
molecules

Article

Trifluoromethanesulfonamide vs. Non-Fluorinated
Sulfonamides in Oxidative Sulfamidation of the C=C
Bond: An In Silico Study

Anton V. Kuzmin, Mikhail Yu. Moskalik and Bagrat A. Shainyan *

Siberian Division of Russian Academy of Sciences, A.E. Favorsky Irkutsk Institute of Chemistry,
664033 Irkutsk, Russia; kuzmin@lin.irk.ru (A.V.K.); moskalik@irioch.irk.ru (M.Y.M.)
* Correspondence: bagrat@irioch.irk.ru

Academic Editors: Vito Capriati and Yurii Yagupolskii
Received: 25 September 2020; Accepted: 19 October 2020; Published: 22 October 2020

����������
�������

Abstract: A theoretical analysis of the reaction of oxidative sulfamidation of several alkenes was
performed in order to explain the various experimental observations and different reactivity
of triflamide and non-fluorinated sulfonamides. Transformations occurring in the system
alkene–sulfonamide in the presence of oxidative system (ButOCl + NaI) were analyzed at the
MP2/DGDZVP//B3LYP/DGDZVP level of theory using the IEF-PCM method for taking into account
the solvent acetonitrile (MeCN) effect. As the model substrates, styrene, trimethyl(vinyl)silane,
dimethyl(divinyl)silane and diphenyl(divinyl)silane were chosen and mesylamide, triflamide,
tosylamide and p-nosylamide were taken as the reagents. ButOI generated from ButOCl and
NaI reacts with sulfonamides to give N-iodinated sulfonamides RSO2NHI and RSO2NI2 as active
intermediates, the iodinating activity of the latter being notably higher. The analysis allowed to
answer such challenging questions as different reactivity of nonfluorinated sulfonamides leading
to aziridination and of triflamide resulting in the formation the main products of bis-triflamidation,
or different regioselectivity of halogenation of styrene and trimethyl(vinyl)silane caused by a linear
intermediate iodonium cation in the former case and a cyclic one in the latter.

Keywords: alkenes; trifluoromethanesulfonamide; non-fluorinated sulfonamides; oxidative
sulfamidation; theoretical analysis

1. Introduction

Reactions of sulfamidation and aziridination of alkenes are atom economy and green routes to
C–N coupling reactions [1] widely used in organic synthesis [2,3], resulting in many of biologically
active compounds [4–6]. Amides are able to react with non-activated alkenes only under harsh
conditions [7]; therefore, many attempts were made to discover amidation/aziridination techniques
under mild conditions as well as to increase the yield of the target products. At present, there
are several approaches for the activation of sulfonamide, in which the sulfonamido-containing
precursors are represented by λ3-iodinanes (PhI=NTs) [8–14] and -brominanes [15], azides [16–18],
chloramine-T [19–21], bromamine-T [22,23], N,N-dichlorosulfonamides [24,25], N-bromosuccinimide
(NBS) and N-iodosuccinimide (NIS) [26], nitrido complexes [27–30] and combinations of sulfonamides
with external oxidants [31–34].

The use of chloramines RSO2NClNa allows to perform amination of unsaturated substrates
without metal complex catalysts, whereas aziridination of alkenes and dienes is catalyzed, e.g., by
N-bromoamides [35]. TsNIK is a more effective catalyst for aziridination of 4-methylstyrene with
chloramine-T (yield 75%) than TsNBrNa (60%) or TsNClNa (45%) due to a weaker N–I bond in
TsNIK favoring the formation of the complex of nitrenoid TsNI with Cu salts [36]. The reaction
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of olefins, chloramine-T and CO2 in the presence of ammonium bromide salts directly affords
5-substituted 2-oxazolidinones [37]. In the presence of transition metal salts, chloramines are excellent
hydroxyaminating reagents. Thus, osmium salt-catalyzed reactions of alkenes with chloramine-T result
in β-aminoalcohols—important substrates in the synthesis of natural and pharmaceutically valuable
compounds [38]. CO2-induced haloamination of olefins with chlor- [39] and bromamines [40] was
reported. The same reagents allow to prepare heterocycles of various size with high diastereoselectivity
by intramolecular cyclization of γ-iodoolefins [41].

Dihalogenoamines RSO2NX2 are effective haloaminating reagents for activated alkenes, which
do not need additional oxidants, but, unlike similar reactions of chloramines, require, as a rule, the
presence of metal salt catalysts [42–44]. Dichloroamine-T reacts with α,β-unsaturated ketones in MeCN
to give the Ritter-type products, which, under the action of KOH or K2CO3, give imidazolidines [45–47]
or, with Et3N as the base and CuOTf, aziridines [48].

Iodinanes ArI=NSO2Ar’ are used mainly for aziridination of alkenes [9,49–51]. Note that
aziridination with imino-λ3-bromane CF3SO2N=BrC6H4CF3 is one of a few methods of synthesis of
N-triflylaziridines [15,52,53]. Aziridines can be intermediate products, leading finally to various
heterocycles. Thus, 2-alkoxy-3,4-dihydro-2H-pyranes react with PhI=NTs with rearrangement
and formation of 5-alkoxypyrrolidines [54]. The diversity of possible pathways of the reaction
of sulfonamides and their derivatives with alkenes is schematically shown in Scheme 1.

Scheme 1. Versatile reaction pathways of alkenes with sulfonamide derivatives.

Most of the methods described above require the use of transition metal catalysts. As an alternative,
Minakata et al. proposed a new, metal-free procedure for aziridination of alkenes by commercially
available sulfonamides as a nitrogen source in the oxidative system (ButOCl + NaI) in up to 95%
yield [55]. The active intermediate is ButOI, formed in situ along with other species as was described
in an earlier work [56]. In particular, it was found that amidation of trans-2-octene proceeded with
complete stereoselectivity, leading to the trans-substituted aziridine as the sole product; the conclusion
was made on the completely stereoselective and stereospecific aziridination, consistent with the reaction
mechanism involving a cyclic iodonium intermediate.

The scale of applicability of ButOI-mediated amidation is not limited by the preparation of
aziridines, since the formation of other valuable heterocycles was also reported [3,57–65]. Thus,
non-activated alkenes when treated with benzamides in presence of ButOI afford oxazolines [55]. The
authors proposed a tentative mechanism with participation of the in situ generated molecules of ButOI,
which react with the amide, rather than with alkene, to give N,N-diiodoamides (Scheme 2) [57]. The
formation of the latter intermediates was assumed based on the 1H-NMR analysis, which showed that
the signal of the amide protons gradually disappeared and the signal of the tert-butyl group of ButOH
appeared within one hour at room temperature. Then, RC(O)NI2 react with alkenes to give cyclic
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iodonium intermediates which capture the amide counter anion. Note the temperature dependence
of halogenation of amides: N,N-dibromotosylamide, generated by the reaction of tosylamide with
NBS at 25 ◦C, was completely transformed to N-bromotosylamide upon heating to 40 ◦C, as proven
by 1H-NMR; as a result, the opposite amidation regioselectivity was observed [66]. This is an
illustration of the necessity of both theoretical and experimental investigation of the ButOI-mediated
amidation mechanism.

Scheme 2. Tentative mechanism of formation of iodonium cations by the reaction of alkenes with
N,N-diiodocarboxamides or -sulfonamides as the key intermediates.

In continuation of our studies on the sulfamidation of alkenes and dienes under oxidative
conditions using Minakata’s reagent, ButOCl + NaI, we recently reported on oxidative sulfamidation
of vinyl silanes with triflamide and arenesulfonamides, in which the products of iodochlorination,
aziridination and heterocyclization to 1,4-azasilinanes were obtained in high total yield [61]. Diverse
reactivity in the reactions of oxidative sulfamidation leading to numerous and unexpected products
prompted us to perform a quantum chemical study of the mechanism of oxidative amidation of
alkenes in the presence of ButOCl + NaI. As the model substrates, styrene (1), trimethyl(vinyl)silane
(2), dimethyl(divinyl)silane (3) and diphenyl(divinyl)silane (4) were chosen in the reactions with
mesylamide (CH3SO2NH2, a), triflamide (CF3SO2NH2 or TfNH2, b), tosylamide (TolpSO2NH2 or
TsNH2, c) and p-nosylamide (NO2C6H4

pSO2NH2 or NsNH2, d) were used. The performed study does
not purport to answer all questions concerning the mechanism of oxidative amidation, but, rather, to
shed light on some unresolved experimental observations.

2. Computational Details

The geometries of all molecules were optimized at the B3LYP/DGDZVP level of theory using
the Gaussian 09 software [67]. For all the atoms, the all-electron, double-ζ valence polarized basis set
(DGDZVP) was used. It has been demonstrated that the DGDZVP basis set applied for iodine-containing
organic molecules provides a much better description of the activation barriers than other double-ζ
basis sets, and it even outperformed the triple-ζ basis sets [68]. Due to its small size, it is well-suited
to studying halogen bonding in large systems. Since the ButOI-mediated reactions of oxidative
sulfamidation were carried out, as a rule, in acetonitrile, all calculations were also performed for MeCN
as a solvent, using the integral equation formalism polarizable continuum model (IEF-PCM) [69]. For
each stationary point, frequency calculations were performed to confirm whether these structures were
local minima or transition states (TS). All transition state calculations were accompanied by intrinsic
reaction coordinate (IRC) calculations to verify that each TS connected the corresponding reactants and
products. The Møller–Plesset second order perturbation theory (MP2) was used for energy refinement.
Throughout the Results and Discussion section, if not stated otherwise, “energy” (taking into account
the zero-point vibrational energy (ZPVE) correction) refers to the MP2/DGDZVP//B3LYP/DGDZVP
calculations. For comparison, the long range corrected density functional theory (DFT) functional,
which includes empirical dispersion correction wB97XD with the same basis set, was also tested.
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3. Results and Discussion

3.1. Formation of Reactive Iodine-Containing Species

Since for a successful reaction between alkenes and sulfonamides the reagents, which must be
introduced first into the reaction system, need to be ButOCl (5) and NaI, we started with the analysis
of the reactions occurring between the two, including the formation of ButOI (6) (Scheme 3).

Scheme 3. Possible transformations in the system ButOCl + NaI.

As follows from Scheme 3, two possible pathways for coordination of NaI to the oxygen atom of
ButOCl (5) can occur: (i) via the iodine atom, or (ii) via the sodium atom, leading in the formation of
ButOI (5→ 6) or ICl (5→ 6’), respectively. The former reaction proceeds via the transition state TS5-6

(173i cm–1) lying 28.8 kcal/mol above the reagents (ButOCl + NaI). The energy gain for the formation
of ButOI 6 is 10.9 kcal/mol. The 5� 6 equilibrium is shifted towards 6 with ∆G = −10.5 kcal/mol. We
could not locate a transition state for the reaction 5→ 6’. The forced relaxed stepwise rapprochement
of ButOCl and NaI that could lead to the formation of ICl (6’) and ButONa was accompanied by a
steady energy increase up to 24.5 kcal/mol. Therefore, the only possible reaction in the system ButOCl
+ NaI is the formation of ButOI (6), while the formation of iodine chloride 6’ apparently occurs in a
different way. The results are summarized in Table 1.

Table 1. Relative energies (kcal/mol) of molecules 6 and 6’ formed in the system ButOCl + NaI.

Parameter 5 TS5-6 6 6’

MP2/DGDZVP//B3LYP/DGDZVP

∆E+ZPVE 0.0 28.8 −10.9 24.5
∆G 0.0 38.8 −10.5 23.6

wB97XD/DGDZVP

∆E+ZPVE 0.0 25.4 −13.0 20.0
∆G 0.0 34.3 −12.8 19.4

3.2. The Effect of the Sulfonamide Structure

In view of numerous examples illustrating specific behavior of triflamide, distinct from that of
non-fluorinated sulfonamides [58,60,70,71], it was of interest to compare the relative iodinating activity
of different N-iodinated sulfonamides. We performed such an analysis at the MP2//B3LYP level of
theory using as a criterion the ease of the N–I bond rupture in both active intermediates capable of
acting as iodinating agents, namely, RSO2NHI (7) and RSO2NI2 (8). For the following reactions:

RSO2NHI→ RSO2NH−+ I+ (1)

RSO2NI2 → RSO2NI−+ I+ (2)

where the relative ZPVE-corrected values of ∆E decrease (and, hence, the iodinating activity increases)
in the following order: RSO2 = Ts (16.7) ≥Ms (16.1) > Ns (12.5) >> Tf (0) kcal/mol for (7), and RSO2

= Ts (14.8) ≥ Ms (14.3) > Ns (11.0) >> Tf (0) kcal/mol for (8). Expectedly, the iodinating activity of
RSO2NI2 (8) is slightly (by 1.5–1.9 kcal/mol) higher than that of RSO2NHI (7).



Molecules 2020, 25, 4877 5 of 16

The performed theoretical analysis also allows shedding light on another issue: the dependence
of the product composition on the structure of the sulfonamide. Thus, while the reactions of
non-fluorinated sulfonamides with various alkenes, including styrene 1, in the system ButOCl + NaI
gives rise only to aziridines 9 [55], from the reaction of styrene with triflamide the main product of
bis-amidation 10 and a substantial amount (21%) of iodoalcohol PhCH(OH)CH2I 11 were isolated [72]
(Scheme 4).

Scheme 4. Different courses of the reaction of styrene with triflamide and non-fluorinated sulfonamides.
Conditions: (ButOCl + NaI), MeCN, −10 ◦C.

To rationalize this unexpected result, we performed calculations of the two following reactions,
focusing not on the absolute values of ∆∆E between the two reactions, which itself does not have much
sense, but rather on its variation with substituent R:

RSO2NH2+ButOI→ RSO2NHI + ButOH (3)

1 + ButOI + H2O→ 11 + ButOH (4)

The energetic prevalence of the latter process for the reaction with triflamide is much higher
than for non-fluorinated sulfonamides [CF3 (4.3) >> CH3 (1.8) > p-NO2C6H4 (0.7) ≥ p-CH3C6H4

(0) kcal/mol] suggesting that the formation of iodoalcohol is relatively much more favorable with
triflamide than with other sulfonamides. This is consistent with its formation in our work [72], and
with the literature data on its absence in the reaction with non-fluorinated sulfonamides [55].

No less interesting is a question about different regioselectivity of halogenation of styrene 1
and trimethyl(vinyl)silane 2. While the former gives only the β-iodinated product 11 (Scheme 4),
compound 2 affords, apart from the products of bis-amidation 12 and dihalogenation 13, both the α-
and β-halogenated products 14, 15 in comparable (although small) yields [61] (Scheme 5).

Scheme 5. Different regioselectivity of halotriflamidation of trimethyl(vinyl)silane 2.

The calculations give an explicit answer to the question about this apparent discrepancy. The
reason is the different structure of the corresponding iodonium cations: almost linear cation in the case
of styrene and practically cyclic one in the case of silane 2 as follows from the comparison of the bond
lengths and bond angles in Figure 1.
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Figure 1. Linear (a) and cyclic (b) iodonium cations from electrophilic iodination of styrene 1 and
trimethyl(vinyl)silane 2.

The linear (left) structure in Figure 1 is stabilized as the benzylic type cation, which can add a
nucleophile only to the α-carbon affording the β-iodinated product, e.g., 11. The cyclic (right) structure
is due to the enhanced electron density on the vinyl group of silane 2 owing to the electronodonor
effect of the Me3Si group, and can add the amide anion to either of the two carbon atoms resulting in
both α- and β-halogenated products, as was experimentally proven (Scheme 5).

The most challenging difference between the reactivities of non-fluorinated sulfonamides and
triflamide is the formation of aziridines from styrene 1 or silane 2 as the only products for the former
and the main products of bis-triflamidation of 1, 2, and some other alkenes for triflamide [61,72,73], as
shown in Scheme 6 on the example of silane 2.

Scheme 6. Different courses of the reaction of trimethylvinylsilane with triflamide and
non-fluorinated sulfonamides.

Similar behavior of substantially different substrates in Scheme 4; Scheme 6 proves the generality
of the conclusion about different reactivity of triflamide and its nonfluorinated analogues and requires
reasonable explanation. For this, we have calculated the reactions of bis-sulfamidation and aziridination
for mesylamide and triflamide on the example of silane 2 and compared the thermodynamics of routes
(a) and (b) in Scheme 7.

Scheme 7. Bis-sulfamidation versus aziridination of trimethyl(vinyl)silane.

Due to the same composition of the products in Scheme 7, such an approach allows, without
loss of generality, to avoid the analysis of numerous possible transition states and intermediates by
comparing the free energies for the two pathways. Because of the high ring strain of the aziridine ring,
route (a) is energetically 26.4 kcal/mol preferable over route (b) for R = CH3, and even more preferable
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(by 29.5 kcal/mol) for R = CF3. The entropy factor acts in the opposite direction and decreases the value
of ∆G with respect to ∆E from −26.4 to −9.8 kcal/mol for R = CH3 and from −29.5 to −14.0 kcal/mol for
R = CF3. Therefore, the entropy factor also favors route (a), the value of ∆∆G being 4.2 kcal/mol. Such
a notable free energy difference explains the experimentally observed formation of linear adducts in
the reactions with triflamide [61,72] and of aziridines with non-fluorinated sulfonamides [55].

3.3. Interactions between ButOCl(I), Alkene and Sulfonamide

The next step was to investigate possible interactions of ButOCl(I) and the model alkenes 3
and 4 with various sulfonamides. The approaching of ButOCl (5) to dimethyl(divinyl)silane (3) and
diphenyl(divinyl)silane (4) is slightly exothermic by 3.0 and 3.8 kcal/mol, respectively, resulting in the
formation of π-complexes with one of the vinyl groups; the formation of similar complexes with ButOI
(6) is twice as exothermic as that (5.9 and 7.4 kcal/mol, respectively). However, the Gibbs free energy
slightly increases due to the loss of entropy, see Table 2.

Table 2. Relative energies (kcal/mol) of π-complexes of divinylsilanes 3, 4 with t-BuOCl 5 and t-BuOI 6.

Parameter 5 + 3 or 4 5···3 5···4 6 + 3 or 4 6···3 6···4

MP2/DGDZVP//B3LYP/DGDZVP

∆E+ZPVE 0.0 −3.0 −3.8 −10.9 −16.8 −18.3
∆G 0.0 6.9 5.0 −10.5 −6.0 −7.7

wB97XD/DGDZVP

∆E+ZPVE 0.0 – – −13.0 −19.2 −21.2
∆G 0.0 – – −12.8 −8.6 −8.3

The reaction of halogenating agents ButOCl(I) with the model sulfonamides a–d proceeds as
shown in Scheme 8, via the transition state TS5-16 or TS6-7 (Figure S1). The transition states TS5-16

corresponding to the formation of N-chlorosulfonamides (16) lie very high in energy, from 59.5 (d) to
64.0 kcal/mol (a), suggesting a highly improbable reaction. Still, the formation of products 16a–d is
slightly exothermic, with the energy gain varying from 1.8 (b) to 6.6 kcal/mol (c or d, see Table S1).

Scheme 8. Halogenation of sulfonamides with ButOI(Cl).

In contrast, iodination of sulfonamides a–d with ButOI (6) occurring via the transition state
TS6-7 is connected with overcoming a much lower activation barrier from 28.6 (b) to 32.0 kcal/mol
(a) with respect to the nonreacting system (5 + sulfonamide a–d), which is about twice as low as
that for chlorination through the transition state TS5-16 (Scheme 8, Table S2). Hence, the iodination
of sulfonamides with ButOI proceeds much easier than their chlorination with ButOCl, in spite of
lower N–I energy bond with respect to N–Cl bond (by ~5 kcal/mol). This means that the ease of
halogenation is determined by the ease of the O–Hlg bond rupture, rather than the N–Hlg bond
formation. N-Iodosubstituted non-fluorinated sulfonamides 7 a,c,d lie 0.2–2.4 kcal/mol lower, but, for
N-iodotriflamide 7b, it lies 2.2 kcal/mol higher with respect to the unreacted system (sulfonamide +

ButOI). Further iodination affording N,N-diiodosulfonamides 8 through TS7-8 proceeds by ~7 kcal/mol
easier than the first one. The equilibrium in the system (sulfonamide + 2ButOI � 8 +2ButOH) is
slightly shifted to the products, the Gibbs free energy ∆G varying from 0.8 (b) to 3.1 kcal/mol (c, d), and
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the ZPVE-corrected total energies of the products ∆E being from 0.7 (b) to 4.4 kcal/mol (c) below the
reagents (Table S2). Taking into account the fact that ButOI is formed in the reaction of ButOCl with NaI,
which is exothermic by 10.9 kcal/mol (Table 1), the relative energy of N,N-diiodosulfonamides 8 must
be 2 × 10.9 = 21.8 kcal/mol below the energy of the unreacted system (2ButOCl + 2NaI + sulfonamide).

3.4. Analysis of Reactivity of Sulfonamides, Mono- and Diiodosulfonamides

Some geometric parameters of sulfonamides a–d, N-iodosulfonamides 7, and
N,N-diiodosulfonamides 8 as well as some electronic effects in their molecules are presented
in Table 3.
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Table 3. Geometric and electronic parameters of sulfonamides, mono- and diiodosulfonamides RSO2X, X = NH2–nIn (MP2/DGDZVP//B3LYP/D GDZVP). HOMO
(highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), CM5 (charge model 5), NBO (natural bond order), LP (lone pair).

Parameter
R = CH3 R = CF3 R = p-Tol R = p-NO2C6H4

X= NH2 NHI NI2 NH2 NHI NI2 NH2 NHI NI2 NH2 NHI NI2

S–N, Å 1.678 1.707 1.745 1.646 1.659 1.679 1.683 1.717 1.761 1.673 1.702 1.740
N–I, Å – 2.115 2.136 – 2.103 2.121 – 2.116 2.139 – 2.111 2.134

∠SNI(H)I(H) 126.5 126.6 137.0 135.1 141.0 155.3 124.9 123.7 135.5 127.7 127.4 138.6
ΣN 335.5 337.3 344.9 343.3 348.6 355.2 333.8 334.6 343.7 336.6 338.1 346.0

HOMO, eV −12.720 −10.480 −10.242 −13.453 −10.685 −10.382 −9.734 −9.835 −9.881 −10.375 −10.349 −10.289
LUMO, eV 5.141 0.644 −0.475 4.946 0.317 −0.735 2.161 0.694 −0.435 0.197 0.116 −0.545

LUMO–HOMO gap, eV 17.861 11.124 9.767 18.398 11.001 9.647 11.895 10.529 9.449 10.571 10.466 9.744
CM5 charge on N −0.600 −0.503 −0.412 −0.574 −0.501 −0.428 −0.601 −0.502 −0.407 −0.593 −0.501 −0.412
CM5 charge on I – 0.223 0.223 – 0.279 0.272 – 0.208 0.212 – 0.230 0.232

Electrophilicity (I) – 1.866 1.600 – 2.168 1.820 – 1.819 1.538 – 1.986 1.568
NBO (LPN occupancy) 1.900 1.909 1.918 1.866 1.867 1.867 1.897 1.908 1.918 1.888 1.898 1.907
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As follows from Table 3, with the increase of the iodine atoms number (n) from 0 to 2, the S–N
bond in sulfonamides is elongated (weakened). Simultaneously, the pyramidality of the nitrogen
atom decreases indicating the increase of the p-character of the nitrogen lone pair from sp2.9 to sp2.5

(R = Me, Ar) or from sp2.5 to sp2.2 (R = CF3). The HOMO–LUMO energy gap narrows from the
maximum value of 18.4 eV (R = CF3, n = 0) to the minimum of 9.4 eV (R = p-Tol, n =2), while the LUMO
goes down and in N,N-diiodosulfonamides (n = 2), it lies below zero (~ –0.4 eV), being localized on
the antibonding iodine atom lone pair. Note that the MO localized on the π-bond of the vinyl group
in 3 corresponds to HOMO and lies at –9.97 eV, whereas in 4 it corresponds to HOMO-4 and lies at
–10.32 eV. With the increase of the iodine atoms, the electron density on the nitrogen atom decreases,
whereas its variations on the iodine atom are negligible.

N-Iodosulfonamides 7 are capable of forming π-complexes with the vinyl group of substrates
3 and 4 with lowering the energy of the system by ~7 kcal/mol as compared to unreacted system
[7 + 3 (or 4)] (Table S3). These π-complexes are pre-reaction complexes on the potential energy
surface of the reaction of iodosulfamidation (Scheme 9). The transition states of the reaction
of iodosulfamidation of 3 (4), TS7-17, lie 23 kcal/mol (20 kcal/mol) above the unreacted system
[7 + 3 (or 4)]. The products of iodosulfamidation of 3 or 4 (17 or 17′) lie ~45 kcal/mol below
the unreacted system. N,N-Diiodosulfonamides 8 demonstrate similar reactivity; however, the
reaction with 3 or 4 proceeds much easier because the barrier heights (TS8-18) are lower than
those of TS7-17, with the activation energies from 4.7 (c) to 9.5 kcal/mol (b) in the case of
TS8-18 and from 1.6 (d) to 9.0 kcal/mol (b) in the case of TS8-18’ (Table S4). The adducts of
N,N-diiodosulfonamides with 3 or 4—N-(2-(dimethyl(vinyl)silyl)-2-iodoethyl)-N-iodosulfonamides
18 or N-(2-(diphenyl(vinyl)silyl)-2-iodoethyl)-N-iodosulfonamides 18’ lie ~46 kcal/mol below the
nonreacting system (8 + 3 or 4).

Scheme 9. Formation of the products of iodosulfamidation by the reaction of N-iodo- (7) and
N,N-diiodosulfonamides (8) with dimethyldivinyl- (3) and diphenyldivinylsilane (4).

Adducts 18 or 18’ are key intermediates for further development of the reaction, since they can
(i) act as strong iodinating agents for sulfonamides, monoiodosulfonamides and other species in
the reaction mixture; (ii) add intramolecularly to the second C=C bond due to the presence of the
N-I moiety forming 1,4-azasilinanes; (iii) eliminate molecular iodine to give N-sulfonylaziridines
(Scheme 10).
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Scheme 10. Possible transformations of N-(2-((vinyl)silyl)-2-iodoethyl)-N-iodosulfonamides 18.

The iodinating properties of 18 are due to a weak N–I bond (<40 kcal/mol) and are manifested,
e.g., in the exchange reactions with sulfonamides or N-iodosulfonamides, or with ButOH to recover
ButOI. The 18→ 17 reaction proceeds through TS18-17 with a very low activation barrier of only circa
4 kcal/mol in the forward direction in the case of 18b. A similar reaction with 18a has an even smaller
barrier, of circa 3 kcal/mol.

On the other hand, the N–I iodine atom in 18 can form intramolecular π-complex with
the intact vinyl group with subsequent cyclization to 1,4-azasilinanes 19. The corresponding
transition state TS18-19 was also found, Figure 2. The 18 → 19 reaction has activation barrier of
~30 kcal/mol in the forward direction; its driving force is the formation of a stable product of
cyclization—(3R,5S)-3,5-diiodo-1-organylsulfonyl-1,4-azasilinanes 19 (twist conformer), which lies
33–38 kcal/mol below adducts 18 depending on substituents R and R1 (Table S5). We could not locate
TS18-19 for R = CF3 and R1 = CH3; instead, cyclization occurred with synchronous elimination of
CF3SO2. For R1 = Ph, the corresponding TS18-19 was found to lie 50 kcal/mol above 18′b making this
transformation impossible. Note that product 19 is formed stereospecifically and, initially, in the twist
conformation of the ring, which is unfavorable as compared to “chair” by 5–7 kcal/mol.

Figure 2. The structure of the transition state TS18-19, R = R1 = CH3.

Finally, adducts 18 can eliminate molecular iodine to afford aziridines 20 (Scheme 9, Table S5).
The reaction is preceded by elimination of the iodine atom from nitrogen in 18 via TS18-20. The 18→
20 activation barriers are only 6–10 kcal/mol in the forward direction. Again, TS18-20 for R =CF3 could
not be located for both R1 = CH3 and Ph. Aziridines 20 lie ~3.8 kcal/mol (in average) higher than 18
at the MP2//B3LYP level of theory, whereas wB97XD, vice versa, predicts it to be 2.8 kcal/mol more
favorable (for R = R1 = CH3). The energy diagram for transformation of adducts 18 for R = R1 = CH3

is shown in Figure 3.
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Figure 3. Energy diagram for conversion of adduct 18 to 1,4-azasilinane 19 and aziridine 20. R = R1 =

CH3 (refer to Scheme 10 for details).

4. Conclusions

The analysis of the sulfamidation of different substrates with various sulfonamides in the oxidative
system (ButOCl + NaI) was performed at the MP2/DGDZVP//B3LYP/DGDZVP level of theory with the
solvent effect taken into account by the IEF-PCM method for MeCN as a solvent. The only energetically
favorable process in the aforesaid system is the formation of ButOI acting as an active intermediate
generating the mono- and diiodinated sulfonamides RSO2NHI and RSO2NI2 from the reagents. Judged
from the ease of the N–I bond rupture with generation of electrophilic I+ in the two species, their
iodinating activity increases in the order RSO2: Ts ≥Ms > Ns >> Tf being 1.5–1.9 kcal/mol higher for
RSO2NI2 than for RSO2NHI. The intriguing difference between the reactivity of triflamide forming
mainly the products of bis-triflamidation and the non-fluorinated sulfonamides leading to aziridines is
found to be due to different thermodynamics of the two routes. The energetic preference of addition
over cyclization caused by a high strain of the aziridine ring is by 3.1 kcal/mol larger for triflamide than
for mesylamide. Smaller entropy loss for triflamide increases this difference to ∆∆G of 4.2 kcal/mol,
thus explaining the experimental observations. Different regioselectivity of oxidative addition to
styrene and trimethyl(vinyl)silane is explained by a different structure of the intermediate iodonium
cations: a linear one formed from styrene and leading to the β-iodinated product, and a cyclic one
formed from vinylsilane and opened by nucleophilic attack of RSO2NH– on the sterically less hindered
β-carbon atom. The mechanism of the reaction of non-fluorinated sulfonamides RSO2NH2 with
divinylsilanes 3 and 4 in the oxidative system (ButOCl + NaI) has been studied in detail. The reaction
results in the formation of N-sulfonylaziridines and 1,4-azasilinanes as the kinetic and thermodynamic
products, respectively. The adducts of N,N-diiodosulfonamides to one of the vinyl groups of the silane
are key intermediates of the reaction.

Supplementary Materials: The following are available online, Figure S1 (structure of TS5-16, TS6-7 for R = CH3.),
Tables S1–S5 (relative total and free energies of intermediates of transformations 5→16, 6→8, 7→17(17’), 8→18(18’),
18→19(20) and 18′→19′(20′).
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