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Most of the studies in Ecology have been devoted to analyzing the effects the

environment has on individuals, populations, and communities, thus neglecting the

effects of biotic interactions on the system dynamics. In the present work we study the

structure of bacterial communities in the oligotrophic shallow water system of Churince,

Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are

homogeneous and quite stable in time, it is an excellent candidate to study how biotic

factors influence the structure of bacterial communities. In a previous study, the binary

antagonistic interactionsof78bacterialstrains, isolatedfromChurince,wereexperimentally

determined. We employ these data to develop a computer algorithm to simulate growth

experiments in a cellular grid representing the pond. Remarkably, in our model, the

dynamics of all the simulated bacterial populations is determined solely by antagonistic

interactions. Our results indicate that all bacterial strains (even those that are antagonized

bymany other bacteria) survive in the long term, and that the underlyingmechanism is the

formationofbacterial communitypatches.Patchescorresponding to lessantagonistic and

highly susceptible strains are consistently isolated from the highly-antagonistic bacterial

colonies by patches of neutral strains. These results concur with the observed features

of the bacterial community structure previously reported. Finally, we study how our

findings depend on factors like initial population size, differential population growth rates,

homogeneous population death rates, and enhanced bacterial diffusion.

Keywords: bacterial antagonism, ecological modeling, community emergence, spatial patterns, bacterial

biodiversity, cuatro cienegas

1. Introduction

Microbial ecosystems have proved to be excellent frameworks to understanding ecological systems
(Prosser et al., 2007). New ecological theories have arisen from microbial ecology due to its
simplicity, controllability, replicability and experimentally-required times (Jessup et al., 2004).
Remarkably, much of that progress has been achieved by means of simplified theoretical models
(Momeni et al., 2011). Most of these models account for the interaction of only a few microbial
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populations. This is an advantage, because simple models can be
more easily studied both numerically and analytically, but also
a limitation, because such models oversimplify biological reality.
Nowadays, thanks to the rapid increase of computer power, it is
possible to investigate the dynamics of larger sets of interacting
populations (Costello et al., 2012).

Organisms in an ecosystem are affected by abiotic and
biotic factors. Abiotic elements refer to non-living chemical and
physical factors in the environment, whereas biotic factors are
living or once-living organisms in the ecosystem. The influence
of abiotic factors on a community spatial-temporal dynamics has
been thoroughly studied (Dunson and Travis, 1991). Conversely,
biotic factors have been mostly disregarded. Nonetheless, recent
studies have evidenced that biotic interaction networks play
very important roles (Hooper et al., 2005), specially in terms of
biodiversity maintenance and energy flow (Raes and Bork, 2008;
Eisenhauer et al., 2012).

Diverse biotic interactions have been experimentally
described in nature, and some others have been hypothesized
from mathematical modeling results (Evans et al., 2013).
At microbial scales, an outstanding panoply of interaction
mechanisms has been observed (Prasad et al., 2011),
favoring competition over cooperation (Foster and Bell,
2012). Antagonistic interactions (also known as interference
competition) have been studied by Czárán et al. (2002), using
the simplified model: Killer (K), Resistant (R) and Sensitive
(S). This interaction loop implies an associated metabolic cost
(and a concomitant growth-rate reduction) for being either an
antibiotic producer (K) or a resistant strain (R). Thus, in terms
of proliferation, S outcompetes R and R outcompetes K. This
model, which is able to sustain bacterial populations, gave rise
to new studies aimed at figuring out how microorganisms use
and evolve bacteriocin and antagonistic molecules to sustain
biodiversity in structured ecosystems (Kerr, 2007).

The shallow water system of Churince, located in Cuatro
Cienegas, Mexico, sustains an impressive microorganism
biodiversity, mainly due to its geological history (Souza
et al., 2006). Even with scarce nutriments in the water,
microorganisms have proliferated and evolved to use any
available component around them, as has been seen in other
oligotrophic environments (Kuznetsov et al., 1979). It is well
known that some bacteria, such as Bacillus spp., are able to
synthesize antagonistic molecules (Abriouel et al., 2011). Cuatro
Cienegas’ bacteria are not an exception because, as previous
studies show, these organisms use a variety of bacteriocin
molecules to annihilate competing neighbors (Pérez-Gutiérrez
et al., 2013; Aguirre-von Wobeser et al., 2014). All of this,
together with the fact that the sediment of this natural setting
is static and homogeneous regarding its physicochemical
conditions, make it an excellent candidate to study how biotic
interactions affect the spatial-temporal arrangement of microbial
populations.

In a previous study (Pérez-Gutiérrez et al., 2013), we isolated
78 bacterial strains (most of them from the genus Bacillus)
from 5 different sampling sites across Churince pond, and tested
them for one-to-one antagonistic interactions. Among others, we
obtained the following results which are not self evident from

the point of view of the most commonly accepted ecological
theories:

• Bacterial strains are not homogeneously distributed across the
pond, in spite of the pond’s physical-chemical conditions being
homogeneous and pretty much stationary.

• Antagonistic interactions are more frequent across sampling
sites than within them.

In Pérez-Gutiérrez et al. (2013), we hypothesized that
microscopic microbial antagonistic interactions may be
responsible for shaping bacterial communities at themacroscopic
scale, and that this may suffice to explain the above-enlisted
observations. The present work is aimed at proving the feasibility
of such hypothesis from a mathematical modeling perspective.
To that end we decided to model the pond as a square grid, each
of whose cells represents a small area that can be colonized by at
most one bacterial strain. The dynamics of the grid cells are then
modeled as a set of rules derived from the antagonism matrix
experimentally determined in Pérez-Gutiérrez et al. (2013).
We decided to employ this modeling strategy because of its
adequacy given the available experimental data, and because it
has been employed to demonstrate how local interactions can
give rise to complicated global patterns, like those observed in
natural systems (Gardner, 1970; Hogeweg, 1988; Iwasa et al.,
1998; Sarkar, 2000; Wootton, 2001; Wolfram, 2002; Deutsch and
Dormann, 2005). To our knowledge, this is the first study in
which such a problem is tackled with an antagonistic network
involving a large number of interacting strains.

2. Materials and Methods

2.1. Bacterial Collection
In this work we make use of the interaction network of a set
of 78 bacterial strains isolated and studied by Pérez-Gutiérrez
et al. (2013). The strains in this set were isolated from 5 different
samples taken from the superficial sediment of Churince pond
in Cuatro Cienegas, Mexico. Since the isolating methodology
involved subjecting the samples to thermal shock, all of the
isolated strains came out to be thermo-resistant, and most of
them belong to the genus Bacillus. All 78 × 78 pairs of bacterial
strains were cultured in Petri dishes to test for antagonistic
interactions. The resulting antagonism matrix is reported in
Pérez-Gutiérrez et al. (2013) and reproduced in Figure 1. In
this figure, bacterial strains are organized in decreasing order
according to their Aggressiveness Index (number of other strains
antagonized by a given strain, minus number of other strains
antagonizing it). The ID numbers given in this work to all
strains, the labels employed by Pérez-Gutiérrez et al. (2013),
and the corresponding aggressiveness indexes are tabulated in
Table 1.

2.2. Computational Algorithm
In order to simulate the evolution of a bacterial community
interacting according to the antagonism matrix reported in
Pérez-Gutiérrez et al. (2013), we developed a computational
algorithm as follows:
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FIGURE 1 | Antagonism matrix for the bacterial strains considered in

this work. A black box indicates that the bacterial strain in the corresponding

column antagonizes that in the box row. Some strains do not appear in the

matrix columns because they antagonize no other bacterial strain. The

bacterial strains were labeled in decreasing order according to their

aggressiveness index AI (numbers of other strains antagonized by it, minus

number of strains antagonizing it). In Table 1, we give the original label and the

AI number of each strain.

1. A square grid of 200 × 200 cell represents the pond soil. Each
cell in the grid corresponds to a small surface that can be either
empty or colonized by at most one bacterial strain.

2. The grid is initialized by randomly distributing a fixed number
of individual colonies of each bacterial strain among the grid
cells.

3. After initializing the grid, the state of all the grid cells is
updated according to the following rules:

TABLE 1 | ID numbers, labels, and aggressiveness indexes of the

investigated bacterial strains.

ID Label AI ID Label AI ID Label AI

1 CH95a 38 27 CH38c 1 53 CH44 −9

2 CH21 37 28 CH452b 1 54 CH26a −10

3 CH90 35 29 CH159b 1 55 CH19a −10

4 CH150a 35 30 CH39a 0 56 CH149a −10

5 CH156 34 31 CH448a 0 57 CH155a −10

6 CH43 31 32 CH452a 0 58 CH28 −11

7 CH22 29 33 CH99B 0 59 CH135a −11

8 CH144a 28 34 CH88 0 60 CH98b −11

9 CH144b 28 35 CH112a 0 61 CH84 −11

10 CH145 28 36 CH29 −1 62 CH33 −11

11 CH109a 25 37 CH93 −1 63 CH447 −12

12 CH154a 13 38 CH26b −2 64 CH161d −13

13 CH37 9 39 CH160c −3 65 CH138 −13

14 CH113a 9 40 CH87b −3 66 CH158b −13

15 CH148 9 41 CH25 −4 67 CH145b −14

16 CH112b 7 42 CH140a −4 68 CH159a −14

17 CH448b 7 43 CH111 −4 69 CH449a2 −14

18 CH23 7 44 CH157b −5 70 CH20a −14

19 CH20b 6 45 CH45 −6 71 CH162 −15

20 CH450 5 46 CH36 −7 72 CH446 −16

21 CH30 5 47 CH449a1 −7 73 CH40 −16

22 CH41b 4 48 CH160a −8 74 CH445 −16

23 CH449b 3 49 CH451b −8 75 CH451a −17

24 CH24 2 50 CH91b −8 76 CH163b −17

25 CH19b 2 51 CH81a −8 77 CH153a −19

26 CH164b 1 52 CH142 −8 78 CH34 −26

In the present work, bacterial strains were ordered (assigning each of them an ID number)
in decreasing order according to their aggressiveness index AI (numbers of other strains
antagonized by it, minus number of strains antagonizing it). We also include the label given
to each strain in Pérez-Gutiérrez et al. (2013).

(a) Let i denote the current grid cell. Randomly chose one of its
8 neighboring cells and denote it by j.

(b) If both the i- and j-th grid cells are empty at the n-th time
step, the i-th cell remains empty at time n+ 1.

(c) If the i-th grid cell is empty and the j-th grid cell is occupied
by a given strain at time n, the i-th cell is colonized at time
n + 1 with probability Pg(µj) by the strain in the j-th cell,
µj. Function Pg(µj) is specified in the Results section for
different simulations.

(d) If the i-th grid cell is occupied at time n by strain µi, it
becomes empty at time n + 1 with probability Pd(µi). The
corresponding probability distribution is specified in the
Results section for different simulations. If this does not
happen, consider the following two possibilities:

• If both grid cells (i and j) are occupied at time n and the
strain in the j-th grid cell antagonizes the strain in the
i-th grid cell, then the i-th grid cell gets empty at time
n+ 1.

• If both grid cells (i and j) are occupied and no
antagonism exists, or if the i-th grid cell is occupied and
the j-th grid cell is empty, the i-th cell remains the same.
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4. Step 3 is iteratively repeated a fixed number of times.

2.3. Generation of Random and Experimental-like
Antagonism Matrices
In order to test how the system dynamics depends on
the architecture of the antagonism interaction-network, we
constructed alternative antagonism matrices (and employed
them to repeat the analysis of the system dynamics) following two
different strategies:

• Random antagonism matrices were constructed by randomly
generating N unidirectional antagonistic interactions between
the 78 isolated bacterial strains, with N the number of links in
the original matrix. We took care of avoiding self-antagonism.

• To construct what we call experimental-like antagonism
matrices, we first noted that, according to the original matrix,
bacterial strains can be classified as high-level, medium-
level and low-level antagonistic strains (a k-means algorithm,
MacQueen, 1967 was employed to carry out this classification).
Then, wemade use of aMarkov-ChainMonte Carlo algorithm
(Gilks, 2005) to randomly generate N links in such a way that
the resulting antagonismmatrix has the same number of high-
level, medium-level, and low-level antagonistic strains as the
original matrix.

3. Results

3.1. Emergency of Community Patches Provides
a Survival Mechanism to Low-Level Antagonistic
Bacteria
To investigate whether, as claimed by Pérez-Gutiérrez et al.
(2013), antagonistic interactions have a lead role in the spatial
distribution of bacterial communities, as well as in the diversity
differences found across sites, we took the antagonism matrix
reported therein, and used it to implement the algorithm
described in the Section 2. Recall that, in such algorithm, a
200 × 200 square grid represents the pond, and each cell in the
grid corresponds to a small surface in the pond soil that can either
be empty or colonized by at most one strain. Initially, the grid
was “inoculated” with 50 individual colonies of every bacterial
strain, randomly distributed across the grid (see Figure 2A). That
is, the grid was seeded with 78 × 50 = 3900 cells in total. The
system was then iteratively evolved in time for 500 round cycles
of the algorithm. In these initial simulations, we assumed for all
strains (µ) that the probability that the bacterial strain in a grid
cell colonizes a neighboring empty cell in an algorithm step is
1 (Pg(µ) = 1), and that the probability that an inhabited grid
cell is emptied because the corresponding colony dies is zero
(Pd(µ) = 0). To clarify the role of antagonism in the evolution
of the system, an aggressiveness index was defined as follows: the
aggressiveness index of a given bacterial strain, AI(µ), equals the
number of other strains antagonized by it, minus the number of
other strains that antagonize it.

In Figure 2 we present the results corresponding to a single
simulation. We carried out several simulations and obtained
equivalent results in all cases. Namely, an emergent spatial

FIGURE 2 | Emergence of community patches as a result of bacterial

growth. Color indicates strain Aggressiveness Index (AI). The less aggressive

bacteria are represented in light green and the most aggressive ones in

maroon; deep blue denotes an empty grid cell. The AI of the i-th bacterial

strain is computed as the number of other strains antagonized by it minus the

strain count that antagonize it. (A) Initial distribution of the 78 bacterial strains.

For each strain 50 initial individual colonies were distributed randomly. (B) Final

distribution after 500 iteration steps of the simulation algorithm. Total coverage

of the surface and emergence of bacterial patches isolating populations can

be observed. Beside both graphs we present close-ups of selected regions

across the grid, with the ID number of the strain inhabiting each grid cell

indicated within (see Table 1).

arrangement of bacterial communities in patches spans the
grid after a few iteration steps, and eventually a stationary
state in which the patches no longer change is reached
(see Figure 2B). We note that the formation of patches is
consistent with the fact that different strains were isolated
from different samples (Pérez-Gutiérrez et al., 2013), despite
the habitat homogeneity. Moreover, we can see in this
particular simulation, but this is a consistent observation,
that patches of vulnerable strains are always surrounded,
and shielded from the most aggressive strains, by patches of
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other strains that are both resistant to the aggressive ones
and non-antagonistic toward vulnerable bacteria. This result
suggests a mechanism for the survival of low-antagonistic and
vulnerable bacteria, but also offers a plausible explanation for
the observation that antagonistic interactions within a sampling
site are on average less frequent than interactions across sites
(Pérez-Gutiérrez et al., 2013).

To have a deeper understanding of the system dynamics we
measured patch sizes in the stationary state of 100 different
simulations. The results are summarized in Figure 3A. We can
appreciate there that a positive correlation exists between the
mean patch size and the aggressiveness index of a given strain.
That is, more aggressive bacteria tend to form larger patches,
whereas the patches of more vulnerable bacteria are consistently
smaller. We further measured the total population of every
strain at the end of 100 different simulations and computed the
corresponding averages. A scatter plot representing mean final
population size vs. aggressiveness index is shown in Figure 3B.
Observe that total final population is also positively correlated
with the aggressiveness index.

Finally, we followed the evolution in time of all the
strain populations and the results (averaged over 100 different
simulations) are shown in Figure 3C. Observe that, initially,
all the inoculated colonies grow steadily, but eventually, a
stratification of them according to their AI value becomes
apparent. As far as we understand, this happens because
reduction of the distance between colony borders increases
the frequency of conflicts. After about 200 simulation steps, a
stationary regime, in which the population size of all bacteria
strains remains constant, is reached.

3.2. Bacterial-Community Spatial Structure is
Disrupted Under Constant Perturbation and all
Vulnerable Strains are Driven to Extinction
Since the spatial arrangement of bacteria in stagnant community
patches appeared to be necessary for the preservation of
bacterial diversity, we carried out an alternative experiment
with constant shuffling (mixing) of the grid cells. In these
experiments, we carried out simulations as previously described
(see Figure 4A), but every 10 simulation steps the grid cells
were randomly shuffled (different inter-shuffling times were
also considered, but all of them led to equivalent results). We
observed that all susceptible bacterial strains (most of them with
low antagonistic levels) become extinct, and they are replaced by
larger populations of medium- and high-level antagonist strains
(see Figures 5B,C). Furthermore, the surviving bacteria do not
form patches. Instead, single-grid-cell colonies are randomly
distributed (in a well mixed fashion) across the grid (see
Figures 4B, 5A). Even though we shuffled the grid at regular
times, the first shuffling events have the most notorious effects:
they rapidly cause the extinction of the sensitive strains. After
this, the populations of surviving bacteria reach a stationary
value, independently of the changing spatial distribution (see
Figure 5C). A correlation between stationary populations and
AI values is still present for the surviving strains (see
Figure 5B).

FIGURE 3 | Positive long-term correlation between AI and bacterium

population. (A) Box plot summarizing the patch-size statistics of 100

simulations. Bacterial strains are shown in decreasing order according to their

AI value. Note that a positive correlation exists between aggressiveness index

and average patch size. (B) Correlation between stationary bacterial

(Continued)
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FIGURE 3 | Continued

populations, averaged over 100 simulations, and AI values. A constant was

added to the previously defined AI so that it attains positive values for all

strains. (C) Growth curves for all the bacterial strains tabulated in Table 1. The

AI value corresponding to each strain is indicated by means of the same color

code as in Figure 2. Notice that, initially, all strains populations increase

monotonically. However, once the grid becomes saturated, antagonistic

interactions make the population of low AI strains decrease.

FIGURE 4 | Disruption of the emergent community patches by regularly

shuffling of the grid. (A) Initial distribution of the 78 bacterial strains. For

each strain 50 initial individual colonies were distributed randomly. (B) Final

distribution after 500 iteration steps of the simulation algorithm. Every 10

iterations the grid was randomly shuffled. As in the simulations without

shuffling, the grid ends up being completely occupied. However, a structure

without patches emerges, and all susceptible bacterial strains are missing.

The above results indicate, to our consideration, that periodic
shuffling of the grid cells not only precludes patch formation
(by randomly relocating individual colonies of all strains) but
also ensures that all susceptible strain colonies eventually get in
contact with aggressive strains and are thus driven to extinction.

FIGURE 5 | Susceptible strains become extinct due to regular strain

shuffling. (A) Box plot summarizing the patch-size statistics of 100

simulations. Bacterial strains are shown in decreasing order according to their

AI value. Many strains become extinct and the patch size for all the

surviving-strain colonies is exactly 1. That is, no patches are formed

whatsoever. (B) Correlation between AI and stationary population levels.

Observe that all susceptible strains (most of them with low antagonism levels)

become extinct and that the surviving strains occupy the space left by those

that become extinct. (C) Growth curves for all bacterial strains in this Figure.

Notice that regular reshuffling of the grid does not affect bacterial population

levels once a stationary state has established.
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3.3. Influence of the Antagonism Matrix
Architecture on the System Dynamic Behavior
To answer the question of whether the results discussed
in previous subsections depend on the architecture of the
antagonistic-interaction network (which is determined by the
antagonism matrix), we generated random and experimental-
like interaction matrices (see Section 2). Experimental-like
interaction matrices have the same number of high-level,
medium-level, and low-level antagonistic strains, and the
distribution of exerted-antagonism and received-antagonism
links are very similar to those of the experimentally obtained
matrix. On the other hand, random antagonism matrices
were built by linking, via antagonism interactions, couples of
bacterial strains chosen at random (avoiding self-antagonism).
The number of antagonism links in the random and the
experimentally-obtained matrices are always the same.

When we repeated the simulations using experimental-like
interaction matrices, we were able to recover all the previously
described results, with and without shuffling. Nonetheless, the
simulations with random interaction matrices rendered quite
different results. Community patches can still be observed in
the non-shuffling simulations, but the final bacterial population
size is less disperse than in the simulations carried out
with the experimentally-obtained or the experimental-like
antagonism matrices. Furthermore, in the shuffling simulations,
most bacterial strains become extinct and no correlation is
observed between AI and the stationary population size (see
Supplementary Material).

In conclusion, the architecture of the interaction network
plays a very important role in the emergence of the community
patch structure. In particular, the characteristic that seems to
be essential is that bacterial strains can be classified in three
different classes: aggressive (highly antagonistic and resistant
to other strains), neutral (barely antagonistic and resistant
to aggressive strains), and vulnerable (non-antagonistic and
sensitive to aggressive strains).

3.4. Influence of Growth Rate and Initial
Population Size on the System Dynamics
So far, we have assumed in our simulations that all bacterial
strains grow at the same rate, whenever they have available
space. Recall that in our model the growth rate of strain µ is
determined by probability Pg(µ). Moreover, we considered equal
initial populations in all of our simulations. In order to have a
more complete picture of the studied biological phenomena, we
repeated our simulations by taking into consideration distinct
growth probabilities and initial populations.

Based on previously reported observations (Bohannan et al.,
2002; Kneitel and Chase, 2004; Cadotte, 2007), who have shown
that changes in the flow of metabolic energy and in the cellular
machinery need to be done by a bacterium in order to become
either highly antagonist or fast growing, we assumed that Pg(µ)
is inversely proportional toAI(µ) (the strains with the largest and
the smallest AI values have Pg = 1 and Pg = 0.5, respectively),
and repeated the previously described simulations. According to
our results, the new simulations differ from the previous ones
in that low-level and medium-level antagonistic strains have

now larger stationary populations, at the expense of high-level
antagonistic strains (see Supplementary Material).

To account for variable initial populations, we took the final
population distributions of the simulations described in Section
3.1, and used them to compute the initial strain populations
of a new grid, with the constraint that the most populous
strain initially occupies 1% of the grid cells. After running the
simulations, the only notorious difference we observed, with
respect to those corresponding to constant initial populations, is
that having larger initial population has a positive effect on the
corresponding stationary population. This happens regardless
of whether we consider constant or variable growth rates (see
Supplementary Material).

3.5. Non-Zero Death Rate may Increase the
Chance of Survival of Less Antagonistic Bacteria
Finally, we considered in our model a death rate related to
causes independent of bacterial antagonism. According to Servais
et al. (1985); Pace (1988), in aquatic environments there are
several events that generate the reduction of certain populations
of bacteria, due primarily to: biotic factors (viral infections,
starvation, senescence, and allelopathy) and abiotic factors
(environmental changes such as radiation, temperature changes
and toxic compounds). To take this into account we assumed
that, in every step of the algorithm, a grid cell inhabited by strain
µ has a probability Pd(µ) of being emptied, independently of
growth and antagonism events.

Initially, we considered a constant Pd(µ) = 0.01 for all strains.
With this assumption, we were able to recover all the results
described in previous sections, with the exception that the most
favored strains (those with the largest stationary populations)
are those with intermediate AI values. I.e., those strains that
neither antagonize many other bacteria nor are susceptible to
be antagonized by the most aggressive ones (see Supplementary
Material). When we repeated the simulations with Pd(µ) = 0.1,
we obtained similar results, except that the strains that had the
smallest stationary populations in the previous simulations were
driven to extinction (see Supplementary Material). Interestingly,
when a non-zero death rate is accounted for, the achieved
stationary state is not stagnant any longer. Community patches
are formed, but they do not remain the same once the stationary
population levels are achieved and the grid is full. On the
contrary, they slowly change their size and shape, and move
around the grid.

4. Discussion and Conclusions

The computational modeling framework employed in this work
has proved to be very useful to studying the spatial and temporal
behavior of diverse biological phenomena (Ermentrout and
Edelstein-Keshet, 1993; Alber et al., 2003; Rohde, 2005). Hence,
we decided to employ it to test the hypothesis that macroscopic
community patches can emerge as the result of microscopic
individual interaction in a homogeneous environment. Our
results not only confirm the feasibility of such hypothesis, but also
show that these patches allow bacteria tominimize conflicts while
preserving biodiversity.
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We tested the robustness of our results by considering
different initial-condition scenarios, as well as non-zero death
rates and distinct growth rates for different bacterial strains.
In all cases we obtained qualitatively equivalent results, thus
confirming that the achieved conclusions do not depend on these
factors.

On the other hand, it must be emphasized that the rules
underlying the implemented computational algorithm
are concomitant with low-motility bacteria growing in a
homogeneous surface, interacting through pairwise-local-
interactions. These restrictions are consistent with the
environmental conditions observed in Cuatro Cienegas
ponds (Johannesson et al., 2004), where oligotrophic constant
conditions have given rise to a great diversity of bacteria who
take advantage of any component in the media around them
(Escalante et al., 2008; Cerritos et al., 2011) and compete
with direct neighbors (Pérez-Gutiérrez et al., 2013; Aguirre-
von Wobeser et al., 2014). However, we wondered to what
extent having low-motility bacteria is a necessary condition
for biodiversity preservation. To test this, we repeated our
simulations but included periodical and random shuffling of the
grid cells. Since we invariably observed that all susceptible strains
become extinct, we conclude that having a slowly changing
environment is mandatory for sustaining biodiversity when
highly antagonistic, neutral, and highly susceptible strains share
the ecosystem.

Previous studies have shown the importance of biodiversity
in food-webs, being the web architecture the cause and effect
of biodiversity prevalence (Sole and Montoya, 2001; Dunne
et al., 2002; Ives and Carpenter, 2007; Allesina and Pascual,
2008), specially under perturbation scenarios (Girvan et al.,
2005; Pascual and Guichard, 2005; Dunne and Williams, 2009;
Baho et al., 2012). Counter-intuitively our results suggest that
antagonism interaction networks may have a similar effect.
Previous similar studies have been published (Silvertown et al.,
1992; Kerr et al., 2002; Kirkup and Riley, 2004; Károlyi et al., 2005;
Walshe, 2006), and some report a large repertoire of possible
dynamic behaviors (Silvertown et al., 1992; Károlyi et al., 2005).
However, to our knowledge, this is the first study in which a large
set of experimental antagonism data is considered.

We are conscious that the model here introduced does not
provide a detailed picture of the real-life system. Instead, it
can best be regarded as a very simple cartoon or toy model.
This is so because the model ignores dynamic aspects that play
important ecological roles. For instance, positive interactions are
well-documented in the case of biofilms, which tend to aggregate
various types of bacteria and promote positive interactions
among them (in this way, positive interactions can generate
micro-habitats which introduce a level of physicochemical
heterogeneity even in an otherwise rather stable and constant
habitat). In this respect, we build our model following Einstein’s
advice that every theory (model) should be as simple as
possible, but not simpler (i.e., not so simple that it does not
represent reality any longer). To our consideration, given the
amount of available experimental information, the present is
the simplest possible model one can come out with to tackle
the question of whether the antagonism matrix found by
Pérez-Gutiérrez et al. (2013) can explain a heterogeneous
bacterial community distribution in a homogeneous
habitat.
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