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Abstract: This paper considers a multivariate time series model for stock prices in the stock market.
A multivariate heterogeneous autoregressive (HAR) model is adopted with exponentially decaying
coefficients. This model is not only suitable for multivariate data with strong cross-correlation and
long memory, but also represents a common structure of the joint data in terms of decay rates. Tests are
proposed to identify the existence of the decay rates in the multivariate HAR model. The null limiting
distributions are established as the standard Brownian bridge and are proven by means of a modified
martingale central limit theorem. Simulation studies are conducted to assess the performance of
tests and estimates. Empirical analysis with joint datasets of U.S. stock prices illustrates that the
proposed model outperforms the conventional HAR models via OLSE and LASSO with respect to
residual errors.

Keywords: multivariate HAR model; CUSUM test; exponentially decaying coefficients; stock price

1. Introduction

Financial market data are often correlated with each other and need to be analyzed
together. If two or more financial data belong to the same category or reveal a similar
pattern with strong correlation, the bivariate or multivariate datasets should be modeled si-
multaneously by an appropriate multivariate time series model to obtain good performance.
Multivariate financial data with characteristics such as strong correlation and long memory
have attracted much attention from econometricians and statisticians. Among various
time series models, one of the most popular and powerful models capturing such financial
features is the heterogenous autoregressive realized-volatility (HAR-RV) model [1]. Based
on the HAR model, this paper considers a multivariate model to analyze joint time series
data with strong cross-correlation.

The HAR-RV model has been originally proposed and widely used to explore the pre-
dictability of realized volatility [2–5]. In particular, Anderson et al. [2] used the HAR models
for volatility prediction of stock prices, foreign exchange rates, and bond prices. Corsi
et al. [3] discussed the volatility of the realized volatility based on HAR models with non-
Gaussianity and volatility clustering. McAleer and Medeiros [4] proposed an extension of
the HAR model with a multiple-regime smooth transition which contains long memory and
nonlinearity, and incorporates sign and size asymmetries. Hillebrand and Medeiros [5] con-
sidered log–linear and neural network HAR models of realized volatility. Tang and Chi [6]
found that the HAR model showed better predictive ability than the ARFIMA-RV model.
Clements et al. [7], Bollerslev et al. [8], Bianco et al. [9], and Asai et al. [10] investigated
successful uses of the HAR models for risk management with VaR measures, risk-return
tradeoff, serial correlation, implied volatility, and realized volatility errors. Luo et al. [11]
incorporated jumps, leverage effects, and speculation effects into the realized volatility
modeling and showed that the portfolio using infinite hidden Markov regime-switching
HAR model achieves higher portfolio returns than benchmark HAR model. Meanwhile, as
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an application of the HAR-RV model to various financial data such as oil, gold, and bitcoin
realized volatility [12–15], we considered extensions of the model incorporating with an
associated-uncertainty index to obtain high forecasting gains.

Along with the success of univariate HAR models as above, a multivariate HAR model
has been adopted for financial analysis due to its usefulness with multivariate data. Many
researchers discussed the superiority of the multivariate HAR model. Busch et al. [16]
used a vector HAR model to control possible endogeneity issues. Taylor [17] demonstrated
that the multivariate HAR-RV model improved forecast accuracy of the realized volatil-
ity in the international stock market. The claim in [17] was also verified by Hwang and
Hong [18], who dealt with the multivariate HAR-RV model with heteroskedastic errors.
Cech and Barunik [19] showed the generalized HAR model offers better predictability than
univariate models in commodity markets. Tang et al. [20,21] showed that the multivari-
ate HAR-RV model is more accurate in out-of-sample forecasting and outperforms the
univariate models.

In addition, the multivariate HAR model represents strong correlations between the
multiple assets data and examines cross-market spillover effects. For instance, Bubak et al. [22]
used a multivariate extension of the HAR model to analyze volatility transmission between cur-
rencies and foreign exchange rates, whereas Bauer and Vorkink [23] adopted a multivariate
setting of the HAR model and showed how to ensure positive covariance matrix without
parameter restrictions. Soucek and Todorova [24] found instantaneous correlation between
equity and energy futures by proposing a vector HAR model. Cubadda et al. [25] studied a
vector HAR index model for detecting the presence of commonalities in a set of realized
volatility measures, whereas Bollerslev et al. [26] proposed a model for a scalar version of
vectorized HAR model for the variances and correlations separately. Luo and Ji [27] com-
bined the HAR model with other models to identify time-varying volatility connectedness.
Luo and Chen [28] employed matrix log transformation method to ensure the positive defi-
niteness of covariance matrices and developed a Bayesian random compressed multivariate
HAR model to forecast the realized covariance matrices of stock returns. Wilms et al. [29]
showed that cross-market spillover effects embedded in the multivariate HAR models have
long-term forecasting power.

Even though the HAR model is widely used for volatility forecasting based on the
realized volatility of intraday prices, it is not restricted to the realized volatility but can
be applied to various time series data such as the stock price itself or other economics
index, because the HAR model is theoretically a linear AR model. Stock market forecasting
techniques were surveyed in [30–32], including stock returns, stock prices, and volatility
via conventional time series methods and soft computing methods. Stock price modelings
are mostly based on efficient market hypothesis (EMH), random walk theory and machine
learning techniques as in [33–36]. According to the EMH, the only relevant information
on the stock is its current values. A promising application of the HAR model could be the
stock price movement. A reason why the HAR model is expected to perform well on the
stock price modeling is that the current value itself and the current averages make its future
value in the model.

In this work, we propose a multivariate time series model for strongly correlated
data and study its statistical inference of hypothesis test and estimation, with empirical
analysis on joint data of financial assets. More specifically, we focus on the multivariate
HAR model with exponentially decaying coefficients for the application to stock prices in
the stock market. Because two or more financial data exhibit a similar pattern with strong
correlation, a multivariate model should be adopted for the multiple assets, instead of
univariate models for each asset. However, when the multivariate HAR model is employed
to analyze the multiple data, there are many parameters to be estimated. For example,
even with two assets, a bivariate HAR(3) model has 14 parameters including two intercept
terms. For better performance, we need to make some efforts to reduce errors along with
fewer parameters in the model. As a trial for this, we consider the exponentially weighted
multivariate HAR model that has exponentially decaying coefficients. If decay rates can be
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imposed in the multivariate HAR model, the number of parameters substantially decreases
and the proposed model might outperform the existing models, reducing the errors as
well. This is one of the motivations for this work in the spirit of a principle of parsimony.
Moreover, the decay rates not only serve as the long-memory effect as seen in [37], but also
represent the commonality of the joint data, as we expect a common structure in multiple
assets with strong correlation.

In order to employ the proposed model for joint time series data, the data need to
be tested before fitting the model. To this end, we deal with a test problem based on the
CUSUM test to identify the presence of decay coefficients in the multivariate HAR model of
the fitted data. In general, the CUSUM test is a change-point test and would be reasonable
if parameter changes are expected within the time series. For example, Refs. [38,39] dealt
with CUSUM(SQ) tests for mean and variance change-detection in univariate HAR(∞)
models and [40] proposed a CUSUM test for parameter change in dynamic panel models.
However, the idea of the CUSUM tests can be applied to detect other dynamic structures.
In this work, we suggest the use of such an idea to detect coefficient structure by generating
pseudo-time series of residuals in two versions. In other words, by applying the idea of
the tests to the difference series of two types of residuals, but not to the original data, the
coefficient structure can be identified. That is, the CUSUM(SQ) tests of mean and variance
change-detection in [38,39] are used for the pseudo-time series generated by two residuals.
The key point is that under the null hypothesis, the mean or variance of the difference
series are not changed over time, whereas under the alternative hypothesis there exist
change-points in mean or variance of the difference series of two residuals. This idea is
a novel attempt in that the CUSUM tests are used for other test problems in time series
analysis, not limited to the conventional change-point detection of the raw data.

This work proposes two CUSUM-based tests to detect whether the underlying model
has exponentially decaying coefficients. The first test is conducted to test whether the model
has an exponential decay rate for each asset, and the second tests whether the exponentially
weighted multivariate HAR model has a common decay rate for all the multiple assets.
The null limiting distributions are developed as the standard Brownian bridge, and the
theoretical results are proven by means of a modified version of a martingale central limit
theorem. Additionally, easy-to-implement estimators of the decay rates are discussed.

A Monte Carlo experiment is carried out to see the sample paths of our model and
to validate the proposed statistical methods. The sample paths depict the long-memory
feature as well as strong cross-correlation of the simulated data. Furthermore, various
related series such as difference series and test statistics are depicted to justify our proposed
tests under the null and alternative hypotheses. The simulation study not only strongly
supports the proposed CUSUM tests with reasonable performances of size and power, but
also shows consistency in estimates of decay rates. To compare with the conventional HAR
model, root mean squared error (RMSE), mean absolute error (MAE), AIC, and BIC are
evaluated in the models with several values of fitting parameters as well as efficiency of the
exponentially weighted HAR model, relative to the benchmark HAR model, is computed
by using two metrics of RMSE and MAE. It is reported that our proposed model with fewer
parameters can reduce the residual errors, compared to the existing HAR models.

As an empirical application of this work, financial market stock prices with similar
patterns are selected to suit the multivariate HAR model. It is interesting that the exponen-
tially weighted multivariate HAR model is shown to be suitable for the joint data of U.S.
stock prices, rather than the volatility. Our proposed CUSUM tests favor the existence of
the decay rates in the multivariate HAR model of the stock prices, based on the computed
test statistics. The decay-rate estimators for the stock prices are evaluated as well. The
stock prices are well-matched to the exponentially weighted multivariate HAR model. To
compare performance of the proposed model, RMSE, MAE, AIC, and BIC are evaluated
along with those of the conventional univariate and multivariate HAR models via OLSE
and LASSO. The exponentially weighted multivariate HAR model outperforms others in
the chosen datasets of U.S. stock prices.
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We summarize main benefits of the exponentially weighted multivariate HAR model
according to the following points: fewer number of parameters, reduction of the model-
fitting errors, representation of the common structure with decay rates, and an appropriate
model for joint datasets of stock prices with similar patterns. Our proposed model is
suitable for strongly cross-correlated multivariate (bivariate) data with similar patterns
because the decay rates yield a common structure in the joint data. Along with the high
applicability of the HAR model, the proposed model can be used to analyze and forecast
the joint data with strong correlation and long memory as well as its extension can be
considered with an exogenous variable such as associated-uncertainty index, as in [12–15].
The proposed model would help analysts provide simpler and more efficient models by
producing smaller errors in predictions in financial time series. Furthermore, it has the
potential to extend to dynamic time series models with error terms of heteroscedasticity,
time-varying variance, non-Gaussianity, or heavy-tailed distribution, which are more
practical in real-world financial markets.

The remainder of the paper is organized as follows. In Section 2 we describe the model
and develop main results of the tests, and in Section 3 a simulation study is performed. In
Section 4, empirical examples are given. Concluding remarks are stated in Section 5, and
proofs are drawn in the Appendix A .

2. Model and Main Results

We consider a multivariate HAR(p, q) model {Yj,t : t ∈ Z, j = 1, 2, . . . , q} of order p
with q multiple assets, given by

Yj,t = β j0 +
p

∑
i=1

β
(i)
j1 Y(i)

1,t−1 + · · ·+
p

∑
i=1

β
(i)
jq Y(i)

q,t−1 + εj,t (1)

where Y(i)
j,t−1 = 1

hi

(
Yj,t−1 + · · ·+ Yj,t−hi

)
with positive integers {hi, i = 1, 2, . . . , p } satis-

fying 1 = h1 < h2 < · · · < hp < ∞,
{

β j0, β
(i)
jk : j, k ∈ {1, . . . , q}; i ∈ {1, 2, . . . , p}

}
are

parameters to be estimated, and {εj,t, t ∈ Z, j = 1, . . . , q} are independent random vari-
ables with mean zero and finite variance.

In this work, we are particularly concerned with the multivariate HAR model with
exponentially decaying coefficients in order to account for the lesser weights on the far-
ther past values. In the conventional HAR model, regressors are previous value, weekly
average and monthly average of consecutive data, which are assigned with coefficients in
a decreasing order to represent the long-memory features. For example, see [37], which
introduced the (univariate) HAR(∞) model with coefficients decaying exponentially to
capture the genuine long-memory. They showed that exponentially decaying coefficients
make algebraic decreasing autocovariance functions under appropriate lag conditions in
the HAR(∞) model. Likewise, we consider the exponentially weighted coefficient version
of model (1) with multiple assets, called exponentially weighted multivariate HAR(p, q)
model. In our proposed model, coefficients are assumed to be

β
(i)
jk = cjkλi−1

j for some cjk and 0 < |λj| < 1,

for j, k ∈ {1, . . . , q} and i ∈ {1, . . . , p}. The cjk is the first coefficient for the previous
value of the kth asset, Yk,t−1, at the first lag t− 1, and the λj is the decay rate for the next
coefficients. The exponentially weighted multivariate HAR model has long memory as
seen in Figures 1 and 2 in the next section, where autocovariance functions as well as the
sample paths of the model with decay rates are observed. The decay rates λj not only
clearly represent the long-memory feature but also reduce the number of parameters to
estimate. In this work, we mainly focus on detecting the existence of the decay rates in
model (1) and additionally deal with estimating the decay rates.



Entropy 2022, 24, 937 5 of 26

In the multivariate HAR model, we first study the hypothesis test problem whether
the underlying model is an exponentially weighted multivariate HAR model with decay
rates, and secondly we handle easy-to-implement estimators of the decay rates.

For the hypothesis test problem, we consider two tests in (i) and (ii) as follows:

(i) whether or not, in the multivariate HAR model, the jth asset has a decay rate λj

satisfying β
(i)
jk = cjkλi−1

j for some cjk for each j;

(ii) whether or not the exponentially weighted multivariate HAR model has a common

rate λ for all multiple assets, i.e., β
(i)
jk = cjkλi−1 for some 0 < |λ| < 1 for all j, k.

In test (i), each asset is first individually analyzed. Once test (i) has been conducted to
favor the null, test (ii) is performed to detect a common rate. For test (i), the null hypothesis
Hj,0 and the alternative hypothesis Hj,A are, for each j, stated as{

Hj,0 : β
(i)
jk = cjkλi−1

j for some cjk and 0 < |λj| < 1, vs.
Hj,A : the model is not the exponentially weighted HAR model.

In order to introduce a test statistic, we adopt the ordinary least squares estimator (OLSE) of
the multivariate HAR model. Suppose that we have observed {Yj,t : −hp + 1 ≤ t ≤ n, j =

1, 2, . . . , q} of sample size n. Let the OLSE of β j ≡ (β j0, β
(1)
j1 , . . . , β

(p)
j1 , . . . , β

(1)
jq , , . . . , β

(p)
jq )>

be denoted by

β̂ j ≡ (β̂ j0, β̂
(1)
j1 , . . . , β̂

(p)
j1 , . . . , β̂

(1)
jq , . . . , β̂

(p)
jq )>.

The asymptotic property of OLSE β̂ j in the multivariate HAR model is derived theoretically

by Hong et al. [41]. From the OLSE, we first choose an estimate of cjk by ĉjk = β̂
(1)
jk , and

then consider a regression model with the decay rates as its coefficients under the null
hypothesis as in (2) and (4). To describe the regression model, we let

ηj,t = Yj,t − β j0 −
q

∑
k=1

cjkY(1)
k,t−1, η̂j,t = Yj,t − β̂ j0 −

q

∑
k=1

ĉjkY(1)
k,t−1.

Note that under the null hypothesis,

ηj,t = cj1

(
p

∑
i=2

λi−1
j Y(i)

1,t−1

)
+ · · ·+ cjq

(
p

∑
i=2

λi−1
j Y(i)

q,t−1

)
+ εj,t.

We rewrite ηj,t as follows:

ηj,t = λjW
(2)
j,t−1 + · · ·+ λ

p−1
j W(p)

j,t−1 + εj,t, (2)

where W(i)
j,t−1 = cj1Y(i)

1,t−1 + · · ·+ cjqY(i)
q,t−1, for i = 2, 3, . . . , p. Let

Ŵ(i)
j,t−1 = ĉj1Y(i)

1,t−1 + · · ·+ ĉjqY(i)
q,t−1, (3)

and consider the following regression in (4) with coefficients λj,1, . . . , λj,p−1, which is a

similar form to (2) but replaced by observable quantities η̂j,t and Ŵ(k)
j,t−1, k = 2, . . . , p:

η̂j,t = λj,1Ŵ(2)
j,t−1 + · · ·+ λj,p−1Ŵ(p)

j,t−1 + εj,t. (4)

From this regression we compute OLSE Λ̂j,n of the parameters (λj,1, . . . , λj,p−1)
>

by Λ̂j,n = (λ̂j,1, . . . , λ̂j,p−1)
>. Note that under the null hypothesis with β

(i)
jk = cjkλi−1

j , it
follows that

|λ̂j,i−1 − λ̂i−1
j,1 | →

p 0. (5)
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Thus, to construct a test statistic, two types of residuals {ε̂j,t} and {ε̃j,t} are respectively
defined by

ε̂j,t = η̂j,t −
(

λ̂j,1Ŵ(2)
j,t−1 + λ̂j,2Ŵ(3)

j,t−1 + · · ·+ λ̂j,p−1Ŵ(p)
j,t−1

)
,

ε̃j,t = η̂j,t −
(

λ̂j,1Ŵ(2)
j,t−1 + λ̂2

j,1Ŵ(3)
j,t−1 + · · ·+ λ̂

p−1
j,1 Ŵ(p)

j,t−1

)
.

To construct a test statistic, we use the difference series of the two types of residuals,
(not the original time series). Let

Dj,t ≡ Dj,t,n = ε̃j,t − ε̂j,t = (λ̂j,2 − λ̂2
j,1)Ŵ

(3)
j,t−1 + · · ·+ (λ̂j,p−1 − λ̂

p−1
j,1 )Ŵ(p)

j,t−1. (6)

Let Sj,n = 1
σ̂j,D
√

n ∑n
t=1 Dj,t where σ̂2

j,D is a consistent estimator of Var(Dj,t),

for example,

σ̂2
j,D =

1
n

n

∑
t=1

D2
j,t or σ̂2

j,D =
1
n

n

∑
t=1

D2
j,t −

(
1
n

n

∑
t=1

Dj,t

)2

, (7)

noting that E[Dj,t] → 0 as n → ∞ under the null hypothesis. Now we define a CUSUM
test statistic T̂j,n(z) as follows: for 0 ≤ z ≤ 1,

T̂j,n(z) =
1

σ̂j,D
√

n

[
[nz]

∑
t=1

Dj,t − z
n

∑
t=1

Dj,t

]
. (8)

The following theorem states asymptotic distribution of both statistics. It provides
critical values of the test for Hj,0.

Theorem 1. We assume E|Yj,t|2+δ < ∞ for some δ > 0, for all j, t. If the multivariate HAR(p.q)

model has exponential decay rate λj with β
(i)
jk = cjkλi−1

j for some 0 < |λj| < 1 for each j, then we
have, as n→ ∞,

Sj,n →d N(0, 1) and sup
0≤z≤1

|T̂j,n(z)| →d sup
0≤z≤1

|B0(z)|

where B0(z) = B(z)− zB(1) is the standard Brownian bridge with the Brownian motion B(z).

Remark 1. In order to test Hj,0 vs. Hj,A, we adopt the CUSUM test statistics T̂j,n(z), rather
than Sj,n, and the null hypothesis is rejected if |T̂j,n(z)| is large. The reason is as follows: The
difference series {Dj,t} has coefficients {λ̂j,i − λ̂i

j,1 : i = 2, 3, . . . , p− 1} in the linear combination

of {Ŵ(i)
j,t−1 : i = 3, . . . , p}. Note that the pseudo-time series {Dj,t = Dj,t,n : t = 1, 2, . . . , n} is a

triangular array and under the null hypothesis the coefficients are asymptotically zeros whereas under
the alternative hypothesis the coefficients are changed over the time without vanishing asymptotically,
which makes a change-point in mean or variance of the difference series. This idea is the reason
why we adopt the CUSUM-based test for our goal that is to detect the exponentially decay rates.
Sample paths of the series Ŵ(i)

j,t−1 and Dj,t under both Hj,0 and Hj,A can be seen in Figures 3 and 4

along with values of |T̂j,n(z)|. In Figures 3 and 4, it is shown that the difference series under the
null is an asymptotical constant due to the asymptotical zeros of the coefficients, whereas under
the alternative, it fluctuates with large variance; that is, it indicates that there are change-points in
mean or variance. On the other hand, we might use the full sum Sj,n as a test statistic in a view of
theoretical insight. However, as seen in Figures 3 and 4, even under Hj,0, the sum is not evaluated
as small values because of the following reason: Sj,n can be expressed as a linear combination of

{∑n
t=1 Ŵ(i)

j,t−1/
√

n : i = 3, . . . , p} and thus as a linear combination of {∑n
t=1 ĉjkY(i)

k,t−1/
√

n :
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i = 3, . . . , p; k = 1, . . . , q}. Note that for each k, ∑n
t=1(Y

(i)
k,t−1 − E[Y(i)

k,t−1])/
√

n converges to the
normal distribution with asymptotic mean zero. Thus Sj,n makes an asymptotic bias of the form
√

n(λ̂j,k − λ̂k
j,1)E[Y(i)

k,t−1] in a finite sample. Because the asymptotic bias is not negligible even

though
√

n(λ̂j,k − λ̂k
j,1) tends to normal distribution with mean zero under the null hypothesis, the

sum Sj,n has somewhat large values and thus cannot distinguish significantly the two hypotheses.
Therefore, this work adopts the test statistic T̂j,n(z) to resolve our problem.

Now we would further like to test whether or not the exponential weighted multi-
variate HAR model has a common exponential decay rate λ for all multiple assets. That is,
in the exponentially weighted multivariate HAR(p, q) model with β

(i)
jk = cjkλi−1

j for some
0 < |λj| < 1 for all j, k, after the first test has been performed, we test the null hypothesis
H∗0 versus the alternative hypothesis H∗A as follows:{

H∗0 : λ1 = · · · = λq = λ with a common rate λ on all assets j,
H∗A : not the null.

Similar to the above, under the null H∗0 , for all j we have ηj,t = λW(2)
j,t−1 + · · ·+ λp−1W(p)

j,t−1 +

εj,t instead of (2), but we use a consistent estimate λ̂j of λj for {Yj,t}. For the estimation
of the rates λj, j = 1, . . . , q, we discuss below in Remark 2. By using the estimate λ̂j we

compute residuals ε̂∗j,t = η̂j,t −
(

λ̂jŴ
(2)
j,t−1 + · · ·+ λ̂

p−1
j Ŵ(p)

j,t−1

)
for each j. Now, we let

ε∗t (j) = sup
k 6=j

[
η̂j,t −

(
λ̂kŴ(2)

j,t−1 + · · ·+ λ̂
p−1
k Ŵ(p)

j,t−1

)]
and let dj,t = ε̂∗ 2

j,t − ε∗t (j)2, D̃j,t = d2
j,t− σ̂2

j,d where σ̂2
j,d = ∑n

t=1 d2
j,t/n . Also, let D∗t = ∑

q
j=1 D̃j,t.

We construct a test statistic for testing if the HAR model has common rate as follows:
For 0 ≤ z ≤ 1, let T̂∗n (z) = ∑

[nz]
t=1 D∗t /(σ̂∗D

√
n), which is rewritten as

T̂∗n (z) =
1

σ̂∗D
√

n

q

∑
j=1

[
[nz]

∑
t=1

d2
j,t − z

n

∑
t=1

d2
j,t

]

where σ̂∗2D is a consistent estimator of Var(D∗t ) such as 1
n ∑n

t=1 D∗2t . The following theorem
provides the null limiting distribution of the test statistic.

Theorem 2. We assume E|Yj,t|2+δ < ∞ for some δ > 0, for all j, t. If the multivariate HAR(p.q)

model has a common exponential decay rate λ with β
(i)
jk = cjkλi−1 for some 0 < |λ| < 1 for all j, k,

then we have, as n→ ∞,

sup
0≤z≤1

|T̂∗n (z)| →d sup
0≤z≤1

|B0(z)|.

Note that under the null hypothesis H∗0 , the difference series {dj,t} are evaluated as
small values and are characterized with small variance, but under the alternative hypoth-
esis H∗A, they have large values with dynamic variance over the time. Thus we use the
CUSUMSQ test for the difference series {dj,t} (not the original data) to see the change-point
of the variance. Justification of suitability of the CUSUMSQ test can be seen in the next
section, where sample paths of the difference squared, d2

j,t, and the values of test statistics

in absolute, |T̂∗n (z)|, under both hypotheses are depicted.
Once the first test in Theorem 1 has been conducted to datasets of multiple assets, we

obtain estimates of the decay rates by using (9), and then the second test in Theorem 2 is
conducted to see whether the datasets have a common rate. Finally, the estimate (10) is
used to find the common rate.
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Remark 2. The following concerns the estimation of the decay rates. In the exponentially weighted
multivariate HAR model (1) with coefficients β

(i)
jk = cjkλi−1

j , estimators of the decay rates λj can
be obtained in a simple way. From the OLSEs of parameter vector β j, we construct an easy-to-
implement estimator of λj as follows:

λ̂j =
∑

q
k=1 β̂

(2)
jk

∑
q
k=1 β̂

(1)
jk

. (9)

Furthermore, in case of the common rate with β
(i)
jk = cjkλi−1, the common rate λ is estimated by

λ̂ =
∑

q
j=1 ∑

q
k=1 β̂

(2)
jk

∑
q
j=1 ∑

q
k=1 β̂

(1)
jk

. (10)

In the estimates of the decay rates in (9) and (10), only the first and the second coefficients estimates,
i.e., β̂

(1)
jk and β̂

(2)
jk , are used. This is because these two estimates have comparatively fewer standard

errors than others. To see their performances, sample means and standard errors of the estimates in
(9) and (10) are computed and compared in the next section.

In the conventional multivariate HAR(p, q) model there are a total of (1 + pq)q coeffi-
cient parameters to estimate, whereas in the exponential weighted multivariate HAR(p, q)
model the number of parameters is decreased to (2 + q)q. Each j = 1, 2, . . . , q, Yj,t has
one intercept, and q coefficients of the previous lag values of q assets and one decay rate.
For a simple case with p = 3 and q = 2, the number of parameters is reduced from 14 to
8. This implies that some measures of statistical models such as AIC and BIC might be
improved considerably. This improvement can be shown in the following sections with
simulated data and real data examples. In the multivariate HAR(p, q) model, the asymp-
totic normality for the OLSE β̂ j,O(≡ β̂ j,OLSE) of β j has been established by Hong et al. [41]:√

n(β̂ j,O− β j)→d N(0, Σ) as n→ ∞, where Σ is some (1+ pq)× (1+ pq) covariance matrix.

Remark 3. The following concerns the bias adjustment for a finite sample. In our exponential
weighted multivariate HAR model with β

(i)
jk = cjkλi−1

j , which are components of

β j = (β j0, β
(1)
j1 , . . . , β

(p)
j1 , . . . , β

(1)
jq , . . . , β

(p)
jq )>, we construct an estimator β̃ j,Λ of β j, called the

rate-adopted estimator (RE), as follows: β̃ j,Λ = (β̃ j0, β̃
(1)
j1 , . . . , β̃

(p)
j1 , . . . , β̃

(1)
jq , . . . , β̃

(p)
jq )> where

β̃ j0 = β̂ j0, β̃
(1)
jk = ĉjk(≡ β̂

(1)
jk ) and β̃

(i)
jk = ĉjkλ̂i−1

j for i ≥ 2

with λ̂j in (9). It is obvious that
∣∣∣β̂(i)

jk − β̃
(i)
jk

∣∣∣ = ∣∣∣β̂(i)
jk − ĉjkλ̂i−1

j

∣∣∣→p 0 as n→ ∞. Here we need
to observe the residuals on behalf of the empirical analysis for a finite sample. We rewrite model (1)
as Yj,t = β>j Xt−1 + εj,t, where

Xt−1 =
(

1, Y(1)
1,t−1, . . . , Y(p)

1,t−1, Y(1)
2,t−1, . . . , Y(p)

2,t−1, . . . , Y(1)
q,t−1, . . . , Y(p)

q,t−1

)>
∈ R(1+pq).

Let ε̂j,t,O and ε̃j,t,Λ be residuals by the OLSE and the RE, respectively:

ε̂j,t,O = Yj,t − β̂>j,OXt−1 and ε̃j,t,Λ = Yj,t − β̃>j,ΛXt−1.

Note that

ε̃j,t,Λ = Yj,t − β̂>j,OXt−1 + (β̂ j,O − β̃ j,Λ)
>Xt−1 = (β j − β̂ j,O)

>Xt−1 + (β̂ j,O − β̃ j,Λ)
>Xt−1 + εj,t.
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Let µ̄j,Λ = 1
n ∑n

t=1 ε̃j,t,Λ, and then by the asymptotic normality of
√

n(β j − β̂ j,O) with asymptotic
mean zero and by noticing that (β̂ j,O − β̃ j,Λ) =

(
0; 0, β̂

(2)
j1 − ĉj1λ̂j, . . . , β̂

(p)
j1 − ĉj1λ̂

p−1
j ; 0, β̂

(2)
j2 − ĉj2λ̂j . . . ; 0, β̂

(2)
jq − ĉjqλ̂j, . . . , β̂

(p)
jq − ĉjqλ̂

p−1
j

)>
,

we have

µ̄j,Λ =
1
n

n

∑
t=1

[
(β̂ j,O − β̃ j,Λ)

>Xt−1

]
+ op(1) =

1
n

n

∑
t=1

[
q

∑
k=1

p

∑
i=2

(β̂
(i)
jk − ĉjkλ̂i−1

j )Y(i)
k,t−1

]
+ op(1).

Even though |β̂(i)
jk − ĉjkλ̂i−1

j | →
p 0 under the null hypothesis, ∑

q
k=1 ∑

p
i=2(β̂

(i)
jk − ĉjkλ̂i−1

j )Y(i)
k,t−1 is

not negligible in a small finite sample. Thus we need the bias adjustment for a fitting model in a
finite sample. When we fit the exponentially weighted HAR model to real datasets, especially ones
with small sample size, the error performances can be improved by means of the bias adjustment. For
instance, one way is that the fitted model is shifted by the residual mean µ̄j,Λ, which is a constant. An
alternative way is that the model is shifted by a moving average of residuals, which is a time-varying
process, as we define in the following. For a positive integer m and t = 1, 2, . . . , n, let

ω̄m,t =
1

τ2 − τ1 + 1

τ2

∑
s=τ1

ε̃j,s,Λ (11)

where τ1 ≡ τ1(t, m) = max{1, t−m} and τ2 ≡ τ2(t, m) = min{n, t + m}, (j is omitted in ω̄m,t
for notational simplicity). The time-varying process {ω̄m,t, t = 1, 2, . . . n} determines the error
performances of the fitting model shifted by {ω̄m,t}. The fitted model with exponential decay rates is
now determined by

Yj,t = F̂j,Λ(Xt−1) + ε j,t (12)

where F̂j,Λ(Xt−1) = β̃>j,ΛXt−1 + ω̄m,t and ε j,t = ε̃j,t,Λ − ω̄m,t. Note that 1
n ∑n

t=1 ε j,t = op(1).
Effects of m, called the fitting parameter, on the error performances of (12) will be discussed in the
next section.

3. Monte Carlo Simulation

In this section, we first see the plots of sample paths of the proposed model and
their autocorrelation coefficient functions (ACFs). Secondly, finite sample validity of
the proposed tests is investigated along with the plots of various related series for the
justification of the tests. Thirdly, the estimates of the decay rates are computed, and finally
comparisons with conventional HAR models are addressed in terms of measures such as
RMSE, MAE, AIC, and BIC. Moreover, efficiency of the proposed model vs. the benchmark
HAR model is discussed.

In the simulation experiment, to see the plots of the proposed model, simulated
data are generated by bivariate exponentially weighted HAR models of order p = 3,
HAR(3,2) models, with lag structure h = (h1, . . . , hp) = (1, 5, 22), by using i.i.d. standard
normal distributed N(0, 1)-errors {εj,t} and size n = 400. In order to avoid the effect of
selected initial value in the models, data of size 600 are generated and the first 200 data
are deleted to obtain n = 400. Figures 1 and 2 depict sample paths with parameters
(β10, c11, c12) = (1.0, 0.6, 0.45), (β20, c21, c22) = (3, 0.2, 0.35), together with their ACFs;
Figure 1 uses individual decay rates λ1 = 0.1, λ2 = 0.3 whereas Figure 2 uses common rate
λ = 0.15. We see that the simulated data are strongly correlated with each other and reveal
the long-memory feature. In Figure 1, two datasets have a correlation coefficient of 0.7856,
and in Figure 2, the correlation coefficient is 0.6748.
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Figure 1. Sample paths of exponentially weighted bivariate HAR model and their ACFs, with decay
rates λ1 = 0.1, λ2 = 0.3; (β10, c11, c12) = (1.0, 0.6, 0.45), (β20, c21, c22) = (3, 0.2, 0.35); n = 400. The
simulated data of the exponentially weighted bivariate HAR model are characterized with strong
cross-correlation and long memory.
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Figure 2. Sample paths of exponentially weighted bivariate HAR model and their ACFs, with
common decay rate λ1 = λ2 = 0.15; (β10, c11, c12) = (1.0, 0.6, 0.45), (β20, c21, c22) = (3, 0.2, 0.35);
n = 400. The simulated data of the exponentially weighted bivariate HAR model are characterized
with strong cross-correlation and long memory.

To verify Theorems 1 and 2, we compute the test statistics in the HAR(3,2) model
and report their rejection rates in Tables 1 and 2, respectively. To see the validation of
Theorem 1, four combinations of two datasets are assumed as follows:

• Case I : Both are exponentially weighted models with λ1 = 0.5 and λ2 = 0.4.
• Case II: The first data set follows an exponentially weighted model with λ1 = 0.5

whereas the second is not.
• Case III: The second is an exponentially weighted model with λ2 = 0.4 whereas the

first is not.
• Case IV: None of them are exponentially weighted models.

For the null hypothesis of Cases I, II, and III, (β10, c11, c12) = (1, 0.1, 0.25),
(β20, c21, c22) = (3, 0.2, 0.15), λ1 = 0.5, λ2 = 0.4 are used. For Case IV, there are total
14 (irregular) parameters, and thus their presentation with so many parameters, including
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those under the alternative hypothesis in Cases II and III, are omitted here, but are available
upon request.

Prior to reporting the test results, some plots of related series are illustrated in order to
justify the suitability of the CUSUM tests. In particular, for Cases I, III, and IV, sample paths
of Ŵ(i)

j,t−1, Dj,t and |T̂j,n(z)| in (3), (6), and (8), respectively, are depicted with n = 500, 1000

in Figures 3 and 4, where values of λ̂j,2 − λ̂2
j,1 in Figure 5 are used to compute Dj,t together

with using Ŵ(i)
j,t−1. In Figure 5, we see that λ̂j,2 − λ̂2

j,1 tends to zero in Case I (j = 1, 2) and
Case III (j = 2) as its theory indicates as in (5) under the null hypothesis. However, it is
shown in Figure 5 that Case III (j = 1) and Case IV (j = 1, 2) have the deviation from zeros
under the alternative. In Figures 3 and 4, under the null hypothesis with decay rates, the
difference series Dj,t does not fluctuate due to the asymptotic zero of λ̂j,2 − λ̂2

j,1, which can

be interpreted as constant coefficients in the linear combination of Ŵ(i)
j,t−1, whereas under

the alternative, plots of Dj,t are dynamic with large variance because of nonzero λ̂j,2 − λ̂2
j,1,

(see Equation (6)). This fact yields higher values of the CUSUM test statistic in absolute,
|T̂j,n(z)|, as seen in the third columns of Figures 3 and 4.
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Figure 3. Sample paths of Ŵ(i)
j,t−1, Dj,t and |T̂j,n(z)|, (j = 1, 2; i = 2, 3) in Cases I, III, IV in Theorem 1

with n = 500. Difference series Dj,t in the second column are obtained by multiplying W(3)
j,t−1 in

the first column by λ̂j,2 − λ̂2
j,1 given in Figure 5. Test statistics in absolute |T̂n,j(z)|, (0 ≤ z ≤ 1), are

computed using the difference series Dj,t in the second column. In the first row of Case I with both
H1,0 and H2,0, Dj,t has no change in mean and thus small values of |T̂n,j(z)| for all z. In the second
row of Case III with H2,0, j = 2 (in red), the same interpretation is given.
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Figure 4. Sample paths of Ŵ(i)
j,t−1, Dj,t and |T̂j,n(z)|, (j = 1, 2; i = 2, 3) in Cases I, III, IV in Theorem 1

with n = 1000. Difference series Dj,t in the second column are obtained by multiplying W(3)
j,t−1 in

the first column by λ̂j,2 − λ̂2
j,1 given in Figure 5. Test statistics in absolute |T̂n,j(z)|, (0 ≤ z ≤ 1), are

computed using the difference series Dj,t in the second column. In the first row of Case I with both
null hypotheses H1,0 and H2,0, Dj,t has no change in mean and thus small values of |T̂n,j(z)| for all z.
In the second row of Case III with H2,0, j = 2 (in red), the same interpretation is given.
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Figure 5. λ̂j,2 − λ̂2
j,1, (j = 1, 2), with sample size n = 500, 501, . . . , 1000 on horizontal axis, in Case I,

III, IV in Theorem 1. In Case I(j = 1, 2) and Case III(j = 2) with the null hypothesis Hj,0, λ̂j,2 − λ̂2
j,1

tends to zero as n→ 1000.

As for the CUSUMSQ test in Theorem 2, Figure 6 describes series of difference
squared, d2

j,t, and test statistic values in absolute, |T̂∗n (z)|, under the two hypotheses with
n = 500, 1000, respectively. It is shown that under H∗0 , the difference series dj,t has small
variance with small values whose squares are less than 0.025 for n = 500 and 0.006 for
n = 1000, whereas under H∗A it has large values with their squares between 0 and 2500.
Therefore we adopt the idea of change-point test of variance to the difference series dj,t,
which yields a solution of the existence of the exponential decay rate.

Throughout the simulation study of the CUSUM tests, replication number 1000, signif-
icant level α = 0.05, and sample size n = 100, 200, 500, and 1000 are used.
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Figure 6. Sample paths of d2
j,t, (j = 1, 2), and T̂∗n (z) under H∗0 and H∗A in Theorem 2 with n = 500, 1000.

Under H∗0 in the first column, difference squared d2
j,t are small values less than 0.025 for n = 500

and 0.006 for n = 1000 and thus the test statistic |T̂n(z)| are evaluated as small values less than 1
while under H∗A in the second column, d2

j,t are between 0 and 2500 and so there exists a variance

change-point with large values of |T̂n(z)|; sup |T̂n(z)| ≥ 1.5.

Tables 1 and 2 display the evaluated rejection rates in Theorems 1 and 2, respectively.
In Table 1, results of rejection rates of two tests Hj,0, j = 1, 2, in Theorem 1 for the four
cases are addressed. To compute the test statistic T̂j,n(z) in Theorem 1, a consistent
estimate σ̂j,D of the standard deviation should be found. Recall two of σ̂2

j,D in (7), which

are estimators of Var(Dj,t) = E[D2
j,t] − E[Dj,t]

2. Because E[Dj,t] → 0 as n → ∞ due to

λ̂j,k − λ̂k
j,1 →p 0 under the null hypothesis Hj,0, we may use both in (7) for σ̂2

j,D. However,
the use of the estimates incurs slow convergence rates because of the bias problem, as
seen in the argument in Remark 1. If the mean has a large bias, the convergence rate
tends to be slow, as affected by the bias. Thus we adopt the two estimates partially to
adjust the convergence rate. In particular, so as to visualize the convergence to the nominal
level with increasing n, we here take partially the second sample variance in (7) of the
form: 1

n ∑n
t=1 D2

j,t − (Dj)
2, where Dj =

1
n ∑n

t=1 Dj,t, which converges to zero in probability

along with | 1n ∑n
t=1 Dj,t − E[Dj,t]| →p 0 as n → ∞. To use it partially, we construct a

consistent estimator with the following threshold: σ̃2
j,D = 1

n ∑n
t=1 D2

j,t − δ(Dj)
2, where

δ = I(|Dj| < th∗) with an indicator function I(·) and a threshold th∗. In other words,
we use either the first one or the second one in (7), depending on the magnitude of the
mean Dj. By doing this, we can adjust the convergence rate by adopting the following
threshold: setting the value δ of the indicator function to zero in case of the large bias. In
this simulation, threshold th∗ is chosen empirically such that P(|Dj| < th∗) = 0.05; that is,
if |Dj| ≥ th∗ with probability 0.95, then the first in (7) is used and otherwise with probability
0.05, the second in (7) is used for the estimate σ̃2

j,D. This is because the probability of having
the bias is high as seen in Remark 1. In Table 1, results of rejection rates are given by
using the estimate σ̃j,D with the chosen threshold th∗ and are seen with the convergence
to the nominal level α = 0.05 as n increases under the null hypothesis. For Table 2 with
Theorem 2, a similar argument can be given.
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Table 1. Validation of Theorem 1. Rejection rate for hypotheses Hj,0 and Hj,A of level α = 0.05,
j = 1, 2 in exponentially weighted bivariate HAR models of order p = 3; h = (1, 5, 22); (β10, c11, c12) =

(1, 0.1, 0.25), (β20, c21, c22) = (3, 0.2, 0.15), λ1 = 0.5, λ2 = 0.4 in the null hypothesis Hj,0 of Cases I, II,
III; replication number =1000. (Other parameter values used are available upon request ).

n
Case I Case II Case III Case IV

H1,0 H2,0 H1,0 H2,A H1,A H2,0 H1,A H2,A

100 0.066 0.056 0.083 0.198 0.547 0.058 0.640 0.776
200 0.053 0.058 0.057 0.236 0.767 0.054 0.789 0.897
500 0.051 0.050 0.057 0.313 0.946 0.053 0.826 0.920

1000 0.050 0.050 0.052 0.408 0.985 0.054 0.823 0.936

Table 2. Validation of Theorem 2. Rejection rate for hypotheses H∗0 and H∗A of level α = 0.05
in exponentially weighted bivariate HAR models of order p = 3; h = (1, 5, 22), with decay rates
λj ∈ {0.2, 0.4, 0.5, 0.8}, j = 1, 2; (β10, c11, c12) = (1.0, 0.12, 0.01), (β20, c21, c22) = (1.0, 0.07, 0.01);
replication number =1000.

n

λ1 = 0.2 λ1 = 0.4 λ1 = 0.5
λ2 = 0.2 λ2 = 0.8 λ2 = 0.4 λ2 = 0.8 λ2 = 0.5 λ2 = 0.8

H*
0 H*

A H*
0 H*

A H*
0 H*

A

100 0.027 0.301 0.021 0.340 0.028 0.326
200 0.033 0.288 0.032 0.299 0.043 0.274
500 0.050 0.284 0.045 0.266 0.048 0.258
1000 0.048 0.285 0.051 0.265 0.049 0.270

It is shown from Table 1 that Case I favors two of the null hypotheses in Theorem 1; i.e.,
the models are exponentially weighted with small rejection numbers of the null hypothesis.
Moreover, Table 2 depicts reasonable rejection rates of the test in Theorem 2 for a large
sample size under both null and alternative hypotheses. Note that in Table 2, the null
hypothesis H∗0 indicates that both λ1 and λ2 are the same values; i.e., the common rate
λ = λ1 = λ2 ∈ {0.2, 0.4, 0.5}, where small rejection rates are reported. The rejection rates in
Tables 1 and 2 tend to the nominal level α = 0.05 as n increases under the null hypothesis.

Next, we observe the size and power properties of our proposed CUSUM test in
Theorem 1. To assess the performance of the test, we use bivariate HAR models of orders
p = 3, 6. We set h = (1, 5, 22), (1, 7, 14) if p = 3, and h = (1, 5, 7, 9, 14, 22), (1, 7, 14, 19, 22, 25)
if p = 6. The sizes of the proposed test in the HAR(p, 2) models with λ1 ∈ {0.5, 0.8}, λ2 ∈
{0.1, 0.4}, are illustrated in Table 3. Most cases indicate very small values of type I errors,
consistent with the size of the test. Also, the powers of the CUSUM test are displayed in
Table 4, where we see comparatively reasonable power results.

In Table 5, estimates of the decay rates in (9) and (10) are computed to obtain sample
means and standard errors. Cases I–III have the same parameters as those in Table 1
whereas Cases IV∗–VI∗ use common rates given as follows:

• Case IV∗: Common rate λ1 = λ2 = λ = 0.1.
• Case V∗: Common rate λ1 = λ2 = λ = 0.5.
• Case VI∗: Common rate λ1 = λ2 = λ = 0.9.

Table 5 reports that estimate results are consistent in the sample sizes, whereas for
Cases IV∗, V∗ and VI∗, estimates λ̂j in (9) are used for λj, j = 1, 2, and estimates λ̂ in
(10) are used for λ. We notice that in the common rate cases, Equation (10) gives smaller
standard errors of the estimates.
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Table 3. Size of the CUSUM test in Theorem 1 for HAR(p, 2), p = 3, 6; (β10, c11, c12) = (1.0, 0.12, 0.10),
(β20, c21, c22) = (1.0, 0.07, 0.25); Replication number = 1000, α = 0.05.

p h n
λ1 = 0.5 λ1 = 0.8

λ2 = 0.1 λ2 = 0.4 λ2 = 0.1 λ2 = 0.4

H1,0 H2,0 H1,0 H2,0 H1,0 H2,0 H1,0 H2,0

p = 3 (1, 5, 22) 100 0.087 0.078 0.080 0.067 0.091 0.090 0.094 0.078
200 0.071 0.071 0.074 0.059 0.071 0.075 0.061 0.061
500 0.054 0.058 0.050 0.054 0.052 0.054 0.051 0.050
1000 0.050 0.050 0.050 0.053 0.051 0.052 0.050 0.050

p = 6 (1, 5, 7, 9, 14, 22) 100 0.098 0.089 0.108 0.078 0.076 0.065 0.054 0.053
200 0.064 0.084 0.058 0.071 0.058 0.053 0.052 0.052
500 0.054 0.076 0.049 0.069 0.051 0.056 0.051 0.050
1000 0.049 0.055 0.045 0.058 0.047 0.056 0.050 0.051

p = 3 (1, 7, 14) 100 0.112 0.091 0.105 0.081 0.099 0.093 0.095 0.076
200 0.070 0.064 0.060 0.061 0.071 0.072 0.069 0.059
500 0.054 0.051 0.052 0.053 0.052 0.056 0.050 0.053
1000 0.050 0.051 0.052 0.053 0.050 0.050 0.050 0.052

p = 6 (1, 7, 14, 19, 22, 25) 100 0.091 0.090 0.077 0.076 0.071 0.064 0.057 0.053
200 0.076 0.076 0.073 0.069 0.061 0.053 0.056 0.050
500 0.053 0.065 0.065 0.055 0.048 0.048 0.047 0.049
1000 0.054 0.062 0.055 0.051 0.048 0.052 0.050 0.051

Table 4. Power of the CUSUM test in Theorem 1 for HAR(p, 2), p = 3,6; Replication number = 1000,
α = 0.05. (Parameter values used in Power Models 1 & 2 are available upon request).

n

Power Model 1 Power Model 2

p = 3 p = 6 p = 3 p = 6
(1, 5, 22) (1, 5, 7, 9, 14, 22) (1, 7, 14) (1, 7, 14, 19, 22, 25)

H1,A H2,A H1,A H2,A H1,A H2,A H1,A H2,A

100 0.664 0.807 0.716 0.518 0.812 0.727 0.691 0.722
200 0.794 0.906 0.849 0.642 0.901 0.823 0.679 0.771
500 0.850 0.967 0.948 0.806 0.937 0.863 0.738 0.852
1000 0.907 0.987 0.976 0.841 0.948 0.887 0.802 0.952

Finally, we discuss the fitting problem of the exponentially weighted HAR models in
(12) and compare with the conventional HAR model fitted by OLSEs. The simulated data
in Figure 1 are used to compute the OLSEs β̂ j,O of coefficients and the estimates λ̂j of the
decay rates in (9). From the estimated rates λ̂j, the rate-adopted estimators (REs) β̃ j,Λ of
the coefficients are evaluated as a further step. To compare the fitted models by the OLSEs
and REs, Table 6 presents some criteria such as the root mean square error (RMSE), mean
absolute error (MAE), AIC, and BIC. In the case of the exponential weighted bivariate HAR
models, the fitting parameter m is used with m = 5, 10, 20, 100. Because the conventional
bivariate HAR model has 14 parameters whereas our proposed model has 8 parameters,
the AIC and BIC of the latter are smaller values than those of the former. Intuitively, the
small choice of m yields small errors in RMSEs and MAEs because the average ω̄m,t in (11)
for interval [t−m, t + m] is closer to ε̃j,t,Λ for smaller m, and thus this fact makes the error
term ε j,t in (12) smaller. In the latter case, (12) is applied with m = 5 for the bias adjustment.
RMSE and MAE of the OLSE residuals in fitting the conventional HAR model are 0.9971,
0.8253 for j = 1 and 0.9644, 0.7596 for j = 2, and those of the RE residuals in fitting our
proposed model are 0.9424, 0.7805 for j = 1 and 0.9226, 0.7381 for j = 2.
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Table 5. Sample means and standard errors (s.e.) of estimates for the decay rates λ1, λ2 of exponen-
tially weighted HAR (3, 2) models, Replication number = 1000. Note that in common rate cases with
∗, Cases IV∗, V∗ and VI∗, estimates λ̂j in (9) are used for λj, j = 1, 2, while estimates λ̂ in (10) are used
for λ.

n = 500 n = 1000 n = 2000

Sample
Mean (s.e.) Sample

Mean (s.e.) Sample
Mean (s.e.)

Case I λ1 = 0.5 0.458 (0.038) 0.493 (0.017) 0.528 (0.008)
λ2 = 0.4 0.418 (0.022) 0.452 (0.012) 0.419 (0.005)

Case II λ1 = 0.5 0.764 (0.143) 0.625 (0.021) 0.505 (0.007)
- - - -

Case III - - - -
λ2 = 0.4 0.497 (0.034) 0.445 (0.014) 0.413 (0.006)

Case IV∗ λ1 = 0.1 0.188 (0.037) 0.121 (0.019) 0.104 (0.011)
λ2 = 0.1 −0.022 (0.164) 0.101 (0.011) 0.103 (0.007)
λ = 0.1 0.118 (0.014) 0.084 (0.009) 0.095 (0.006)

Case V∗ λ1 = 0.5 0.684 (0.044) 0.579 (0.019) 0.525 (0.012)
λ2 = 0.5 0.556 (0.019) 0.526 (0.012) 0.518 (0.008)
λ = 0.5 0.507 (0.015) 0.511 (0.010) 0.506 (0.007)

Case VI∗ λ1 = 0.9 0.768 (0.652) 0.934 (0.021) 0.921 (0.014)
λ2 = 0.9 0.983 (0.021) 0.928 (0.014) 0.922 (0.010)
λ = 0.9 0.930 (0.018) 0.888 (0.011) 0.900 (0.008)

Table 6. Comparison of exponential weighted HAR(3,2) fitting models from the simulated data in
Figure 1.

Model
Fitting j = 1 j = 2

Parameter m RMSE MAE AIC BIC RMSE MAE AIC BIC

Conventional HAR - 0.9971 0.8253 1098.49 1153.57 0.9644 0.7596 1073.38 1128.47
Exp. HAR m = 5 0.9424 0.7805 1043.88 1075.36 0.9226 0.7381 1027.80 1059.28
Exp. HAR m = 10 0.9898 0.8147 1080.84 1112.32 0.9443 0.7535 1045.34 1076.82
Exp. HAR m = 20 0.9949 0.8180 1084.83 1116.31 0.9709 0.7621 1066.24 1097.71
Exp. HAR m = 100 1.0105 0.8334 1096.23 1127.70 0.9827 0.7745 1075.59 1107.07

Furthermore, to elaborate more on the comparison with the conventional HAR model,
the efficiency of the proposed model vs. the conventional one, is computed by using two
metrics of RMSE and MAE: The Exp. HAR Model Efficiency, relative to the benchmark
HAR model, is defined by

Effi_RMSE =

(
RMSE0 − RMSE1

RMSE1

)
× 100, Effi_MAE =

(
MAE0 −MAE1

MAE1

)
× 100,

where RMSE0 and MAE0 are RMSE, MAE of the conventional HAR model, respectively
and RMSE1 and MAE1 are those of the exponentially weighted HAR model. Table 7
displays the Exp. HAR model efficiency in the first case of (λ1, λ2) of Table 3. We see that all
values are positive with highest value 7.0817 in percentage, which means that the proposed
model with the RE fitting improves the conventional HAR model with respect to residual
errors.
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Table 7. Comparison with conventional HAR model by computing Exp. HAR model ef-
ficiency, defined by Effi_RMSE = 100 × (RMSE0 − RMSE1)/RMSE1, Effi_MAE = 100 ×
(MAE0 −MAE1)/MAE1 of exponential weighted HAR model, where RMSE0, MAE0 are the root
mean square error (RMSE), and mean absolute error (MAE) of the conventional HAR model, respec-
tively; and RMSE1, MAE1 are those of Exp. HAR model.

n = 500 n = 1000

Rates Effi_RMSE Effi_MAE Effi_RMSE Effi_MAE
(λ1, λ2) j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

(0.5, 0.1) 4.1635 6.3361 5.2112 4.3094 4.8475 4.9433 7.0817 6.9621
(0.5, 0.4) 5.1794 6.8979 5.0989 2.8984 5.8510 5.4411 5.3964 5.4328
(0.8, 0.1) 5.9158 4.4523 4.5951 5.1982 5.3078 6.3053 4.7309 6.9481
(0.8, 0.4) 5.7379 3.6783 6.3833 3.7651 5.1028 4.4709 5.7066 6.0533

The HAR model has high applicability in the financial market. In particular, it is very
powerful for the realized volatility forecasting [1,17,18,29]. However, besides volatility
forecasting, as a theoretically linear AR model, it has many applications to various time
series data as in [12–14,42]. The exponentially weighted multivariate HAR model, which
is one of the special cases of HAR models, is suitable for joint data with strong cross-
correlation. The decay rate of the model plays a key role in the common structure of
the joint data with strong correlation. In economics and finance, there are many strongly
correlated time series data that are important for policy decisions to improve the global
economy and human society. For example, stock prices in the same category tend to
have the same pattern. Stock price modellings are known to be based on efficient market
hypotheses (EMH), according to which only relevant information on the stock is its current
values. The proposed model may be proper to the stock price modelling because the
current value and the current averages (with exponentially decaying coefficients) are used
as regressor variables in the model. The following section will address empirical analysis
of the joint data of strongly correlated stock prices to confirm the intuition of the proposed
model for the stock prices.

4. Empirical Analysis

In this section, we provide empirical examples of U.S. stock prices that are applied to
the exponentially weighted multivariate HAR models. Note that realized volatility does
not fit for our model, but the stock price itself may be suitable for the proposed model with
exponential decay coefficients. To this end, we choose some datasets of U.S. stock prices
and conduct our proposed CUSUM tests. For a bivariate joint data (q = 2), stock prices
of Amazon.com Inc. (AMZN) (Seattle, WA, USA) and Netflix Inc. (NFLX) (Los Gatos, CA,
USA), and for a triple joint data (q = 3), those of Apple Inc. (AAPL) (Cupertino, CA, USA),
Microsoft Corporation (MSFT) (Redmond, WA, USA) and Facebook Inc. (FB) (Menlo Park,
CA, USA) are selected from 7 May 2020 to 6 May 2021. In the analysis, closing price is
chosen because it reflects all the activities in a trading day. Plots of these stock prices are
shown in Figures 7 and 8, where we see that the time series data reveal somewhat similar
patterns for the pair (AMZN, NFLX) and for the triple (FB, AAPL, MSFT).
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Figure 7. (AMZN, NFLX) stock prices and exponentially weighted HAR(3,2) models fitted by REs with
their residuals.
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Figure 8. (FB, AAPL, MSFT) stock prices and exponentially weighted HAR(3,3) models fitted by REs
with their residuals.

First we adopt bivariate HAR(3,2) models for pairs of (AMZN, NFLX), (AAPL, MSFT),
(FB, AAPL) and (FB, MSFT) for q = 2, respectively, and second a multivariate HAR(3,3)
model for three datasets (FB, AAPL, MSFT) for q = 3. Order p = 3 and lag h = (1, 5, 22) are
used. Results of tests and estimates as well as correlation coefficients are reported in Table 8,
where suprema of test statistics and decay rate estimates are computed by Theorem 1 and
Equation (9), respectively. More specifically, conducting the CUSUM test in Theorem 1 to
detect the presence of the exponential decay rates, test statistics are evaluated as follows. In
the case of (AMZN, NFLX) for detecting the existence of λAMZN and λNFLX , the CUSUM
test statistics are computed as 0.3986 for AMZN and 0.3489 for NFLX. In the case of (AAPL,
MSFT), the CUSUM test statistics are computed as 0.7508 for AAPL and 0.4979 for MSFT.
These values imply that the null hypothesis is not rejected because the critical values of
the standard Brownian bridge are 1.224 of level α = 0.1 and 1.358 of level α = 0.05. On the
other hand, as the test in Theorem 2 for a common rate is conducted, the test statistics are
evaluated as values greater than 2, which rejects the null hypothesis with the common rate.

Now comparisons with the conventional HAR models are presented for the two pairs
(AMZN, NFLX), (AAPL, MSFT), and for the triple (FB, AAPL, MSFT). We compare perfor-
mances for these datasets applied to univariate HAR model, (conventional) multivariate
HAR model and exponentially weighted multivariate HAR (Exp. HAR) model. For the
conventional HAR models, two estimation methods of OLSE and LASSO used in [43] are
adopted. LASSO estimates are computed by LassoLarsCV in sklearn.linear_model with
Python version 3.8.6. For the Exp. HAR model, the RE is computed. In Table 9, for two
joint datasets (q = 2), the conventional HAR(3,2) model has 14 parameters, whereas the
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exponential weighted HAR(3,2) model has 8 parameters. Each univariate HAR model
has 4 parameters, so the total number is 8. Table 9 reports the comparison results of the
HAR(3,2) models. The CUSUM test favors the existence of exponential decay rates, and
thus the exponential bivariate HAR(3,2) is fitted with the rate estimates. The decay rates
for AMZN and NFLX are estimated as (λAMZN , λNFLX) = (0.2983, 0.1144) whereas those
for AAPL and MSFT are (λAAPL, λMSFT) = (0.02175,−0.01483), which are presented in
Table 8. Four measures of RMSE, MAE, AIC, and BIC are compared in the three models via
OLSE, LASSO, and RE. In Table 9, the best values are displayed in bold. The exponential
bivariate HAR(3,2) model has the best performance on RMSE and MAE, whereas the
univariate HAR model with LASSO has the best performance on the AIC and BIC. Figure 7
depicts the actual data of stock prices of (AMZN, NFLX) and the fitted Exp. HAR(3,2)
model by the REs along with their residuals. It can be seen that the stock prices of (AMZN,
NFLX) are well matched to the fitted model.

Table 8. Results of tests and estimates for (MZN, NFLX) and (FB, AAPL, MSFT) in exponentially
weighted HAR(3, q) models, q = 2, 3.

Correlation
q

Test Statistics Rate Estimates

Coefficient sup0≤z≤1 |T̂j,n(z)|, (j = 1, . . . , q) λ̂j, (j = 1, . . . , q)

(AMZN, NFLX) 0.8268 2 (0.3986, 0.3489) (0.2983, 0.1144)
(AAPL, MSFT) 0.8396 2 (0.7508, 0.4979) (0.02175,−0.01483)
(FB, AAPL) 0.8185 2 (0.4644, 0.7925) (−006340, 0.03158)
(FB, MSFT) 0.8203 2 (0.4549, 0.4794) (0.01255, 0.01322)
(FB, AAPL, MSFT) - 3 (0.4889, 0.7424, 0.4762) (−0.03302, 0.03097, 0.02733)

Table 9. Comparison of univariate HAR, bivariate HAR and exponential weighted bivariate HAR
models for (AMZN, NFLX), (AAPL,MSFT) stock prices from 7 May 2020 to 6 May 2021; p = 3,
h = (1, 5, 22); ∗(λAMZN , λNFLX) = (0.2983, 0.1144), ∗(λAAPL, λMSFT) = (0.02175,−0.01483).

Univariate HAR(3) Bivariate HAR(3,2) Exp. Bi. HAR(3,2)∗

Total # of Parameters 8 14 8
Estimator OLSE LASSO OLSE LASSO RE

AMZN RMSE 61.6182 62.9610 61.5780 62.9610 61.2005
MAE 47.1019 47.6977 47.1447 47.6977 46.2293

AIC 2556.35 2321.29 2576.05 2341.28 2561.21
BIC 2570.10 2334.64 2624.18 2388.01 2588.71

NFLX RMSE 13.3562 13.6602 13.3174 13.8798 12.3834
MAE 9.0379 9.2866 9.0565 9.9867 8.4594

AIC 1853.02 1685.89 1871.68 1712.52 1826.23
BIC 1866.77 1699.25 1919.82 1759.25 1853.73

AAPL RMSE 2.6255 2.6866 2.6061 2.6609 2.4899
MAE 1.9478 1.9877 1.9346 1.9709 1.8520

AIC 1104.74 1009.34 1121.31 1025.34 1088.24
BIC 1118.48 1022.69 1269.45 1072.06 1115.75

MSFT RMSE 3.8234 3.8979 3.8208 3.8975 3.5746
MAE 2.9249 2.9625 2.9315 2.9633 2.7488

AIC 1277.63 1164.14 1297.33 1184.10 1254.68
BIC 1291.39 1177.49 1345.46 1230.83 1282.19

Table 10 reports the performances of the HAR(3,3) models for (FB, AAPL, MSFT).
The conventional HAR(3,3) model has 30 parameters, whereas the exponential weighted
HAR(3,3) model has 15 parameters. The decay rate estimates of (FB, AAPL, MSFT) are
(λFB, λAAPL, λMSFT) = (−0.03302, 0.03097, 0.02733), from which Exp. HAR(3,3) models
are fitted in Figure 8. As seen in Table 10, our proposed model performs better than
others with respect to the RMSE, MAE, and AIC whereas the univariate HAR model with
LASSO has good performance on BIC, which are indicated by bold numbers in Table 10.
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Consequently, the proposed model not only has fewer parameters than the conventional
HAR models, but also yields the best performance on the loss errors such as RMSE and
MAE. The exponentially weighted HAR model with decay rates is suitable for the stock
prices of joint financial assets with strong cross-correlation, rather than the volatility, in the
stock market.

Table 10. Comparison of univariate HAR, multivariate HAR, and exponential weighted multivariate
HAR models for (FB, AAPL, MSFT) stock prices from 7 May 2020 to 6 May 2021; p = 3, h = (1, 5, 22);
∗(λFB, λAAPL, λMSFT) = (−0.03302, 0.03097, 0.02733).

Univariate HAR(3) Multivariate HAR(3,3) Exp. Multi. HAR(3,3) ∗

Total # of Parameters 12 30 15
Estimator OLSE LASSO OLSE LASSO RE

FB RMSE 6.1757 6.1953 6.0512 6.1571 5.7108
MAE 4.5110 4.5899 4.5443 4.5703 4.2440

AIC 1498.20 1356.83 1540.83 1406.19 1345.09
BIC 1511.95 1370.18 1643.97 1506.32 1395.15

AAPL RMSE 2.6255 2.6866 2.5978 2.6884 2.5393
MAE 1.9478 1.9877 1.9334 1.9831 1.8996

AIC 1104.74 1009.34 1151.86 1061.76 1007.94
BIC 1118.48 1022.69 1255.01 1161.63 1058.00

MSFT RMSE 3.8234 3.8979 3.8057 3.9024 3.6608
MAE 2.9249 2.9625 2.9316 2.9445 2.8092

AIC 1277.63 1164.14 1327.49 1216.41 1160.11
BIC 1291.39 1177.49 1430.64 1316.53 1210.17

5. Concluding Remark

This work presents the exponentially weighted multivariate HAR models with expo-
nentially decaying coefficients. The models represent very well two main features: long
memory and strong cross-correlation, of financial market data. The common structure of
multivariate data, which has such features, can be expressed by the existence of the decay
rates of the coefficients in the model. For detecting the existence of the decay rates in the
multivariate HAR models, CUSUM-based tests are established in two stages. The first is
whether the multivariate HAR model has an exponential decay rate for each asset. The
second is whether the model has a common rate for all assets. To test the presence of the
rates, difference series are generated from two types of residuals and the change-points
of its mean or variance are detected from the pseudo-time series, but not the raw data.
The null limiting distributions of the test statistics are derived to be the standard Brow-
nian bridge and are used in providing the asymptotic critical values for rejection of the
hypothesis. Easy-to-implement estimators of the decay rates are computed. A Monte Carlo
simulation study verifies the proposed tests by illustrating the related series and evaluating
finite sample performance of size and power of the tests. Empirical examples show the
usefulness of our proposed models in the stock market, especially stock price, but not
volatility. Fewer parameters and smaller residual errors in our models are demonstrated.

Let us consider four aspects: (i) decreased number of parameters; (ii) smaller model-
fitting errors; (iii) representation of common structure with decay rates; and (iv) a suitable
model for stock price movement. These are the main advantages of the exponentially
weighted multivariate HAR models. These advantages will help to practically provide
more efficient models with smaller errors of predictions in financial time series modelling.
In economics and finance, many strongly correlated data of joint assets play a crucial role in
policymaking on economic and social regulations. The multivariate feature of our proposed
model could be useful to improve forecasting accuracy of the financial assets and, thus it is
possible to fine-tune policymaking on such asset classes.

The HAR model has very high applicability in the financial market. An extension of
our proposed model can be useful to joint mutivariate data with strong correlation and long
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memory. In particular, like [12–15], an extended model incorporating exogenous variables
such as an associated-uncertainty index would be a good prediction model to assess the
high forecasting gain. For example, joint datasets, like gold and silver, oil and exchange
rate, or several stock prices in the same sector, are affected together by global issues like
COVID-19 and the Ukrainian War in the current decade. Such a uncertainty-related index
can be added to the model as regressors and the extended multivariate HAR model is
expected to give a good performance.

Also, an extension of the proposed model can be established as a dynamic time series
model that is more applicable to real-world market data, for example, with time-varying
variance, non-Gaussianity or heavy-tailed distribution. Recently, Ref. [18] analyzed a
multivariate HAR-RV model with GARCH errors, for which a weighting scheme based
on the conditional variances of the errors is used to construct the weighted least squares
estimates. An extension of this work can be linked to heteroscedasticity. Exponentially
weighted multivariate HAR models with time-varying variances such as GARCH errors
or ARCH without intercept (see Ref. [44]) would be interesting topics. Reference [44]
proposed a double AR model without an intercept (DARWIN model) as a modification of

an AR-ARCH model as follows: yt = φyt−1 + ηt

√
αy2

t−1 where φ ∈ R, α > 0, {ηt} is i.i.d.
with zero mean and unit variance, and independent of {yj : j < t}. The DARWIN model is
nonstationary and heteroscedastic regardless of the sign of Lyapunov exponent, and hence
it provides us a new way to model the nonstationary heteroscedastic time series. Analysis
on a nonstationary, exponentially weighted HAR model combined with the DARWIN
model will be an interesting topic in modelling heteroscedastic time series data. In the
exponentially weighted multivariate HAR model with the DARWIN errors, statistical
methods for detecting and estimating the decay rates along with the DARWIN parameter
estimation will be a challenging study.
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Appendix A. Proofs

Proof of Theorem 1. From (6), we write Dj,t = ∆̂>j W̃j,t−1 for simplicity, where

∆̂j =
(

λ̂j,2 − λ̂2
j,1, . . . , λ̂j,p−1 − λ̂

p−1
j,1

)>
, W̃j,t−1 =

(
Ŵ(3)

j,t−1, . . . , Ŵ(p)
j,t−1

)>
.

We fix j and first prove

Sj,n =
1

σ̂j,D
√

n

n

∑
t=1

Dj,t →d N(0, 1). (A1)

Let σ2
j,D = limn→∞ σ̂2

j,D in probability, and let

Xn,t =
1

σj,D
√

n
Dj,t =

1
σj,D
√

n
∆̂>j W̃j,t−1.

{Xn,t : t = 1, 2, . . . , n; n = 1, 2, . . . } is a triangular array and it depends on j, but the
subscript is omitted for notational simplicity. It is clear that

n

∑
t=1

X2
n,t →p 1. (A2)
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Note that for each k, j ∈ {1, . . . , p}, λ̂j,k − λ̂k
j,1 = Op(1/

√
n) because the OLSE λ̂j,k of λj,k

satisfies the asymptotic normality of
√

n(λ̂j,k − λj,k) with asymptotic mean zero. Moreover,
we may have the asymptotic normality:

√
n(λ̂j,k − λ̂k

j,1)→d N(0, υ2
k) for some υ2

k > 0. From

this, and from the boundedness of Ŵ(k)
j,t−1 under condition E|Yj,t|2+δ < ∞, we have

E(max
t
|Xn,t|)→ 0. (A3)

For (A1) we prove Sn ≡ Sj,n = ∑n
t=1 Xn,t →d N(0, 1). It suffices to show

E[exp(ιxSn)]→ exp
(
− x2

2

)
(A4)

where ι =
√
−1 and x ∈ R.

Let Zn,1 = Xn,1 and Zn,t = Xn,tI(∑t−1
s=1 X2

n,s ≤ 2) for 2 ≤ t ≤ n, where I(·) is the
indication function. Let J = inf{t : ∑t

s=1 X2
n,s > 2} ∧ n. Then

P(Xn,t 6= Zn,t for some t ≤ n) = P(J ≤ n− 1) ≤ P

(
n

∑
s=1

X2
n,s > 2

)
→ 0 (A5)

by (A2). Now we use the following expansion: exp(ιx) = (1+ ιx) exp
(
− x2

2 + R(x)
)

where

R(x) is some function with |R(x)| ≤ |x|3. Let

Vn =
n

∏
t=1

(1 + ιxZn,t) and Un = exp

(
− x2

2

n

∑
t=1

Z2
n,t +

n

∑
t=1

R(xZn,t)

)
.

Note that VnUn = exp(ιxSn) and Un →p exp
(
− x2

2

)
=: a by (A2) and (A5). Because

VnUn = Vn(Un − a) + aVn, we may show that |Vn| is uniformly integrable and E(Vn)→ 1.
We observe

|Vn| =
n

∏
t=1
|(1 + ιxZn,t)| =

J−1

∏
t=1

(1 + x2X2
n,t)

1/2(1 + x2X2
n,J)

1/2

≤ exp

(
x2

2

J−1

∑
t=1

X2
n,t

)
(1 + |x||Xn,J |) ≤ exp(x2)(1 + |x|max

t
|Xn,t|),

where the inequality |(1 + ιxz)|2 = (1 + x2z2) ≤ exp(x2z2) is used. Thus, by (A3), Vn is
uniformly integrable. Finally we show that E(Vn)→ 1. Let

Fn,t = σ
{

∆̂j, W̃j,s : −∞ < s ≤ t, j = 1, . . . , q
}

with Fn,t−1 ⊂ Fn,t. Set It−1 := I
{

∑t−1
s=1 X2

n,s ≤ 2
}

. We have E(Vn) =

E

[
n

∏
t=1

(
1 + ιxXn,tI

{
t−1

∑
s=1

X2
n,s ≤ 2

})]
= E

[
E

[
n

∏
t=1

(
1 +

ιx
σj,D
√

n
∆̂>j W̃j,t−1It−1 )

∣∣∣∣∣Fn,n−1

]]

= E

[
n−1

∏
t=1

(
1 +

ιx
σj,D
√

n
∆̂>j W̃j,t−1It−1 )E

[
1 +

ιx
σj,D
√

n
∆̂>j W̃j,n−1In−1

∣∣∣∣∣Fn,n−1

]]
. (A6)

We also observe

E

[
1 +

ιx
σj,D
√

n
∆̂>j W̃j,n−1In−1

∣∣∣∣∣Fn,n−1

]
= E

[
1 +

ιx
σj,D
√

n

p−1

∑
k=2

(λ̂j,k − λ̂k
j,1)Ŵ

(k+1)
j,n−1 In−1

∣∣∣∣∣Fn,n−1

]
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= 1 +
ιx

σj,D
√

n

p−1

∑
k=2

E
[
(λ̂j,k − λ̂k

j,1)Ŵ
(k+1)
j,n−1 In−1

∣∣∣Fn,n−1

]

= 1 +
ιx

σj,D
√

n

p−1

∑
k=2

E
[

1√
n
(Γk + op(1))Ŵ

(k+1)
j,n−1 In−1

∣∣∣∣Fn,n−1

]
(A7)

where Γk is a normal random variable, (with mean E[Γk] = 0), which is independent of
Ŵ(k+1)

j,n−1 . The expectation in (A7) can be written as

1√
n

E
[

ΓkŴ(k+1)
j,n−1 In−1

∣∣∣Fn,n−1

]
+ op(1/

√
n) =

1√
n

E[Γk]E
[
Ŵ(k+1)

j,n−1 In−1

∣∣∣Fn,n−1

]
+ op(1/

√
n) = op(1/

√
n).

Thus, the last expression in (A7) is 1 + op(1/n). Proceed this argument of successive
conditioning to (A6) to obtain that E[Vn] = E

[
∏n

t=1
(
1 + op(1/n)

]]
= exp(op(1)) → 1.

Therefore,

E[exp(ιxSn)] = E[VnUn] = E[Vn(Un − a)] + aE[Vn]→ a := exp
(
− x2

2

)
,

which is (A4), and we complete the asymptotic normality of 1
σj,D
√

n ∑n
t=1 Dj,t →d N(0, 1).

Because σ2
j,D = limn→∞ σ̂2

j,D, (A1) holds. Similarly, we can show that S[nz] := ∑
[nz]
t=1 Xn,t

converges to the Brownian motion B(z). It follows that the desired result in Theorem 1
is obtained.

Proof of Theorem 2. The proof is similar to that of Theorem 1. A key difference between
proofs of Theorems 1 and 2 is in the following: Let X∗n,t = 1

σ∗D
√

n ∑
q
j=1(d

2
j,t − σ̂2

j,d) where

σ∗2D = limn→∞ σ̂∗2D in probability, and let S∗n = ∑n
t=1 X∗n,t. By Theorem 4 of [41], we have

the asymptotic normality of
√

n(λ̂j − λ) with asymptotic mean zero for all j = 1, 2, . . . , q
under the null hypothesis with common rate λ. Thus ε̂∗j,t − ε∗t (j) = Op(1/

√
n) as well as

dj,t := ε̂∗ 2
j,t − ε∗t (j)2 = Op(1/

√
n) for all j. So maxt |X∗n,t| = op(1/n) →p 0. Instead of Xn,t

and Sn in the proof of Theorem 1, we replace by X∗n,t and S∗n to obtain the same results,
along with V∗n := ∏n

t=1(1 + ιxZ∗n,t) and E[V∗n ] → 1, where Z∗n,t is given in the same way
with X∗n,t. Asymptotic normality of S2

n holds as well as the desired limiting distribution in
Theorem 2 holds.
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