaging it out.

We note that in this paper we used a multiscale modeling approach: start with a detailed,

individual-based model for cell dynamics, then derive a PDE model and justify it using numer-

ical simulations, and finally use the PDE model to make predictions on relations of phenom-

ena at different scales. This multiscale approach allowed the macroscopic model to go beyond

qualitative and can be used as a predictive tool. This type of multiscale modeling approach has

also been used for classical bacterial chemotaxis [17, 21].
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