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Abstract

Objective: Retinal prostheses must be able to activate cells in a selective way in order to 

restore high-fidelity vision. However, inadvertent activation of far-away retinal ganglion cells 

(RGCs) through electrical stimulation of axon bundles can produce irregular and poorly controlled 

percepts, limiting artificial vision. In this work, we aim to provide an algorithmic solution to the 

problem of detecting axon bundle activation with a bi-directional epiretinal prostheses.

Methods: The algorithm utilizes electrical recordings to determine the stimulation current 

amplitudes above which axon bundle activation occurs. Bundle activation is defined as the axonal 

stimulation of RGCs with unknown soma and receptive field locations, typically beyond the 

electrode array. The method exploits spatiotemporal characteristics of electrically-evoked spikes to 

overcome the challenge of detecting small axonal spikes.

Results: The algorithm was validated using large-scale, single-electrode and short pulse, ex 
vivo stimulation and recording experiments in macaque retina, by comparing algorithmically 

and manually identified bundle activation thresholds. For 88% of the electrodes analyzed, the 

threshold identified by the algorithm was within ±10% of the manually identified threshold, with a 

correlation coefficient of 0.95.

Conclusion: This works presents a simple, accurate and efficient algorithm to detect axon 

bundle activation in epiretinal prostheses.

Significance: The algorithm could be used in a closed-loop manner by a future epiretinal 

prosthesis to reduce poorly controlled visual percepts associated with bundle activation. Activation 

of distant cells via axonal stimulation will likely occur in other types of retinal implants and 

cortical implants, and the method may therefore be broadly applicable.
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Epiretinal prosthesis; brain-machine interfaces; axon bundle activation

I. Introduction

Retinal prostheses are designed to restore partial vision in patients with photoreceptor 

degenerative diseases such as age-related macular degeneration and retinitis pigmentosa. 

These devices aim to overcome the loss of photoreceptors by electrically stimulating the 

downstream retinal circuitry through current injection via multi-electrode arrays (MEAs) 

[1], [2]. In an epiretinal prosthesis, the MEA is placed on the anterior surface of the retina in 

order to precisely stimulate retinal ganglion cells (RGCs), ideally with single-cell resolution, 

to emulate naturally-evoked visual perception [2]–[7]. However, a major challenge in 

achieving this goal is inadvertent electrical activation of the numerous RGC axons in the 

nerve fiber layer between the electrodes and RGCs. Activation of axons has been shown to 

produce irregular arc-shaped phosphenes in patients with epiretinal implants, distorting their 

artificial visual perception [8]–[10]. Hence, avoiding indiscriminate axon bundle stimulation 

[4] could drastically improve artificial vision.
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A bidirectional retinal prosthesis (i.e. one with both read and write capability) could 

substantially enhance the ability to detect and avoid undesired visual percepts. At present, 

retinal implants rely on patient feedback to determine the visual percepts elicited by 

electrical stimulation [8], [9], but this approach would be prohibitively time-consuming for 

a prosthesis based on large-scale MEAs [9]–[11]. To determine the artificial visual signal 

produced by electrical stimulation, an ideal epiretinal prosthesis would not only stimulate 

but also record the electrically-evoked and spontaneous spiking activity of each RGC over 

the MEA, identify its location and cell type, and thus estimate its expected contribution to 

visual perception [5], [12]–[15]. However, if the soma of a cell lies off the array, its location 

cannot be identified, and thus the spatial contribution to visual perception introduced by 

stimulating the cell is uncertain. Thus, the problem of axon bundle activation is defined as 

the activation of off-array cells, and the axon bundle threshold for each stimulating electrode 

is defined as the lowest current amplitude at which the activity in any off-array cell is 

observed (schematic shown in Figure 1, but also see Figure 2 in Ref. [4]). Although it is 

possible that unrecorded on-array cells also contribute to unaccounted visual percepts, this 

work assumes that the high-density MEA allows detection and identification of the majority 

of the on-array cells [13], [16]–[19].

The current state-of-the-art method for detecting axon bundle activation involves manually 

analyzing post-stimulation MEA recordings (see Section III), which can take days for 

a single recording with hundreds of electrodes. This is not a feasible approach in a 

prosthetic device that could require frequent recalibration to ensure reliable performance. 

Other methods proposed in the literature to detect axonal activation utilize either optical 

recordings such as Ca imaging, or examine isolated cultured neurons in vitro using 

patch-clamp techniques or MEAs [20]–[31]. However, these methods cannot be used 

in an in vivo implant. Though ex vivo MEA recordings can detect presence of axonal 

activation [32], reliable detection of axonal activity over the MEA reamins challenging. One 

closely related study used heuristics based on hand-crafted features for which computation 

grows superlinearly in the number of recorded electrodes [4]. Moreover, it does not 

necessarily discriminate on-array axonal activation from off-array activation, leading to 

certain stimulation levels being classified as above axon bundle threshold even though 

the elicited visual percepts can be determined (e.g. Figure 1, stimulation of orange but 

not red RGC). This may indicate fewer allowable stimulation levels without axon bundle 

activation, and thus may limit the utility of the implant. Alternative techniques to avoid 

axonal activation such as varying the pulse duration or frequency have also been proposed 

[31], [33], [34]. Even so, use of these techniques does not eliminate all off-array activation, 

and an algorithm to detect axon bundle threshold remains important.

Here, a simple and principled algorithm is presented to determine axon bundle thresholds. 

The algorithm was applied to detect bundle activation in ex vivo electrical stimulation and 

recording data from peripheral macaque retina, and the results suggest that the algorithm 

is accurate and efficient. These thresholds can be used to ensure that the retina is never 

electrically stimulated with currents that lead to off-array activation, a crucial step towards 

future high-resolution epiretinal implants.
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II. Algorithm

The algorithm takes as input the electrical activity recorded on the MEA resulting from 

repeated trials of single-electrode stimulation and determines the lowest stimulus current 

amplitude at which off-array evoked activity is observed. Assuming that the cellular, 

equipment processes and noise are independent of each other, and since voltages from 

different processes are added, hence the voltage waveform recorded on a MEA from 

epiretinal stimulation (y) can be expressed as the sum of four components: y = x + i 
+ s + n, where x is the component resulting from neural activity caused by electrical 

stimulation, i is the electrical voltage artifact resulting from injecting current, s is the 

component resulting from spontaneous (non-evoked) activity of RGCs, and n is the noise 

(such as other biological signals or thermal noise in the recording circuitry). Though x is 

the component that contains information relevant for determining bundle threshold, the other 

components of y complicate the problem: i can overshadow the recorded signal significantly 

and has properties that are idiosyncratic to the stimulation and recording hardware [5], 

[35], s represents spontaneous activity of a RGC that can be confused with activity evoked 

by stimulation, and n can significantly corrupt recorded axonal waveforms. The algorithm 

overcomes these hurdles by first distinguishing the electrodes recording electrically-evoked 

spikes from those recording non-evoked spikes or noise by using several characteristic 

features of extracellularly recorded spikes, followed by identification of bidirectional axonal 

spike propagation to determine the axon bundle threshold. Three key ideas behind the 

algorithm are summarized below (and see Figure 2).

Idea 1: Precise Spike Timing

Electrodes recording evoked axonal activity can be distinguished from those recording noise 

and non-evoked spontaneous activity by leveraging the low variability in the timing of 

electrically-evoked spikes across repeated trials (Figure 2A). Spike times are estimated by 

measuring the difference between the time of the stimulation and the time of the minimum 

response recorded on an electrode. RGC spikes evoked by electrical stimulation occur at 

a consistent sub-ms latency, with ~0.1 ms variability between repeats [5]–[7]. Thus, even 

if the amplitude of evoked axonal spikes is low, the low timing variability can aid in their 

detection.

Idea 2: Monotonic RGC Response With Stimulation Current

The procedure described in idea 1 can still lead to mis-identification of some electrodes 

recording spontaneous activity as recording electrically-evoked activity. To filter out these 

electrodes, a second observation is exploited: with increasing stimulus amplitude (in the 

range 0.1 − 4.1 μA), spikes are evoked in RGCs with increasing probability and temporal 

regularity [6]. Thus, if an electrode reliably records an evoked spike at a given amplitude, 

it will most likely also register that spike upon application of higher current amplitudes, 

and the spike time variance will not increase (Figure 2B). This allows for more accurate 

identification of the subset of electrodes recording evoked neuronal activity.
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Idea 3: Bidirectional Axonal Spike Propagation

Finally, the algorithm takes advantage of the fact that axon bundles in any given region of 

the peripheral retina run approximately in straight or gently curved lines to the optic nerve 

(since the axonal curvature is small in the peripheral retina compared to the MEA size), 

and that signals evoked in stimulated axon bundles travel bidirectionally (Figure 2C). Thus, 

the axon bundle threshold can be determined by identifying the smallest stimulus current 

amplitude at which the subset of electrodes recording evoked neuronal activity contains 

electrodes from at least two borders of the MEA.

A mathematical formulation of the algorithm is provided below. The recorded data consists 

of a spatio-temporal voltage waveform recorded from the retina using the MEA and is 

collected after repeated application of single-electrode stimulation, for a range of current 

amplitudes. Let es = stimulating electrode, er = recording electrode, a = stimulating 

amplitude, t = time (or sample number) after stimulation, r = repeat number, V es, a r, er, t

= recorded voltage waveform, and b(es) = bundle threshold for stimulating electrode es. The 

algorithm has a statistical threshold as the sole hyperparameter (thr). The algorithm, which 

can be applied independently on all stimulating electrodes, is presented as a pseudocode and 

each step is described in detail below.

procedure BUNDLEDETECTION(v es, a r, er, t , thr)

 ves, a r, er, t V es, a r, er, t − meanr V es, amin r, er, t ▷ Step 1: Subtract Electrical Artifact

 tes, a r, er arg mint ves, a r, er, t ▷ Step 2: Extract Spike Times

 er,  Signal  es, a arger varrtes, a r, er < thr ▷ Step 3: Extract Signal Electrodes

 er, Activated es, a = j ∩
k > = j

er,  Signal  es, k ▷ Step 4: Prune Signal Electrodes

 b es arg mina(#(Borders ∩ er, Activated es, a > = 2 ▷ Step 5: Determine Axon Bundle Threshold

return b(es)

1) Subtract Electrical Artifact:

The recorded signal includes an electrical artifact resulting from the charge supplied during 

stimulation. To reduce the effect of this artifact on axon bundle threshold detection, the 

mean recorded data at the lowest stimulation amplitude is subtracted from the recorded 

data at higher stimulation amplitudes. Even though larger stimulation currents evoke larger 

artifacts, the increase in amplitude of the artifact didn’t overshadow RGC spike amplitudes 

(for instance see Figure 3A,B). Thus scaling the estimated artifact according to stimulation 

amplitude did not influence the results. This is repeated for every pair of stimulating and 

recording electrodes. The voltage trace after artifact removal is referred to as v es, a r, er, t .
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2) Extract Spike Times:

Next, the spike times t es, a r, er  are estimated by measuring the difference between the 

time of the stimulation and the time of the minimum response recorded on an electrode 

(the minimum is used because spikes have negative peaks when recorded extracellularly [4], 

[5], [36]). Spike times are extracted on each recording electrode after stimulation at one 

electrode, for every current amplitude and trial. Only the voltage recorded between 0.3−2 ms 

after the stimulus is considered for spike time extraction, in order to a) avoid large initial 

recorded artifact and peak variation in artifact across amplitudes recorded at non-stimulated 

electrodes [37], and b) account for evoked spike latencies and axonal spike propagation [4], 

[6].

3) Extract Signal Electrodes:

When no electrically-evoked activity is recorded, the neural response is random in time with 

respect to the applied stimulus. Thus, the variance of t es, a r, er  is modeled as a χ(n − 1
2 )

distribution under the assumption that t es, a r, er  is uniformly distributed across all possible 

time samples. Here, n is the number of repeats and n = 25 in the present data. The recording 

electrodes carrying electrically-evoked activity are then extracted by a hypothesis test with a 

p-value of 0.05. This statistical threshold based on p-value of the hypothesis testing (thr) is 

the only hyperparameter in the algorithm.

4) Prune Signal Electrodes:

Some of the electrodes not recording evoked spikes may also be inadvertently included in 

the above step. Thus, a pruned set of electrodes at each stimulation amplitude a (for each 

es) is calculated by finding the common signal-carrying electrodes between this amplitude 

and all higher amplitudes, to enforce that the electrodes identified as carrying a bundle signal 

exhibit monotonicity of response with current amplitude (Figure 2B). For each stimulating 

electrode, pruning is an iterative process that starts at the highest stimulation amplitude and, 

after calculating the signal-carrying electrodes, works its way down to lower amplitudes.

5) Determine Axon Bundle Threshold:

Finally, for each stimulating electrode the current amplitude at which the set of pruned 

electrodes contains electrodes situated at more than one border of the rectangular MEA is 

identified as the axon bundle threshold.

III. Results

The algorithm was applied to detect bundle activation in ex vivo electrical stimulation and 

recording data from peripheral macaque retina. The results indicate that the algorithm is able 

to accurately and efficiently detect axon bundle activation while being robust to the selection 

of the sole hyperparameter (statistical threshold).
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A. Experimental Setup

Electrophysiology data were collected from retinas of terminally anesthetized rhesus 

macaque monkeys (male and female, ages 11–20 years), which were euthanized in the 

course of experiments in other laboratories.1 Segments of peripheral retina were isolated 

and mounted on an array of extracellular microelectrodes as described in previous studies 

[4]–[6], [37], [38]. A custom multi-electrode system was used for stimulation and recording 

spikes in RGCs [5], [13], [36]. The MEA consisted of 512 electrodes with 60 μm spacing 

between electrodes, within rows and between rows. Electrodes were 10 μm in diameter 

and electroplated with platinum. For recording, raw voltage signals were amplified, filtered 

(43–5000 Hz), multiplexed with custom circuitry, and sampled at 20 kHz per channel. 

For stimulation, charge-balanced triphasic current pulses with 50 μs phase widths and 

relative phase amplitudes of 2:−3:1, were delivered through one electrode at a time [6]. 

Custom circuitry included in the stimulation and recording system minimized electrical 

artifacts, permitting detection of low-latency (< 1 ms) RGC responses [6], [36]. All reported 

current amplitudes and polarities refer to the second phase of the pulse, with positive 

values indicating cathodic currents. In single-electrode scans, each electrode was stimulated 

repeatedly 25 times with this pulse at each of 40 current levels, progressively increasing by 

10% in amplitude over the range 0.1 − 4.1 μA.

Figure 3 illustrates the algorithm applied to the recorded retinal data.

B. Validation Against Manual Analysis

To demonstrate the effectiveness of the algorithm, automatically estimated axon bundle 

thresholds were compared to values estimated using manual analysis by experienced 

researchers observing movie clips of evoked electrical activity. These researchers were 

unaware of the algorithm thresholds during data analysis. A total of ~1500 stimulating 

electrodes from four different retinal preparations were analyzed. In the movie clips, the 

electrical artifact was reduced by subtracting the mean activity recorded at the lowest 

stimulation amplitude from the traces recorded with all higher stimulation amplitudes. The 

result was then averaged over multiple trials of stimulation at each amplitude. Recorded 

voltage amplitudes were clipped at 36 μV to help facilitate tracking of low amplitude 

axonal activity in the midst of high-amplitude somatic activity. This clipped spatio-temporal 

activity, meanr v es, a r, er, t , was viewed for each stimulation electrode and amplitude. 

Observers estimated the lowest stimulus amplitude required to evoke bidirectional electrical 

activity propagating all the way to the edges of the MEA. For some of the stimulating 

electrodes on or near the border of the MEA, only a few recording electrodes were able 

to capture evoked activity. This fact, combined with large residual stimulation artifacts in 

nearby recording electrodes, made manual determination of bidirectional activity difficult 

in these cases. Stimulating electrodes in these cases were not assigned a manual bundle 

threshold and were not used in algorithm validation.

1IACUC Protocol Number 28860 approved by Stanford University. Was approved for the experiments in the paper and was 
re-approved most recently on 2/18/20.
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The thresholds identified by the algorithm were similar to those identified by a trained 

human observer, with a correlation coefficient of 0.95 (Figure 4B). For ~88% of the 

electrodes analyzed, the threshold identified by the algorithm was within ±10% of the 

manually identified threshold (corresponding to ±1 amplitude step in the stimulation 

experiment). For 65% of electrodes, the match was exact (Figure 4A). To compute the 

probability of obtained thresholds as compared to chance, manual thresholds for the 

electrodes of each retina were randomly permuted and then pooled. In these permutations, 

only 24 ± 1% of the algorithm thresholds were within 10% of the manual thresholds, a 

substantially lower fraction than observed in the data. To quantify the reliability of the 

manually labeled data, the intrinsic variability between two human observers who were 

asked to perform the same task was examined. For stimulating electrodes at which both 

humans assigned a threshold, ~96% of the electrodes had a threshold within ±10% of each 

other, with a correlation of 0.98, similar to the values obtained by comparing the manual and 

algorithm thresholds.

C. Further Observations

1) The Algorithm Is Efficient and Performs Well With Limited 
Electrophysiological Data: Because collecting and analyzing a large amount of 

electrical stimulation data is difficult, it is advantageous to limit the number of stimulation 

repeats required for the algorithm to perform well. To determine the data requirements, 

comparison of automatically determined thresholds to manually determined thresholds was 

performed after running the algorithm on a random subset of the original 25 stimulation 

trials. Manually identified thresholds were obtained using all trials. The performance of the 

algorithm followed a saturating curve with accuracy increasing sharply from 1–3 repeats 

and leveling off with 20–25 repeats for all retinas (Figure 4C). On average, the algorithm 

identified the bundle threshold on ~84% electrodes within ±10% of the manually identified 

threshold with only 15 repeats and ~87% with only 20 repeats. However, for some retinas, 

having access to more stimulation repeats was advantageous (Figure 4C, red curve).

2) The Algorithm Performance Is Robust to the Sole Hyperparameter: To test 

whether the observed results also generalize to new retinas, variation in the performance 

of the algorithm was studied across different retinal preparations and values of the 

statistical threshold (p-value) used for hypothesis testing. The p-value is the only design 

hyperparameter in the algorithm (used for finding the subset of electrodes recording evoked 

activity; see Section II) and could lead to a suboptimal algorithm performance if not chosen 

appropriately. The average performance of the algorithm was within ±0.5% for a range 

of thresholds corresponding to the p-value range of 0.02–0.08 (Figure 4D). This robust 

behavior is likely due to the strong monotonic response requirement immediately after 

the hypothesis testing step (see Section II). Therefore, the threshold corresponding to the 

p-value of 0.05 was used for all retinas in the reported results, irrespective of its optimality 

for individual retinas.
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IV. Discussion

A. Degenerated Retinas

It has been shown that degenerated retinas have increased spontaneous activity compared to 

healthy retinas, that can sometimes be rhythmic (at a frequency of 10 Hz) [39, 40]. Even 

then, these non-evoked spikes will not be time-locked to the time of stimulation. Thus the 

algorithm will be able to distinguish them from evoked spikes by utilizing the low variability 

in the latency of evoked spikes.

B. Somatic Versus Axonal Thresholds

In order to avoid eliciting inadvertent visual phosphenes while stimulating RGCs, somatic 

activation thresholds need to be lower than axon bundle thresholds. Across 13 different 

macaque retinas, 103 out of 512 RGCs (belonging to four dominant RGC cell types) were 

activated below axonal thresholds. This suggests only a minority of the RGCs could be 

activated below axon bundle thresholds, and a stimulation scheme that doesn’t account for 

axon bundle thresholds can lead to a significant amount of irregular phosphenes, as also 

previously reported [8]-[10]. The presented algorithm can be used to rapidly determine 

axonal bundle thresholds in a calibration step, and use them during stimulation to avoid 

activation of axon bundles.

C. Generalization to Different Stimulation Patterns

The presented algorithm was tested under the stimulation conditions as described in Section 

III-A. Though the current algorithm was designed based on the population-level properties 

of the electrically-evoked spikes observed in this particular stimulation regime, nonetheless 

it is expected that some of the properties used in the algorithm will generalize to more 

stimulation patterns. Particularly, Idea 1 (time-locked responses of RGCs) and Idea 3 

(bidirectional propagation of axonal spikes) are fundamental properties of the electrical 

stimulation of axons. Thus, these properties are expected to remain true for all stimulation 

patterns. But Idea 2 (monotonic RGC response with current) may no longer be valid for 

novel stimulation patterns, such as multi-electrode stimulation. Though the validation and 

modification of the algorithm for novel stimulation patterns is left as future work, the 

specific components of the algorithm can be used as building blocks for a customized 

bundle detection algorithm for specific electrical stimuli. Finally, the algorithm also assumes 

that the electrical artifacts don’t obscure the recorded spikes. Long-stimulus patterns might 

obscure evoked RGC spikes and generalization to such patterns require careful segregation 

of confounded artifacts in the recorded spikes.

D. Application

The presented algorithm for bundle detection builds upon the vision of a high-fidelity, in 
vivo, bi-directional retinal implant having the ability to precisely stimulate RGCs [4]. It 

raises significant technical issues, including but not limited to enabling recording at single-

cell resolution. Although no neural interfaces with such capabilities have been developed 

yet, accessibility and understanding of retinal processing provides a unique opportunity. For 

such an implant, an axon bundle detection algorithm can be used to determine the axon 
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bundle thresholds during calibration, followed by ensuring that the retina is never stimulated 

above the determined thresholds to avoid axon bundle activation, and thus distorted artificial 

visual perception [11]. The applicability of the presented algorithm under in vivo setting, 

generalization of macaque animal model to humans, changes during retinal degeneration, 

and different regions of retina will remain under question till validated with experimental 

data (for more detailed discussion see [4], [6], [11]). Albeit, as discussed previously, there is 

a high likelihood that the components of the presented algorithm will still be useful for the 

development of future axon bundle detection algorithms.

V. Conclusion

This work presents an automated approach to detect activation of off-array cells via their 

axons, known as axon bundle activation, using stimulation and recording data from a MEA. 

The algorithm consists of simple computational motifs, and could be implemented easily 

on hardware for continuous monitoring of axon bundle thresholds in an in vivo implant. 

Implementation within power and thermal constraints is an important future research topic. 

The algorithm can be used in a closed-loop fashion by a future epiretinal prostheses to 

rapidly determine the axon bundle thresholds during calibration. Though the focus of this 

work was on epiretinal prosthesis, the need to detect activation of distant cells via their 

axons will exist in most high-resolution prosthetic systems, and the algorithm has the 

potential to generalize to such systems.
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Fig. 1. 
Axon bundle activation. The MEA (gray shaded region) and electrodes (black dots) partially 

cover the area of the retina containing retinal ganglion cells (RGCs) (large colored dots) 

with axons (curves) that course to the optic nerve. To activate a target RGC (green), current 

is typically passed through an electrode near it (pink dot). But this can lead to activating 

bypassing axons near the stimulating electrode (pink patch). If an axonal spike is evoked in 

a RGC with its soma on the array (orange), then its location and contribution to artificial 

vision can be determined. But if the soma of the activated RGC lies off the array (red), then 

the cell cannot be located and its contribution to vision is unknown.
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Fig. 2. 
Schematic of ideas exploited in the algorithm. A. Illustration of low-variance in electrically 

evoked spikes compared to spontaneous spikes. Different traces in a column correspond to 

recorded traces on an electrode after repeated application of the same electrical stimulus. B. 

Monotonic increase in response probability as a function of increasing current stimulation 

[6]. C. Bidirectional axonal spike versus unidirectional somatic spike.
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Fig. 3. 
Application of the algorithm to MEA stimulation and recording from the retina. Left to 

Right: Stimulation with decreasing current amplitude showing cases for several amplitudes: 

highest, amplitude eliciting axon bundle activation, amplitude eliciting somatic spike, and 

lowest. Top to Bottom: Example cases observed during execution of the algorithm. A. Raw 

data traces for a particular stimulating and recording electrode. Black trace shows the mean 

recorded voltage and colored traces show recorded voltage for individual repeats. Blue trace 

shows the estimated artifact. B. Data traces for the same stimulating and recording electrode 

after estimated artifact removal. C. Histogram over all recording electrodes of variance over 

repeats in the time of the spike, for the stimulating electrode chosen above. Dashed vertical 

line shows the variance threshold below which the recording electrode potentially contained 

electrically-evoked activity. D. Extracted signal-carrying electrodes shown as mapped onto 

the MEA. The stimulated electrode is shown as a black ring. The right two panels show clear 
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spurious signal electrodes - electrodes far from the stimulating electrode are not expected 

to carry electrically-evoked activity. E. Pruned set of signal electrodes and the detection 

of bundle threshold for the chosen stimulating electrode. The right two panels show the 

removal of distant spurious recording electrodes.
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Fig. 4. 
Validation against manual analysis. A. Histogram over stimulating electrodes of ratio 

between algorithm and manual axon bundle thresholds. ~88 of the electrodes analyzed 

exhibited an algorithmic axon bundle threshold within ±10% of the manually identified 

threshold, for four different retina preparations (~1500 stimulating electrodes). B. Scatter 

plot of algorithm thresholds and manually analyzed thresholds. Color represents the density 

of points with a particular set of thresholds (note that there are 40 discrete current 

stimulations in the data). The clustering of the data around the diagonal of equality suggests 

that the algorithm is not biased (correlation coefficient = 0.95). C. Dependence of the 

accuracy of the algorithm (compared to manually identified thresholds) on the number 

of repeats. Different colors correspond to four different retinal preparations. Data were 

randomly subsampled from the maximum available repeats (25), and the shaded region 

encompasses one standard deviation. The algorithm performance exhibits diminishing 

returns with increasing repeats, with apparently saturated performance at 25 repeats. D. 

Algorithm performance as a function of the statistical threshold (p-value). Performance 

remains consistent around the chosen p-value of 0.05.
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