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Motivation: In order to create controlled vocabularies for shared use in different

biomedical domains, a large number of biomedical ontologies such as Disease Ontology

(DO) and Human Phenotype Ontology (HPO), etc., are created in the bioinformatics

community. Quantitative measures of the associations among diseases could help

researchers gain a deep insight of human diseases, since similar diseases are usually

caused by similar molecular origins or have similar phenotypes, which is beneficial to

reveal the common attributes of diseases and improve the corresponding diagnoses

and treatment plans. Some previous are proposed to measure the disease similarity

using a particular biomedical ontology during the past few years, but for a newly

discovered disease or a disease with few related genetic information in Disease Ontology

(i.e., a disease with less disease-gene associations), these previous approaches

usually ignores the joint computation of disease similarity by integrating gene and

phenotype associations.

Results: In this paper we propose a novel method called GPSim to effectively deduce

the semantic similarity of diseases. In particular, GPSim calculates the similarity by jointly

utilizing gene, disease and phenotype associations extracted from multiple biomedical

ontologies and databases. We also explore the phenotypic factors such as the depth

of HPO terms and the number of phenotypic associations that affect the evaluation

performance. A final experimental evaluation is carried out to evaluate the performance

of GPSim and shows its advantages over previous approaches.

Keywords: disease similarity, phenotype association, genomic annotation, disease ontology, biomedical ontology

INTRODUCTION

The emergence of massive biomedical data offers a marvelous opportunity for the life science
research and modern disease diagnosis. The wealth of knowledge contained in biomedical big
data also brings great challenges, since many biologists chronically construct their biomedical
database applications by using their own terms to represent biomedical knowledge. In order to
create controlled vocabularies for the shared use of knowledge, a large number of biomedical
ontologies such as Disease Ontology [DO (Schriml et al., 2012; Kibbe et al., 2014)] and Human
Phenotype Ontology [HPO (Köhler et al., 2014)], etc., are created in the bioinformatics community.
Biomedical ontologies (Lee et al., 2008; Köhler et al., 2009; Meehan et al., 2013; Groza et al., 2015;
Patel et al., 2015; Denny et al., 2018; Lovering et al., 2018) reduce the complexity of life science’s
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concepts and make innovative contributions to advance the
understanding of human diseases with controllable terminology.
Currently, these ontologies have been used in a variety of
biomedical applications. For example, HPO-based analysis tools
have been used to assist in clinical diagnosis (Westbury et al.,
2015) and exon sequencing research (Peng et al., 2018), etc. In
addition, by using DO, researchers build the chain knowledge
base of etiology (Harrow et al., 2017; Kozaki et al., 2017) and
annotate human genes to improve the coverage of disease genes’
annotations (Osborne et al., 2009).

Exploring the associations (Landrum et al., 2014) among
diseases by using biomedical ontologies has attracted a significant
attention in biomedical domains (Zhao and Halang, 2006; Zhang
et al., 2008; Zeng et al., 2017). Quantitative measures of these
associations among diseases could help researchers gain a deep
insight of human diseases, since similar diseases are usually
caused by similar molecular origins or have similar phenotypes.
Deducing the semantic similarity of disease is beneficial to reveal
the common attributes (e.g., the classification of diseases, disease-
related genes, disease-related symptoms, etc.) of these diseases,
which could facilitate the understanding of underlying causes
and improve the disease diagnoses and treatment plans. For
example, the gene “SH2D3C” is one of the common genes of
“Amnesia” and “Alzheimer’s disease,” which reveals that they
may involve the same biological processes. The greater similarity
means that the more closely related these two concepts are,
and that the more common information they have (Liu and
Yan, 2016; Liu and Zhang, 2017; Liu et al., 2017). A good
quantitative method for computing the similarity among diseases
could directly help researchers obtain the information of diseases
having close relationships from massive biomedical data and do
the corresponding experiments for the further analysis, which

FIGURE 1 | Associated data integrations.

could significantly reduce the experimental cost and improve
the efficiency of discovering potential pathogenic mechanism
and drugs.

DO regulates the controlled vocabularies about diseases,
and integrates the diseases’ terms and medical data through
external links. It provides the accurate, non-duplicative terms
with high disease coverage and has been used to compute the
degree of correlation among diseases during last decade (i.e.,
the disease similarity) (Osborne et al., 2009). DO is usually
selected as the source of disease terms for the disease similarity
calculation. Several previous approaches, including those based
on information content (IC) (Resnik, 1995; Lin, 1998; Schlicker
et al., 2006; Wang et al., 2007; Bandyopadhyay and Mallick,
2014), ontology Directed Acyclic Graph (DAG) structure (Kim
et al., 1993; Zhang et al., 2010; Santos et al., 2012) and biological
function process (Mathur and Dinakarpandian, 2012; Cheng
et al., 2014; Jeong and Chen, 2015; Zou et al., 2016; Yang et al.,
2017; Ni et al., 2018), have been proposed with the aim tomeasure
the disease similarity by using DO. For the IC-based approaches,
Resnik (1995) use IC of the most informative common ancestor
(MICA) tomeasure the similarity of two diseases. To improve the
efficiency of the Resnik’s method, Lin (1998) propose the ratio of
the amount of IC of MICA and that of two DO terms and then
Schlicker et al. (2006) improve the Lin’s approach through the
Bernoulli probability distribution to reduce the impact of shallow
annotations (Li et al., 2010). However, IC-based approaches only
focus on the semantic information of two terms in different
layers of ontology DAG. They ignore the information from the
ontology DAG structure, and it is difficult to reveal the semantic
differences between two terms under the same MICA. DAG-
based approaches are susceptible to shallow annotations since the
shallow concepts are too generalized to have much information
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(Li et al., 2010). For the DAG-based approaches, Kim et al.
(1993) consider that the reciprocal of the shortest distance of
two disease in DAG to measure their similarity. Zhang et al.
(2010) take into account not only the shortest distance, but
also the depth of the least common ancestor. For the methods
based on biological functional processes, BOG (Mathur and
Dinakarpandian, 2012) calculates by the overlapping of related
gene sets as the disease similarity. PSB (Cheng et al., 2014) takes
account of the gene similarity additionally to improve BOG’s
performance. By adding associations obtained from external
databases, BOG and PSB perform better performance than
previous IC-based and DAG-based approaches. Nevertheless,
they ignore the joint computation of disease similarities by
integrating gene and phenotype associations, and have poor
performance when evaluating disease similarities for the disease
with less genetic information such as viral infectious disease
(Common Wart, DOID:11165) and vein disease (Esophageal
Varix, DOID:112) in DO.

To effectively evaluate the similarities of newly discovered
diseases or diseases with few genetic information in current
medical research (i.e., diseases with less disease-gene
associations), we propose a novel semantic similarity measure
method called GPSim in this paper. GPSim takes genes, diseases
and phenotypes into account, and calculates the similarities
by jointly utilizing their associations extracted from multiple
biomedical ontologies and databases. Besides, we explore the
phenotypic factors influencing the performance of GPSim. The
experimental results show that, in comparison with previous
similarity evaluation methods, our proposed approach has
the best performance in terms of ROC (receiver operating
characteristic curve) and AUC (area under curve).

METHODS

In this section, we introduce the details of our proposed method
GPSim. GPSim relies on the associations of disease-gene and

FIGURE 2 | Computing the similarity between two gene sets.

disease-phenotype. We firstly integrate the association data
extracted from HPO, DO, and other biomedical databases, and
then compute the corresponding disease similarity.

Disease-Genetic and Disease-Phenotypic
Relationship Integrations
Disease-phenotype and disease-gene-phenotype mapping
relations mainly come from the HPO mapping file (Download
from http://compbio.charite.de/jenkins/job/hpo.annotations.
monthly/lastStableBuild/artifact/annotation/ALL_SOURCES_
ALL_FREQUENCIES_diseases_to_genes_to_phenotypes.txt).
The disease information is extracted from the DO, which has
totally 11191 disease terms and 2,140 of them have disease-
gene and disease-phenotype mapping relations, and 808 have
disease-phenotype mapping relations. Additionally, we integrate
the proven disease-gene relationships in the SIDD (Cheng
et al., 2014) and the Dancer databases (Download from http://
wodaklab.org/dancer/ downloads). Through the completely
matching names and synonyms of DO terms, we identify the
DO terms and obtain the corresponding disease-gene mapping
from Dancer. In this scenario, the number of terms having
disease-gene and disease-phenotype mapping relations is 2505.

As shown in Figure 1, we extract the disease terms including
disease’s id, label, definition, synonyms, related databases,
parents, and children from DO (Peng et al., 2013). Then we
gain the disease-gene associations from Dancer, SIDD and HPO,
and their relationships among diseases and phenotypes from
HPO. The format of data from Dancer is “Disease’s name:
GeneID.” We identify the disease term in Dancer through totally
matching the disease’s name, obtaining the association such as
“DOID: GeneID.” The format of data obtained from SIDD and
HPO is “OMIMID/ORPHA ID/DOID: GeneID”, and we get the
association through matching their ID information. Similarly,
we transform the disease-phenotype associations into available
formats “DOID: HPOID” through the id of OMIM, Orphanet,
and DO. Finally the associated data of disease-gene and disease-
phenotype are loaded and integrated in the database (depicted
as DGP).

Computing the Similarity
The similarity evaluation of any two DO terms relies on disease-
gene and disease-phenotype associations. We firstly compute
the similarity of disease-related gene set and the similarity of
disease-related phenotype set, and then integrate them as follows:

simGPSim (d1, d2) = β × simGeneSet (G1,G2)

+ (1− β) ×simHPOSet (P1,P2) (1)

Here, simGPSim represents the disease similarity computed by
using GPSim. For two DO terms d1 and d2, G1, andG2 represent
the disease-related gene sets of d1 and d2, respectively. P1 and
P2 represent the disease-related phenotype sets of d1 and d2,
respectively. simGeneSet represents the similarity between G1
and G2. simHPOSet represents the similarity between P1 and P2.
β is the weight tuning the contribution of genes and phenotypes
to the similarities of diseases, and the value of β depends on the
quality of disease-gene and disease-phenotype associations (e.g.,
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the association number, the depth of terms in HPO) of diseases
in the tested dataset.

Computing the similarity of two gene sets relies on the
gene-gene similarity network. We extract the network from the
HumanNet (Lee et al., 2011). The HumanNet is a probabilistic
functional gene network. Each interaction in the HumanNet
is a log-likelihood score (LLS) which measures the probability
of a true functional linkage between two genes. The functional
similarity of two genes by normalizing the HumanNet (denoted
as LLSN) are computed as follows (Cheng et al., 2014):

LLSN (t1,t2) =
LLS (t1,t2)−LLSmin

LLSmax−LLSmin
(2)

simgene

(

g1,g2
)

=







1, g1= g2

LLSN
(

g1,g2
)

, g1 6= g2and e(g1,g2) ∈ HumanNet

0, g1 6= g2and e(g1,g2) /∈ HumanNet

(3)

Here, LLSmin and LLSmax represent the minimum and maximum
in the HumanNet, respectively. simgene represents the similarity

of two genes g1 and g2. If there is no linkage of two
genes in HumanNet, then their similarity is 0. Thus, the
similarity measurement of two gene sets is defined as follows
(Cheng et al., 2014):

simGeneSet (G1,G2)

=

∑

gi∈G1 simmax

(

gi,G2
)

+
∑

gi
,
∈G2 simmax

(

gi
,
,G1

)

n+m
(4)

simmax (k,G) = max{kiǫG−sim (k,ki)} (5)

Here gi represents a gene in the gene set G1 and gi’ represents
a gene in the gene set G2. k represents a gene in a gene set. G
represents a gene set and ki represents any gene in G. We define
the similarity between a gene k and a gene set G as the maximum
of the similarity of k and ki in G. As shown in Figure 2 and
formula (4), we compute the similarity of every gene gj (j =

1, 2,. . . ,m) in gene set G1 and that of every gene gj’ (j = 1, 2,. . . ,n)
and gene set G2 respectively, and then calculate the average value

FIGURE 3 | The similarity calculation by using GPSim.
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of all similarities representing the similarities of two gene sets
G1 and G2.

Computing the similarity of two disease-related phenotype
sets relies on the association of diseases and phenotypes. We
could measure the similarity of two phenotype sets by their
overlaps, the similarity between two phenotype sets could be
defined as follows:

simHPOSet (P1,P2) =
2× |P1 ∩ P2|

|P1| + |P2|
(6)

The total process of the disease similarity computation is shown
in Figure 3. For instant, to calculate the similarity of two disease
terms, “Alzheimer’s disease” (DOID:10652) and “schizophrenia”
(DOID:5419). We firstly get the disease-related gene sets and
disease-related phenotype sets of two diseases respectively, from
the integrated DGP database in Disease-Genetic and Disease-
Phenotypic Relationship Integrations. By using formula (4) and
(5), the similarity of two gene sets is calculated as 0.4784.
The similarity result of two phenotype sets by using formula

(6) is 0.1111. Finally, we integrate the similarity of gene sets
and phenotype sets by using formula (1), in this scenario the
corresponding similarity value is 0.4417.

Let N be the total number of diseases in DO, and K and L be
the sizes of disease-related gene and disease-related phenotype
sets, respectively. There are N2 pairs of diseases and it costs
O(N2) to compute all the similarities. For each disease pair,
we need to compute both the similarities based on disease-
related gene and disease-related phenotype sets. Calculating two
diseases’ similarity based on disease-related gene sets costs O(K2)
to obtain the corresponding similarity. The intersection between
two disease-related phenotype sets takesO(L). As a result, it takes
O(N2 ∗(K2 +L)) to compute the similarity of all disease pairs.

RESULTS

In our experiments, we explore the phenotypic factors including
the depth of HPO terms and the number of disease-
phenotype associations when each disease has few disease-gene

FIGURE 4 | The ROC and AUC using different phenotypic factors. (A) ROC of different beta. (B) ROC of different HPO’s depth. (C) ROC of different HPO’s quantity.
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associations and compare GPSimwith previous disease similarity
measurement methods, including Resnik (Resnik, 1995), Zhang
(Zhang et al., 2010), BOG (Mathur and Dinakarpandian, 2012)
and SemFunSim(Cheng et al., 2014).

All the experiments are performed on 2.50 GHz Intel Core i7
CPU with 8.00 GB RAM running on Windows 10 64-bit system.
We implemented all the approaches in Java with JDK 1.8.0 and
Python 3.0.

To provide a fair comparison with previous approaches,
we select the disease pairs with disease-gene and disease-
phenotype associations from the SIDD benchmark and carry
out the experiments by using the tested method used in
previous approach (Cheng et al., 2014). In particular, we
take the disease pairs in the benchmark set as the positive
examples, and randomly generate 500 disease pairs as the
negative examples, combining the positive examples and the
negative examples as a tested set. To reduce test error we
generate 100 tested sets to compare the performance of
different methods and get the average value of 100 test
results. For each tested set, we calculate the similarity of each
disease pair by using the Resnik’s method, Zhang’s, BOG,
SemFunSim and GPSim, and the performance comparisons
are performed by using a receiver operating characteristic
curve (ROC). ROC curve is a curve drawn with true
positive rate (TPR) as Y axis and false positive rate (FPR)
as X axis according to a series of different dichotomies
(boundary values or decision thresholds). Generally, the closer
to the upper left corner the ROC is, the more accurate the
corresponding method is. For showing the performance of
different methods more directly, the area under curve (AUC)
of the ROC was also given. The greater AUC is, the better the
performance is.

In the first sets of experiments, for diseases having less
genetic associations (e.g., <9) in DO, we firstly calculate
the similarities by using GPSim with different values of the
beta (see formula 1 in Computing the Similarity). From the
results observed from Figure 4A, we see that beta value of

FIGURE 5 | Performance comparisons based on the dataset with few genetic

information.

0.9 is an optimum threshold in the tested dataset, which also
reveals that jointly using disease-gene and disease-phenotype
associations could improve the effect of disease similarity
measurements. In this scenario, we also investigate the impact
of the phenotypic factors such as the depth of HPO terms and
the number of the disease-phenotype associations. To test the
impact of similarity evaluation using different depth of HPO
terms, we vary the HPO terms’ depth from 3, 5, 7, 9, and
11. As shown in the Figure 4B, we see that, when the HPO
terms’ depth is >5, after obtained the corresponding disease-
phenotype associations (depth ≥5), GPSim obtains the best
the performance (the AUC is 81.51%), which illustrates that
the performance of calculating disease similarity is declined
by using the shallow HPO disease-phenotype associations.
Figure 4C shows the experimental results using different number
of disease-phenotype associations in the deep layer of the HPO
(e.g., depth ≥5). From the figure, we see that, the more the
number of disease-phenotype associations, the better the effect
of GPSim.

In the second sets of experiments, we firstly compare the
performance of Resnik, Zhang, BOG, SemFunSim and GPSim in
terms of ROC and the AUC, for the scenarios of diseases with
few disease-gene associations (e.g., <9). As shown in Figure 5,
GPSim also presents the best performance. Figure 6 shows the
performance for the scenarios of diseases with multiple disease-
gene associations, and the consistent results are obtained and
GPSim has the best performance. In particular, we see that
the AUCs of GPSim, SemFunSim, BOG, Zhang and Resnik are
99.05, 97.69, 80.99, 67.80, and 59.05% respectively. Note that,
since the negative samples are randomly generated, the average
values of AUC of these methods may have a 2% float, and their
corresponding floating directions are consistent. This is because
(i) the similarity evaluation of Resnik’s and Zhang’s methods are
centered on Disease Ontology only, and additional information
such as associations among genes and diseases are not taken
into account, (ii) BOG and SemFunSim improve the similarity
measurement method by adding associations among genes and

FIGURE 6 | Performance comparisons based on all associations.
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diseases to alleviate information insufficiency, (iii) GPSim further
integrate gene, disease and phenotype associations extracted
frommultiple biomedical ontologies and databases, and it jointly
utilizes these associations to effectively deduce the semantic
similarity. Therefore, GPSim is more suitable for the similarity
evaluation, which is what we have expected.

CONCLUSION

The vast amount of biomedical data has brought huge benefits
to disease diagnosis and life science research, but it has also
brought challenges to the understanding and searching of
biological information in different disease terms. Thus, a large
number of biomedical ontologies with controlled vocabularies
are created for the biomedical knowledge share. Currently,
quantitative measures of the associations among diseases by
using biomedical ontologies have become the research hotspot.
In this paper, we focus on the joint computation of disease
similarities by integrating gene and phenotype associations. In
particular, we propose an effective method to measure the
similarity of diseases in Disease Ontology with disease-related
gene and phenotype associations extracted from HPO and
other biomedical databases, which calculates the similarities by
jointly utilizing their associations. The final experiments show
that, our proposed method has the best performance in terms
of ROC and AUC, compared with previous methods. In the
future, we plan to apply GPSim to the disease annotation
applications for providing researchers with a more powerful
annotation tool based on biomedical ontologies. Additionally,
we would like to involve more information, such as gene
sequence, expression information, to improve our disease
similarity model.
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