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ABSTRACT

Stability is a fundamental requirement for both biological and engineered neu-

ral circuits, yet it is surprisingly difficult to guarantee in the presence of recurrent

interactions. Standard linear dynamical models of recurrent networks are un-

reasonably sensitive to the precise values of the synaptic weights, since stability

requires all eigenvalues of the recurrent matrix to lie within the unit circle. Here

we demonstrate, both theoretically and numerically, that an arbitrary recurrent

neural network can remain stable even when its spectral radius exceeds 1, pro-

vided it incorporates divisive normalization, a dynamical neural operation that

suppresses the responses of individual neurons. Sufficiently strong recurrent

weights lead to instability, but the approach to the unstable phase is preceded

by a regime of critical slowing down, a well-known early warning signal for loss

of stability. Remarkably, the onset of critical slowing down coincides with the

breakdown of normalization, which we predict analytically as a function of the

synaptic strength and the magnitude of the external input. Our findings sug-

gest that the widespread implementation of normalization across neural systems

may derive not only from its computational role, but also to enhance dynamical

stability.
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I. INTRODUCTION

Divisive normalization is a form of multiplicative neuronal modulation occurring in the brain

whereby the response of an individual neuron is divided by the summed activity of other similarly

tuned neurons. Introduced in the 1990s to explain nonlinearities in the responses of neurons in the

primary visual cortex [1, 2], it was later invoked to interpret a larger body of physiological data in

the olfactory [3] and auditory [4] cortical areas, as well as in cognitive processes such as attention,

working memory and value-based decision making [5–8]. Simply put, normalization explains how

the response of a given neuron, which is selective for a specific stimulus, is suppressed by different

stimuli that would elicit a weaker or no response if they were presented alone, as illustrated in

Fig. 1a. Notwithstanding the general character of this neural computation, different biophysical

mechanisms may perform normalization in different neural systems, including intracortical shunt-

ing inhibition [2, 9], thalamocortical synaptic depression [10], pre-synaptic inhibition [3], recurrent

amplification (i.e., amplifying weak inputs more than strong inputs) [11–15], to name the most

prominent ones. In our computational model, we implement divisive normalization via a mul-

tiplicative interaction between the principal neurons and a population of (secondary) inhibitory

neurons, as illustrated in Fig. 1b,c. This model, which goes by the name of ORGaNICs [16], is

much like the linear recurrent circuits introduced in the 1980s [17], but with a multiplicative gain

on the recurrent term that implements normalization (see Fig. 1b,c).

ORGaNICs have been proved to be unconditionally stable when the recurrent weight matrix is

the identity [18]. Here we elaborate on the relationship between normalization and stability in the

case of a generic recurrent weight matrix, such as a large random matrix drawn from the Gaussian

Orthogonal Ensemble (GOE) [19]. We find that ORGaNICs models with recurrent weights drawn

from the GOE ensemble are stable even when the spectral radius of the recurrent matrix is larger

than 1, thanks to the normalization mechanism. Quantitatively, ORGaNICs push the stability

limit of linear models by more than 100% (see phase diagram of stability in Fig. 5). Perhaps more

importantly, we find that the transition to an unstable fixed point is preceded by critical slowing

down [20, 21] in the neural dynamics (where the circuit is slow to reach the fixed point or to recover

from small perturbations), the onset of which co-occurs with the breakdown of normalization in the

neural responses. Remarkably, this result implies that the breakdown of normalization is an early

warning signal for the loss of stability of the neural network, a signal we can predict analytically

in terms of the recurrent interaction strength (i.e., the variance of the recurrent weights) and the

magnitude of the external input.
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II. ORGaNICs MODEL OF NORMALIZATION

In its simplest form, normalization works by dividing a neuron’s total input by the sum of all

inputs to N neurons in the normalization pool [1], expressed mathematically by the formula

y+i =
z2i

σ2 +
∑N

j=1 z
2
j

, (1)

where y+i is the firing rate of neuron i; zi ∈ [0, 1] is its input drive, defined as a weighted sum of

the responses of a population of presynaptic neurons; and σ is the semisaturation constant, whose

experimental value in primary visual cortex (V1) is σ ∼ 0.1 [22]. The purpose of the normalization

mechanism is to normalize the output responses y+i via the ratio between the input drive of an

individual neuron and the input drives summed across all of the neurons [5, 16, 23–29]. Two

important predictions of the normalization equation (1) as applied to visual cortex are illustrated

in Fig. 1a, namely response saturation and cross-orientation suppression.

Since Eq. (1) describes a neural process that is static, it is natural to ask how the output

responses y+i (t) evolve in time towards the normalized state given by Eq. (1). That is: how

does a neural circuit accomplish normalization? A mathematical way to achieve normalization

dynamically is to couple the output responses of the principal neurons, y+i (t), to a secondary

neuronal population, represented by a single variable a(t), that acts as a multiplicative inhibitory

modulator. The class of dynamical systems implementing divisive normalization in this way is

known as ORGaNICs [16, 18]. The simplest ORGaNICs involve only two neurons and is described

by the following dynamical equations
τyẏ = −y + z + (1− a+)y

τaȧ = −a+ σ2 + y+a ,
(2)

where y(t) and a(t) represent the membrane potentials (relative to an arbitrary threshold potential

that we take to be 0) of the excitatory (E) and inhibitory (I) neurons, respectively, and y+ and

a+ are the corresponding firing rates. The 2-neuron circuit described by Eq. (2) is depicted in

Fig. 1b. The firing rate of the E neuron y+ is related to the membrane potential by squaring,

y+ = ky2 [1, 30–33] (henceforth we set the dimensional proportionality factor k = 1), while the

firing rate of the I neuron is given by a+ =
√

⌊a⌋, where ⌊x⌋ = max(0, x) (see Supplementary

Section VE and Fig. S10 for alternative activation functions); and τy > 0, τa > 0 are the neurons’

intrinsic time constants. The circuit in Eq. (2) models, for example, the response of a neuron in

the primary visual cortex with z proportional to stimulus contrast, as seen in Fig. 1b. At the
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FIG. 1. Normalization via ORGaNICs. a, An orientation selective principal neuron y1 in primary visual cortex

(V1) fires when the stimulus orientation matches its preferred orientation (pink curve). The larger the stimulus

contrast z1, the greater the strength of the response. The firing rate y+
1 can be modeled by a nonlinear response

function that saturates at high contrast. When a second grating stimulus z2 with orientation perpendicular to the

preferred one (viz. an orthogonal mask) is presented simultaneously with stimulus z1, there is a rightward shift of

the response function y+
1 (blue curve). The suppressive effect of the orthogonal mask can be modeled by an extra

term z22 in the denominator of the response function. b, The saturation of the firing rate y+ at high contrast z can

be obtained as the fixed point of the 2-neuron circuit in Eq. (2) involving the principal neuron y and a secondary

inhibitory neuron a that acts on y as a multiplicative gain modulator. This fixed point is locally stable for any value

of the time constants τy, τa and the semisaturation constant σ. c, The suppressive effect of the orthogonal mask

can be modeled by the fixed point of the 3-neuron circuit, where y1 and y2 respond selectively to the vertical and

horizontal orientations, respectively, and a performs the multiplicative gain modulation on both y1 and y2. This

fixed point is locally stable for any value of the parameters. Notice that neurons y1 and y2 do not interact directly,

but only through neuron a, i.e., there are no recurrent connections between the principal neurons. d, Recurrent

connections are included via the weight matrix W composed of the identity I plus a random matrix K modeling

lateral synaptic connections between the principal neurons. The weights Kij are E:I balanced (i.e., mean 0) and

sampled from a symmetric Gaussian distribution such that the spectral radius of W is equal to 1 + 2∆ in the limit

where the number of neurons N goes to infinity.
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fixed point, the principal neuron y follows the normalization equation (1), i.e. y+ = z2

σ2+z2
, which

explains the saturation of the firing rate at large contrast z. Moreover, this normalization fixed

point is always locally stable [18] (see Fig. 1b, c).

Although it has been proved that a two-neuron ORGaNICs is unconditionally stable for any

strength of the recurrent drive [18], the stability of a high-dimensional circuit with arbitrary re-

current connections has not been studied. Thus we ask: what happens when arbitrary recurrent

connections (i.e. interactions) are included in the circuit? Do ORGaNICs still accomplish normal-

ization? Is stability preserved?

To answer these questions we include recurrent connections between the principal neurons as

described by the following set of differential equations
τyẏi = −yi + zi + (1− a+)

N∑
j=1

Wijyi

τaȧ = −a+ σ2 +

(
N∑
i=1

y+i

)
a ,

(3)

where the recurrent weight matrix W captures lateral connections between the principal neurons,

as shown in Fig. 1d. Our goal is twofold: first, we determine the conditions on W and z such

that normalization still approximately holds for the circuit in Eq. (3); second, we investigate the

consequences of the breakdown of normalization, due to strong recurrent interactions, for the

stability of the whole neural network.

III. LOSS OF NORMALIZATION AS AN EARLY WARNING SIGNAL OF

NEURODYNAMICAL INSTABILITY

A. Numerical solution of the fixed point

We start with a numerical study of the stability of the fixed-point of Eq. (3) and then we derive

our analytical solution perturbatively, supported by the exact numerical result. We express the

recurrent matrix as the sum of the identity plus a perturbation as

W = I +K , (4)

whereK is a symmetric GOE random matrix [19] whose entriesKij are independent and identically

distributed Gaussian random variables with zero mean and variance ∆2/N if i = j or ∆2/2N if

i ̸= j, corresponding to balanced excitation and inhibition. The scaling of the variance with

1/N ensures that the spectral radius ρ(K) does not grow with the number of neurons N , but is
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controlled only by ∆ (specifically, ρ(K) = 2∆, hence ρ(W ) = 1 + 2∆, see Fig. 1d). The choice

of a random matrix to study the stability of large systems of differential equations can be traced

back to the seminal work of May on the stability of complex ecosystems [34], that initiated a

new field in theoretical ecology [35, 36] as well as the famous diversity-stability debate [37–39].

Methods based on random matrix theory are also well suited to model very large neural circuits

whose experimental parametrization would be otherwise unfeasible [40]. Here, we follow a similar

approach with the goal of deriving a condition on the recurrent interaction strength ∆ such that

the output responses yi still approximately satisfy the normalization equation (1), and then study

the consequences of the breakdown of normalization on the system’s stability. We note, en passant,

that a linear model (i.e. a model where a ≡ 0) would become unstable as soon as the spectral

radius of W gets larger than 1, i.e. a soon as ∆ > 0 (see Fig. 5). In contrast, the nonlinear model

described by Eq. (3) can be stable even when W has spectral radius larger than 1, as we show

next.

In Figure 2a,b we show the numerical solution of the fixed point of Eq. (3) (see Supplementary

Section VA for details on the numerical methods). We plot the mean and variance of the fixed

point membrane potentials, yi, over the ensemble of random recurrent matrices K, as a function of

the input drive z for ∆ = 0.05 and ∆ = 0.25. We find that the output responses, on average, still

follow the normalization curve, i.e. E[yi] ∼ zi/
√

σ2 + ||z||2 (noting that membrane potential in this

model is the square root of firing rate), but pick up a variance that increases with increasing ∆.

For sufficiently large ∆ we observe that the circuit’s convergence to its fixed point, as measured by

the real part of the largest eigenvalue λ of the Jacobian evaluated at the fixed point [41], becomes

very slow (i.e. λ ∼ 0 corresponding to a convergence time tconv = 1
|λ| ≫ 1), as seen in Fig. 2b.

This phenomenon, called critical slowing down, is widely considered to be an important early

warning signal that anticipates the system’s tipping point [20, 21, 42].

To identify the onset of critical slowing down we plot in Fig. 3a the probability distribution

P (λ) of the real part of the largest eigenvalue of the Jacobian at the fixed point for circuits with

N = 1000 neurons, weak input drive z = 0.01, and different values of the recurrent interaction

strength ∆. At small ∆, P (λ) has a gap from 0, which closes when ∆ approaches the critical value

∆ = ∆csd, signaling the onset of critical slowing down. To get a more precise estimate of ∆csd, we

extrapolate the mean and variance of P (λ) in the limit N → ∞ via finite size analysis, yielding the

asymptotic mean and variance shown in Fig. 3b (see Supplemenatry Section VB and Figs. S2, S3

for details on the extrapolation to N → ∞). The variance goes to zero in the large N limit,

meaning that P (λ) becomes a δ-function sharply peaked around its mean. The mean vanishes at
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FIG. 2. Numerical solution to the ORGaNICs’ fixed point equations. a, Fixed-point average membrane

potential E[y] (open circles) as a function of the input drive z (here we use N = 100 neurons and zi = z/
√
N , called

delocalized input drive) for an E:I balanced recurrent network K with zero mean and std. dev. ∆ = 0.05, obtained

by solving numerically Eq. (3) using the explicit Euler method with time step dt = 0.05 × τy. The semisaturation

constant is σ = 0.1 and the neurons’ time constants τy and τa are equal. Each point is an average over 1000

realizations of the synaptic weight matrix K. The neural response still follows, on average, the normalization Eq. (1)

(solid red curve), but picks up a variance across different random samples of recurrent synaptic weights, represented

by the shaded area around the data points. The color code of the shaded area represents the real part of the largest

eigenvalue of the Jacobian at the fixed point averaged over samples, whose value is well below 0 for all z. b, For

∆ = 0.25 the average response is still normalized, but the variance (across random samples of the recurrent weights)

is bigger than in (a) (see Fig. S1 for more ∆ values). For sufficiently small input drives, the largest eigenvalue of the

Jacobian at the fixed point becomes very small (λ ∼ 0). As a consequence, convergence to the fixed point occurs on

time scales much longer than the time constant τy of individual neurons, a phenomenon known as critical slowing

down (see also Fig. 3c).

∆ = ∆csd and remains zero in the whole interval ∆csd ≤ ∆ ≤ ∆c (Fig. 3b). In this interval the

neural dynamics are very slow (compared to the neuron’s intrinsic time scale τy) to reach the fixed

point, as illustrated by some representative trajectories shown in Fig. 3c. Eventually, for ∆ ≥ ∆c,

the circuits enter first into limit cycles and then become unstable (see Fig. 5).

Next we demonstrate that the onset of critical slowing down occurs precisely when normalization

of the neural responses breaks down.

B. Loss of normalization predicts critical slowing down

To quantify the loss of normalization, we look at the mean and variance (across many instances

of the recurrent matrix K) of the neural responses. As seen in Figure 2, the neural response yi
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FIG. 3. Definition of critical slowing down. a, Probability distribution of the largest eigenvalue of the Jacobian

at the fixed point for a network with N = 1000 neurons (see Fig. S2 for different sizes); input drive zi = 0.01/
√
N

(very weak input drive); semisaturation constant σ = 0.1; and several values of the recurrent interaction strength ∆.

For small ∆ the distribution P (λ) is gapped from 0 and, as a consequence, the neural responses converge quickly to

their fixed points. When ∆ increases, the gap shrinks and then closes at ∆ = ∆csd, signaling the onset of critical

slowing down. For ∆csd ≤ ∆ ≤ ∆c the neural responses converge slowly to their fixed points. For ∆ ≥ ∆c the neural

circuits do not have stable fixed points, but exhibit limit cycles and, for even larger ∆, they eventually become

unstable (see Fig. 5). b, Mean, E[λ], and variance, Var(λ), of the largest eigenvalue of the Jacobian extrapolated

to N → ∞ as a function of ∆ (see Fig. S3 for details on the extrapolation). The model parameters’ values are as

in (a). Since the variance is zero in the N → ∞ limit, P (λ) tends to a delta function δ(λ − E[λ]), thus making the

determination of ∆csd well defined as the value at which the mean E[λ] goes to zero. Slowing down persists up to

the critical value ∆c, beyond which there are no stable fixed points (see Fig. 5). c, Representative trajectories of

the neural responses yi(t) in the stable phase (∆ = 0.05) and in the critically slowed down phase (∆ = 0.25, 0.5),

showing the slowness of the dynamics in reaching the fixed point. (see Fig. S4 for trajectories of all the neurons and

Figs. S9, S12 for the analysis of the frequency of oscillations).

can be described by its expected value plus the standard deviation: the expected value follows the
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normalization equation and the standard deviation quantifies the departure from normalization.

Therefore, neuron i loses normalization as soon as the standard deviation of its response is equal

to its mean value, as given by the formula

√
Var[yi] = E[yi] (loss of normalization) , (5)

and illustrated in Fig. 4a,b. Equation (5) defines implicitly a threshold ∆loss(z) marking the

FIG. 4. Definition of loss of normalization. a, Mean, E[y], (circles) and standard deviation,
√

Var[y], (crosses)

of the fixed point membrane potential as a function of the norm z of the input drive zi = z/
√
N for an E:I balanced

recurrent network K with zero mean and std. dev. ∆ = 0.05. We used N = 100 neurons and averaged over 104

realizations of K. The standard deviation is smaller than the mean for all values of z, so the neural responses are

always normalized. The analytical approximations (solid curves) for the mean and standard deviation Eq. (7) of the

response, computed with perturbation theory, show a good agreement with the exact numerical solutions. b, Same

as in a, but using ∆ = 0.25. The standard deviation is smaller than the mean (
√

Var[y] < E[y]) at large z, but it

is larger than the mean (
√

Var[y] > E[y]) at small z. The value of z where the two curves cross each other, given

by Eq. (5), defines the threshold at which the neural responses lose normalization (dashed red line). The analytical

approximations are in good agreement with numerical simulations for almost all values of the input drive (notice

the log scale on the abscissa), but become less accurate at small z where the responses are non-normalized and

perturbation theory breaks down, another indication of a major shift in the circuit’s behavior.

boundary between the phase in which responses are normalized and the phase where they are not.

We compare the loss of normalization threshold ∆loss(z) with the critical slowing down threshold

∆csd(z) in Fig. 5, showing excellent agreement between the two at all values of the input drive z,

thus demonstrating that the onset of critical slowing down co-occurs with the loss of normalization

of the neural responses, which represents our most important result.
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FIG. 5. Loss of normalization predicts the onset of critical slowing down. Real part of the largest

eigenvalue λ of the Jacobian at the fixed point in the (z,∆) plane obtained by solving numerically Eq. (3) for E-I

balanced networks with N = 100 neurons (see Supplementary Section VF and Fig. S11 for the case of E-I imbalanced

networks); delocalized input drive zi = z/
√
N ; semisaturation constant σ = 0.1; neurons’ time constants τy = τa;

using a mesh of 200× 200 values of z and ∆. Color represents the maximum value of λ across 100 random samples

of the recurrent synaptic weights. Circuits with small ∆ are stable at any value of the input drive z and converge

quickly to their fixed point, as indicated by a strictly negative eigenvalue λ < 0 and by the Stable phase portrait

in the (y, a) plane (where a is the inhibitory neuron). Conversely, for ∆csd ≤ ∆ < ∆c, the circuits exhibit critical

slowing down, in that they approach the fixed point very slowly, as indicated by λ ∼ 0 and by the spiral attractor in

the Critically slowed down phase portrait. The points marking the onset of critical slowing down (open blue circles)

are determined by the closing of the gap in the distribution P (λ) (see Fig. 3), which define the curve ∆csd(z). The

points defining ∆loss(z) (red crosses) represent the boundary between the normalized and non-normalized phases

and are determined via Eq. (5) (see Fig. 4). Loss of normalization predicts well the onset of critical slowing down, i.e.

∆loss(z) ≈ ∆csd(z), thus providing a good early warning indicator of neurodynamical tipping points. For sufficiently

large ∆ the neural circuits exhibit limit cycles, as shown in the Limit cycle phase portrait, and for even larger ∆ they

become unstable. Notice, however, that simple linear recurrent models would become unstable as soon as ∆ > 0,

while adding normalization pushes the stability limit much further.

An immediate consequence of this correspondence is that we can predict theoretically the onset

of critical slowing down by calculating ∆loss(z), which is a simpler quantity to estimate analytically,
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as explained next. To compute the mean and variance entering in equation (5), we must first find the

fixed point of the dynamical system in Eq. (3), which, unfortunately, cannot be expressed in closed

form. To overcome this obstacle, we use perturbation theory to approximate the exact solution.

We look for a solution to the fixed point equations in the form of a series yi = y
(0)
i +y

(1)
i + ..., where

y
(0)
i is given by the normalization equation (1), and y

(1)
i is of the same order of magnitude as the

perturbation K. Inserting this expansion in Eq. (3) we find the approximate fixed point solution

(see details in Supplementary Section VC):

yi ≈
zi√

σ2 + ||z||2
+

(∑
j

Kijzj − zi
zTKz

σ2 + ||z||2

)
G(||z||) , (6)

where G(z) = 1−
√
σ2+z2

σ2+z2
and ||z||2 = zT z. The last term on the right hand side of Eq. (6) quantifies

the impact of the recurrent interactions on the normalization fixed point. Taking the expectation

on both sides, and using the fact that the Kij ’s have zero mean, we find E[yi] ≈ zi√
σ2+||z||2

, meaning

that the neural responses still follow, on average, the normalization equation, as seen in Figure 4a,b.

Departure from normalization is quantified by the variance of yi. The calculation of Var[yi] yields

the following general expression (see Supplementary Section VC for details)

Var[yi] ≈
∆2

2N

[
||z||2 − z2i +

2z2i σ
4(

σ2 + ||z||2
)2
]
G2(||z||) , (7)

which depends on the magnitude ||z|| and shape zi of the input drive. For example, we consider

a delocalized input drive, i.e. zi =
z√
N
, (the opposite case of a localized input drive is discussed in

Supplementary Section VC2 and Figs S6, S7, S8, leading to qualitatively similar results) and find

that Var[yi] ≈ ∆2z2

2N G2(z), independent of i. In Figure 4a,b we plot the mean and variance of the

neural response for two values of ∆, showing that the analytical approximations agree well with

the exact numerical solution (see Fig. S5 for more values of ∆). Finally, by equating the mean

and the standard deviation of the response, we find the threshold ∆loss(z) marking the boundary

between the normalized and non-normalized phases as

∆loss(z) =

√
2(σ2 + z2)

1−
√
σ2 + z2

, (8)

The analytical approximation given by Eq. (8) for the function ∆loss(z), shown in Fig. 5, is in good

agreement with the exact numerical estimate. Since ∆loss(z) ≈ ∆csd(z), Eq. (8) can be used to

predict the onset of critical slowing down in the neural dynamics from the magnitude of the external

input and the strength of the internal recurrent weights. On the one hand, when z → 1− σ2 ≈ 1

normalization is enganged robustly and the range of stability of the circuit extends indefinitely.

On the other hand, when z → 0 the range of stability is narrowest.
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IV. DISCUSSION

We have established, via numerical experiments and analytical calculation, that: (i) the nonlin-

ear modulation of recurrent interactions via inhibitory neurons implementing divisive normalization

makes neural networks more stable than unmodulated recurrent linear models; (ii) the breakdown

of normalization, due to substantial recurrent amplification which is not compensated by an equally

strong input drive, occurs concomitantly with the onset of critical slowing down in a broad class

of random neural networks.

Our results demonstrate that, at low input drives, increasing the recurrent synaptic strength

turns the fixed point into a spiral attractor, as indicated by the damped oscillations in Fig. 3c

and Fig. S9 (see Supplementary Section VD for details on how to determine the frequency of

oscillations). Crucially, the oscillations begin at the same parameter conditions where we observe

the loss of normalization and onset of critical slowing down. This suggests a strong link between

these phenomena. Consequently, the detection of such recurrence-driven oscillations under a weak

input drive could provide an experimental signature of a non-normalized neural circuit nearing

a critical transition. For example, experimental evidence suggests that neural circuits in indi-

viduals with autism spectrum disorder exhibit both failure of normalization [43, 44] and excess

variabilty (i.e., near the tipping point of instability) [45, 46]. Hence, we predict that such neural

circuits will also exhibit critical slowing down, which can be measured as the elapsed time to reach

steady state. Increased neural variability and noise correlations, measured across trials of same

stimulus presentation, are also characteristic markers of critical slowing down (see Supplementary

Section VG).

We noticed that, in the whole phase of critical slowing down, the spectrum of the Jacobian

contains a large number of zero eigenvalues in the large N limit, corresponding to the emergence of

multiple long time scales. Recently, it has been noted [47] that generating many long time scales

in linear models requires fine tuning of the recurrent weights. In our model, many long time scales

emerge for a broad range of values of the recurrent interaction strength, hence without fine tun-

ing, suggesting that normalization (or other similar forms of multiplicative inhibitory modulation)

might be the key mechanism to generate a full spectrum of slow modes in brain dynamics. A

comprehensive analysis of the Jacobian’s spectrum, including the determination of the volume of

zero modes, and the nature of the degenerate attractor will be presented elsewhere.

Data availability No new data were generated in this work.
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Code availability The source code to perform all the calculations and plot the figures is available

at https://github.com/shivangrawat/perturbed organics.
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V. SUPPLEMENTARY METHODS

A. Numerical study of ORGaNICs’ fixed-point

To produce Fig. 2 in the main text we simulated an ORGaNICs network comprising N = 100

principal neurons with parameters set to σ = 0.1 and τy = τa. For each chosen value of the

recurrent interaction strength ∆, we generated an ensemble of 104 recurrent connectivity matrices

W = I+K. This was achieved by first sampling the entries of an auxiliary matrix L from a Gaussian

distribution N (0,∆2/N), and then defining the symmetric interaction matrix K = (L + L⊤)/2.

This prescription yields a symmetric random matrix K, whose entries are normally distributed

according to

Kij =

N
(

µ
N , ∆

2

N

)
, i = j

N
(

µ
N , ∆

2

2N

)
, i ̸= j

(9)

The network dynamics were simulated using the explicit Euler method (starting with a zero initial

condition for all the neurons) with time step dt = 0.05 × τy, using a delocalized input drive z

where each component zi = z/
√
N (ensuring ||z|| = z). We analyzed the steady-state behavior,

identifying whether trajectories converged to a stable fixed point, diverged (indicating an unstable

fixed point), or entered a limit cycle. For instances resulting in a stable fixed point, we computed

the trial-averaged mean response E[yi] and its standard deviation
√
Var(yi) across the ensemble.

Furthermore, we calculated the Jacobian matrix of the dynamical system at each stable fixed point

using automatic differentiation [41]. Finally, as shown in Fig. 2 and Fig. S1, we plotted the mean

response and its standard deviation as a function of the input drive z for different values of ∆.

These plots are colored based on the average real part of the largest eigenvalue (in units of 1/τy)

of the Jacobian matrix across trials, indicating the slowest mode of the dynamics near the fixed

point.
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FIG. S1. Numerical exploration of ORGaNICs’ fixed-point statistics. For each panel, we plot the fixed-

point average response E[y] (dots) and its std. dev. (shaded area) as a function of the normalized input drive z (with

zi = z/
√
N , N = 100), for an E:I balanced recurrence matrix K of zero mean and standard deviation ∆, with the

same parameters as used in Fig. 2. The solid red curve indicates the normalization equation Eq.(1). The shading

color encodes the real part of the largest Jacobian eigenvalue at the fixed point, averaged over samples (always < 0

when convergence is stable). a, ∆ = 0.02: recurrent interactions are weak, yielding minimal variance around the

normalization curve. b, ∆ = 0.1: moderate recurrence induces variability in the responses across random samples

of the recurrent weights at small z, but the mean follows the normalization curve. c, ∆ = 0.5: strong recurrence

dramatically increases the variability at small z; the mean also starts to deviate from the normalization curve.

B. Finite size analysis of the distribution P (λ)

In this section, we investigate systematically the finite size behavior of the distribution of the

largest eigenvalue of the Jacobian at the fixed point P (λ). In Fig. S2 we show P (λ) for several

values of N and ∆. At fixed ∆, we find that P (λ) becomes sharply peaked as N increases and

tends to a delta function, P (λ) → δ(λ − λgap) in the limit N → ∞, where λgap is nonzero and

negative when the circuit is stable (see Fig. S2a) and equal to zero when the circuit is critically

slowed down (see Fig. S2b,c,d), i.e.

λgap < 0 → stable ,

λgap = 0 → critical slowing down .
(10)
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FIG. S2. Distribution of the Jacobian’s largest eigenvalue (λ) for varying system sizes (N). Distribution

of the largest eigenvalue of the Jacobian at the fixed point computed several values of ∆ for different system sizes

(N = 100, 500 and 1000). The input drive, simulation parameters, and the parameters of ORGaNICs are the same

as those used for generating Fig. 3 in the main text. Each panel plots the distribution for different values of ∆.

As system size increases, finite-size fluctuations narrow, sharpening the gap edge and more clearly revealing the

approach of the rightmost eigenvalue toward zero at ∆ ≈ 0.09. For ∆ < ∆csd (panel a), all sizes exhibit a clear gap

from zero; for ∆ ≥ ∆csd the largest-N curve touches zero most sharply.
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FIG. S3. Finite size scaling analysis. The mean and standard deviation of the largest eigenvalue of the Jacobian

are shown. The input drive, simulation parameters, and the parameters of ORGaNICs are the same as those used

for generating Fig. 3 in the main text. a, The mean µ of the largest eigenvalue λ of the Jacobian matrix at the

fixed point as a function of 1/N2/3 for several values of ∆. Dashed lines represent fits following the functional form

µ = µ∞ + a/Nα, where µ∞, a, and α are fitting parameters and the fits are performed using the four largest system

sizes. The ‘x’ markers correspond to the extrapolated mean for the infinite system size (µ∞). The values α in the

legend correspond to the fitted slopes and they are close to 2/3 for nearly all values of ∆. µ∞ vanishes for all values

of ∆ where we observe critical slowing down (∆ ≳ 0.09). b, The standard deviation σ of the largest eigenvalue λ of

the Jacobian matrix at the fixed point as a function of 1/N2/3 for several values of ∆. Dashed lines represent fits

following the functional form σ = σ∞ + b/Nβ , where σ∞, b, and β are fitting parameters, and fits are performed

using the four largest system sizes. The fits extrapolate to a vanishing standard deviation for the infinite system size

(σ∞ ≈ 0), indicating that fluctuations of λ vanish in the thermodynamic limit.
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FIG. S4. Neuronal trajectories for different recurrent synaptic strength ∆. Each curve traces the time

evolution of a distinct principal neuron’s response for a given value of ∆ (recurrent interaction strength). The input

type and the parameters of ORGaNICs are the same as those used for generating Fig. 3 in the main text. We plot the

trajectories for 100 neurons selected randomly from the 1000. In the stable regime (∆ = 0.05), trajectories converge

rapidly, whereas in the critical-slowing regime (∆ = 0.10, 0.25, and 0.50) convergence is markedly slower.
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C. Analytical calculation of the threshold for loss of normalization

Let us consider the ORGaNICs fixed point equations obtained by setting to zero the time

derivative in Eq. (3) of the main text:

yi = zi + (1−
√
a)

N∑
j=1

Wijyj ,

a = σ2 + a
N∑
j=1

y2j ,

(11)

where we used the fact that firing rates are related to membrane potentials via

y+i = ⌊yi⌋2 ,

a+ =
√

⌊a⌋ ,
(12)

and we further assumed that a ≥ 0, which can be checked a posteriori to always hold true. To

expand around the identity matrix we set

W = I +K , (13)

where K is a small correction. The conditions under which the perturbation K can be considered

small with respect to the identity will be deduced later on in our calculation. Inserting Eq. (13)

into Eq. (11) we obtain

√
ayi = zi + (1−

√
a)

N∑
j=1

Kijyj ,

a =
σ2

1− ||y||2
,

(14)

where we defined the squared norm as ||y||2 =
∑N

j=1 y
2
j . We look for a solution to Eq. (14) in the

form of a series

yi = y
(0)
i + y

(1)
i + y

(2)
i + · · · ,

a = a(0) + a(1) + a(2) + · · · ,
(15)

where y
(1)
i , a(1) are of the same order of magnitude of the perturbation K, the quantities y

(2)
i , a(2)

are of second order, and so on. To find the first approximation, we substitute yi = y
(0)
i + y

(1)
i and

a = a(0) + a(1) in Eq. (14) and we keep only terms up to the first order, thus obtaining

y
(0)
i + y

(1)
i = zi +

(
1−

√
a(0)
)
y
(0)
i +

(
1−

√
a(0)
)(

y
(1)
i +

∑
j

Kijy
(0)
j

)
−

y
(0)
i a(1)

2
√
a(0)

,

a(0) + a(1) =
σ2

1− ||y(0)||2
+ 2σ2 y(0) · y(1)(

1− ||y(0)||2
)2 ,

(16)
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where y(0) · y(1) =
∑

i y
(0)
i y

(1)
i is the usual dot product. Equating the terms of order zero on both

sides of Eq. (16) we obtain

y
(0)
i =

zi√
a(0)

,

a(0) =
σ2

1− ||y(0)||2
,

(17)

which, as it should, is equivalent to the normalization equation

y
(0)
i =

zi√
σ2 + ||z||2

,

a(0) = σ2 + ||z||2 .

(18)

To find the first order corrections y
(1)
i and a(1) we equate the terms of order one on both sides of

Eq. (16) and we get

y
(1)
i

√
a(0) =

(
1−

√
a(0)
)∑

j

Kijy
(0)
j −

y
(0)
i a(1)

2
√
a(0)

,

a(1) = 2a(0)
y(0) · y(1)

1− ||y(0)||2
,

(19)

where in the equation for a(1) we have used the definition of a(0) given in Eq. (17). To solve Eq. (19)

we multiply the first equation by y
(0)
i and, after summing over i, we find

y(0) · y(1) =
σ2
(
1−

√
σ2 + ||z||2

)(
σ2 + ||z||2

)5/2 z⊤Kz , (20)

from which we can compute a(1). Substituting this result into Eq. (19) we can express y
(1)
i as a

function of z and K as

y
(1)
i = G(||z||)

(∑
j

Kijzj − zi
z⊤Kz

σ2 + ||z||2

)
,

G(||z||) =
1−

√
σ2 + ||z||2

σ2 + ||z||2

(21)

Having found the general form of the first order correction, we move next to consider the case of

a random matrix K sampled from the so-called Gaussian Orthogonal Ensemble (GOE).

We consider the ensemble of symmetric random matrices K, whose entries are normally dis-

tributed according to

Kij =

N
(

µ
N , ∆

2

N

)
, i = j

N
(

µ
N , ∆

2

2N

)
, i ̸= j

(22)
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We can compute the average of y
(1)
i in Eq.(21) straightforwardly and find

E
[
y
(1)
i

]
=

µ

N
G(||z||)

[∑
j

zj −
zi

σ2 + ||z||2
(∑

j

zj

)2]
. (23)

A little bit of algebra yields the following expression for the second moment

E
[(
y
(1)
i

)2]
= G2(||z||)

[
Qi −

2zi
σ2 + ||z||2

Pi +
z2i(

σ2 + ||z||2
)2R

]
,

Qi =
∆2

2N

(
z2i + ||z||2

)
− µ2

N2

[
||z||2 −

(∑
j

zj

)2]
,

Pi =
∆2

N
zi||z||2 −

µ2

N2

[
2zi||z||2 − z3i −

(∑
j

zj

)3]
,

R =
∆2

N
||z||4 − µ2

N2

[
2||z||4 −

(∑
j

z4j

)
−
(∑

j

zj

)4]
.

(24)

Having found the general expressions for the first and second moments of y
(1)
i , next we discuss

the case µ = 0 (E:I balance), corresponding to having an equal number (on average) of positive

and negative synaptic weights. Mathematically, this is obtained by setting to zero the mean

(µ = 0) of the random matrix entries Kij . The mean and variance of the perturbation y
(1)
i simplify

considerably and read

E
[
y
(1)
i

]
= 0 ,

E
[(
y
(1)
i

)2]
= G2(||z||)

[
∆2

2N

(
z2i + ||z||2

)
− ∆2

N

2z2i ||z||2

σ2 + ||z||2
+

∆2

N

z2i ||z||4(
σ2 + ||z||2

)2
]
.

(25)

In the following, we will consider two types of input drives, a delocalized input drive, characterized

by a vector z with all entries zi equal to

zi =
z√
N

delocalized input drive , (26)

and the case of a localized input drive where all entries are equal to zero but one, for example z1,

and denoted

zi = zδi1 localized input drive . (27)

1. Delocalized input drive

When the input drive is delocalized, the variance of the perturbation becomes

E
[(
y
(1)
i

)2]
=

∆2z2

2N
G(||z||)2 +O(N−2) . (28)
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FIG. S5. Loss of normalization. Following the analysis presented in Fig. 4, this figure illustrates the mean (circles)

and standard deviation (crosses) of the fixed point neural responses versus the input norm z for three additional

values of the recurrent interaction strength: ∆ = 0.02, ∆ = 0.1, and ∆ = 0.5. The network consists of N = 100

neurons, and each point is found using 1000 realizations. a, ∆ = 0.02, the std. dev. remains below the mean across

all input drives, indicating preserved normalization. b, ∆ = 0.1 and c, ∆ = 0.5, the std. dev. exceeds the mean

at small z, demonstrating loss of normalization, defined by the crossing point (dashed red line). The theoretical

predictions from perturbation theory (black curves) match the numerical simulations well in the normalized regime

(mean > std. dev.). Discrepancies increase at small z for larger ∆, where normalization is lost.

The threshold ∆loss(z) separating the phase where responses are normalized from the phase where

they are not is obtained by equating the mean of the response E[yi] to its standard deviation√
Var[yi], yielding

1 =
E[yi]√
Var[yi]

=
y
(0)
i√

E
[(
y
(1)
i

)2] → z√
N

1√
σ2 + z2

=
∆z√
2N

G(||z||) , (29)

from which we obtain

∆loss(z)√
2

=

√
σ2 + z2

1−
√
σ2 + z2

, (30)

which is Eq. (8) in the main text. In Fig. S5 we compare the analytical approximations for the mean

and variance of the responses with the exact numerical values. The agreement is excellent at small

∆, since the neural responses are always normalized, i.e. normalization always holds. For larger ∆

the analytical and numerical results also agree well at large input drive, where the responses are

normalized. At small z, normalization breaks down as well as the analytical approximation.
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FIG. S6. Numerical solution of the ORGaNICs’ fixed point equations for localized input drive. a,

Fixed-point average response E[ypop], defined in Eq. (32), as a function of the input drive z (chosen as zi = zδ1i)

for an E:I balanced recurrence matrix K with zero mean and recurrent interaction strength ∆ = 0.05 and N = 100

neurons, obtained by solving numerically Eq. (3) using the explicit Euler method with time step dt = 0.05× τy. The

semisaturation constant is σ = 0.1 and the time constants τy = τa. Each point is an average over 1000 realizations of

the synaptic weights Kij . The neural responses still follow, on average, the normalization Eq. (1) (solid red curve),

but pick up a variance in presence of recurrent connections, represented by the shaded area around the data points.

The color code of the shaded area represents the real part of the largest eigenvalue of the Jacobian at the fixed point

averaged over samples, whose value is well below 0 for all z. b, c, d For ∆ = 0.1, 0.25, 0.4 the average response is

still normalized, but the variance is bigger than in (a). For sufficiently small input drives, the largest eigenvalue of

the Jacobian at the fixed point vanishes and, as a consequence, convergence to the fixed point occurs on long time

scales, a phenomenon known as critical slowing down.

2. Localized input drive

In this section, we show that our results and conclusions are the same for the localized input.

We consider the extreme case where z is a one-hot vector with

zi = zδi1 . (31)
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FIG. S7. Loss of normalization for localized input drive. a, Mean (circles) and standard deviation (crosses)

of the fixed point response ypop, defined in Eq. (32), as a function of the norm z of the localized input drive zi = zδ1i

for an E:I balanced recurrence matrix K with zero mean and recurrent interaction strength ∆ = 0.05. We used

N = 100 neurons and averaged over 103 realizations of the random matrix K. The analytical approximations (solid

curves) for the mean Eq. (33) and standard deviation Eq. (34) of the response, computed with perturbation theory,

show a good agreement between the theoretical and numerical solutions. In this case the standard deviation is

smaller than the mean for all values of z, so the neural responses are always normalized. b, c, d Same as in a, but

using ∆ = 0.1, 0.25, 0.4. The standard deviation is smaller than the mean at large input drive, but gets bigger than

the mean at small input drive. The value of z where the two curves cross each other, given by Eq. (37), defines the

point at which the neural responses lose normalization. The analytical approximations are in good agreement with

numerical simulations for almost all values of the input drive (notice the log scale on the abscissa), but become less

accurate at small z where the responses are non-normalized.

Since the fixed point yi depends on i we consider the sum over all responses ypop defined as

ypop =
N∑
i=1

yi ≈
N∑
i=1

y
(0)
i + y

(1)
i . (32)

The mean of ypop is simply

E[ypop] =
z√

σ2 + z2
. (33)
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FIG. S8. Loss of normalization predicts the onset of critical slowing down for localized input drive.

Real part of the largest eigenvalue of the Jacobian at the fixed point in the (z,∆) plane obtained by solving numerically

Eqs. (3) with a localized input drive, i.e., zi = zδi1. The parameters of ORGaNICs are the same as those used for

generating Fig. 5 in the main text. Color represents the maximum value of λ across 100 trials. Circuits with small ∆

are stable at any value of the input drive z and converge quickly to their fixed point, as indicated by a strictly negative

eigenvalue λ < 0. Conversely, for ∆csd < ∆ < ∆c, the circuits exhibit critical slowing down, in that they approach

the fixed point very slowly, as indicated by the zero eigenvalue, λ = 0. The onset of critical slowing down is defined

by the first time the eigenvalue becomes zero, here denoted by the blue empty circle. The onset of slowing down

is equally well captured by the red crosses, representing the boundary between the normalized and non-normalized

phases. Loss of normalization is a good proxy for critical slowing down even for localized input drives. For sufficiently

large ∆ the circuits exhibit limit cycles and for even larger ∆ they eventually become unstable, where instability is

defined as trajectories diverging in at least 50% of trials.

The variance is given by

Var[ypop] = E
[(
y
(1)
1

)2]
+ 2

∑
i̸=1

E
[
y
(1)
1 y

(1)
i

]
+
∑
i,j ̸=1

E
[
y
(1)
i y

(1)
j

]
. (34)

The calculation of the expectation values gives

E
[(
y
(1)
1

)2]
=

∆2z2

N
G2(||z||)

(
1− z2

σ2 + z2

)2

+O(N−2) ,

E
[
y
(1)
1 y

(1)
i

]
= 0 for i ̸= 1 ,

E
[
y
(1)
i y

(1)
j

]
=

∆2z2

2N G2(||z||) +O(N−2) for i, j ̸= 1

0 for i = 1 or j = 1 .

(35)
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Inserting the previous expressions in Eq. (34) and keeping only the leading order in N we find

Var[ypop] =
∆2z2

2
G2(||z||) . (36)

Equating the mean and standard deviation of ypop we find the ∆loss(z) as

E[ypop]√
Var[ypop]

= 1 → ∆loss(z)√
2

=

√
σ2 + z2

1−
√
σ2 + z2

, (37)

which is the same expression as in Eq. (30).

D. Frequency of oscillations

To understand how the interplay between external stimuli and recurrent drive affects the dynam-

ics of ORGaNICs, we investigated the system’s propensity to oscillate under varying conditions.

Specifically, we explored the influence of the overall input drive z and the recurrent interaction

strength ∆. We systematically varied these two parameters and computed the average oscilla-

tion frequency of the network activity as the mean imaginary part of the Jacobian eigenvalues

Im(λJ)/(2π) evaluated at the system’s fixed point. Oscillatory dynamics (spiralling fixed points)

are indicated by complex eigenvalues. Fig. S9 shows the resulting heat map in the (z,∆) plane,

where we plot the mean oscillation frequency for a network of N = 100 neurons with time constants

τy = τa = 2 msec, considering both delocalized (Fig. S9a) and localized input drives (Fig. S9b).

We find distinct dynamical regimes. When the input drive and the synaptic strength are weak,

i.e., z ≲ 0.1 and ∆ ≲ 0.1, the circuits settle into a stable, non-oscillating fixed point. However, as

the input drive increases (z ≳ 0.1), the fixed point becomes a spiral attractor, leading to oscillations

falling within the gamma frequency range (30-100 Hz). Within this regime, the frequency of these

input-driven oscillations scales positively with the input drive z (Fig. S9d). A different scenario

unfolds when the recurrent synaptic strength is increased (Fig. S9c). For low input drive (z ≲ 0.1),

damped oscillations emerge beyond ∆ ≈ 0.1. In this recurrence-driven regime, the oscillation

frequency increases monotonically with ∆ from 0 Hz to 80 Hz, before the attractor ultimately

turns into limit cycles at higher ∆. These findings highlight the dual roles of external input and

internal recurrent drive in shaping the frequency of the oscillatory behavior in ORGaNICs.
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FIG. S9. Phase diagram and oscillation frequencies in ORGaNICs. a, b, Phase diagrams depicting the

average oscillation frequency for ORGaNICs as a function of input drive (z) and recurrent interaction strength (∆).

Frequency is color-coded according to standard bands (see color bar: 0 Hz, 0-4 Hz, 4-12 Hz, 12-35 Hz, 35-100 Hz,

100+ Hz), calculated as the mean imaginary part of the Jacobian eigenvalues Im(λJ)/(2π) across trials. Results

are shown for delocalized (a) and localized (b) inputs in a system with N = 100 neurons, semisaturation constant

σ = 0.1, and time constants τy = τa = 2 msec. Dotted curves indicate the transition from limit cycles to an unstable

regime, where instability is defined as trajectories diverging in at least 50% of trials. c, Oscillation frequency vs

recurrent interaction strength (∆) at a fixed input drive z = 0.05. d, Oscillation frequency vs input drive (z) at a

fixed recurrent interaction strength ∆ = 0.02. Plots c and d compare delocalized (blue circles) and localized (red

circles) inputs, showing minimal difference between the two input types.

E. ORGaNICs with alternative activation functions

We consider the effect of changing the activation function, which determines the firing rates

(y+) from the membrane potentials (y) of the principal neurons. In the model studied in the main

text we use a quadratic activation function y+ = y2 (see phase diagram of stability in Fig. S10a).

Here, we investigate two alternative models incorporating rectification in the activation function,
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FIG. S10. Effect of rectification on network stability. Phase diagram in the parameter space of input drive z

and recurrent interaction strength ∆ (mesh size 200× 200). Color represents the maximum value (across 100 trials)

of the Jacobian’s eigenvalue with the largest real part (λ). The input type and the parameters of ORGaNICs are

the same as those used for generating Fig. 5 in the main text. The panels correspond to: a, Model with quadratic

activation (y+ = y2), identical to the phase diagram in Fig. 5. b, Model with rectification in the activation function

(y+ = ⌊y⌋2, Eq. 38). c, Model with rectification applied in both the activation function and after the recurrent

summation (y+ = ⌊y⌋2 and ⌊Wy⌋ term, Eq. 39). We observe that the boundaries marking the transition from

critical slowing down to limit cycles, and from limit cycles to unstable dynamics (indicated by dashed curves), shift

upwards in going from a to b to c.

defined as ⌊x⌋ = max(0, x), a common choice known as ReLU in artificial neural networks.

First, we introduce rectification such that the firing rate is calculated as y+ = ⌊y⌋2. This gives

us the following dynamical system (see phase diagram in Fig. S10b):
τyẏi = −yi + zi + (1− a+)

N∑
j=1

Wij⌊y⌋i

τaȧ = −a+ σ2 +

(
N∑
i=1

y+i

)
a ,

(38)

In the second model, we explore a different placement for rectification. While still using the

rectified firing rate y+ = ⌊y⌋2, we apply rectification after the weighted recurrent inputs have

been summed, in the dynamical equation for y. This leads to the following dynamical system (see

corresponding phase diagram in Fig. S10c):
τyẏi = −yi + zi + (1− a+)

 N∑
j=1

Wijyi


τaȧ = −a+ σ2 +

(
N∑
i=1

y+i

)
a ,

(39)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2025. ; https://doi.org/10.1101/2025.05.16.654567doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.16.654567
http://creativecommons.org/licenses/by/4.0/


32

The model in Eq. (39) is not neurobiologically relevant, but is relevant for designing ML architec-

tures [18].

We analyzed the stability of these models by examining their phase diagrams in the parameter

space of input drive (z) and recurrent interaction strength (∆), shown in Fig. S10. We find that

introducing these alternative forms of rectification do not qualitatively change the network’s phase

diagram. However, the boundaries that mark the transition from critical slowing down to limit

cycles, and from limit cycles to unstable dynamics, shift towards larger values of ∆, when going

from panel (a) to (b) to (c) of Fig. S10. Therefore, introducing rectification increases the range of

parameters for which the neuron’s trajectories remain bounded (including the limit cycles regime).

F. E-I imbalanced recurrent networks

In this section, we investigate the impact of excitation-inhibition (E-I) imbalance in the recurrent

weight matrix W on the stability of ORGaNICs. We introduce E-I imbalance by setting a non-zero

mean µ for the entries of the recurrent connectivity matrix K, such that Kii ∼ N (µ/N,∆2/N)

and Kij ∼ N (µ/N,∆2/2N) for i ̸= j. This introduces net inhibition (for µ < 0) or net excitation

(µ > 0) in K. We generated phase diagrams, shown in Fig. S11, analogous to Fig. 5 for different

values of µ = [0.0, 0.05, 0.1, 0.25, 0.5, 1.0, −0.1, −0.5, −1.0], using a delocalized input drive zi =

z/
√
N and network parameters N = 100, σ = 0.1, τy = τa. We observe three main things:

1. increasing excitation (larger positive µ) shifts the onset of critical slowing down towards

larger values of the recurrent interaction strength ∆. For strong excitatory imbalance (e.g.,

µ = 1.0), the network transitions from the stable regime to the limit cycle regime at small

input drive z without undergoing critical slowing down;

2. increasing inhibition (larger negative µ) makes the circuit operate in the critically slowed

down regime for larger values of ∆ at any input drive z. For strong inhibitory imbalance

(e.g., µ = −1.0), the circuit remains stable across all z without entering into limit cycles at

small z;

3. most importantly, the loss of normalization is still a good predictor of the onset of critical

slowing down across all values of µ.

We also examined how E-I imbalance affects the oscillation frequencies in ORGaNICs (Fig. S12).

Upon increasing excitation (µ > 0), the region exhibiting high-frequency oscillations (gamma band
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and higher) expands. For strong excitation (e.g., µ = 1.0), the network tends to oscillate at high

frequencies across a wider range of ∆ and z values. This suggests that net excitation in the recurrent

connections promotes faster oscillations. On the contrary, increasing inhibition (Fig. S12g,h,i)

(µ < 0) promotes slower oscillations, especially at large input drives.
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FIG. S11. Effect of E-I imbalanced recurrence on stability. Phase diagrams showing the real part of the

largest eigenvalue λ of the Jacobian at the fixed point in the (z,∆) plane for varying levels of E-I imbalance, controlled

by the mean µ of the recurrent weights Kij . Each panel corresponds to a different value of µ (see discussion in the

text): a, µ = 0.0 (balanced, identical to Fig. 5); excess excitation: b, µ = 0.05, c, µ = 0.1, d, µ = 0.25, e,

µ = 0.5, f, µ = 1.0; excess inhibition: g, µ = −0.1, h, µ = −0.5, i, µ = −1.0. Color represents the maximum

λ across 100 trials (for N = 100, σ = 0.1, τy = τa, delocalized input zi = z/
√
N). Blue open circles mark the

numerically determined onset of critical slowing down, while red crosses indicate the numerically determined loss of

normalization. The dashed red curves show the analytical prediction for loss of normalization. Dashed black curves

delineate boundaries between the limit cycle (gray region) and the unstable (white region) regimes, where instability

is defined as trajectories diverging in at least 50% of trials.
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FIG. S12. Effect of E-I imbalanced recurrence on oscillation frequency. Phase diagrams depicting the

average oscillation frequency (calculated as mean of Im(λJ)/(2π) across trials) as a function of input drive z and

recurrent interaction strength ∆ for varying levels of E-I imbalance µ. Parameters are N = 100, σ = 0.1, τy = τa = 2

msec, delocalized input zi = z/
√
N . Panels correspond to: a, µ = 0.0; excess excitation: b, µ = 0.05, c, µ = 0.1,

d, µ = 0.25, e, µ = 0.5, f, µ = 1.0; excess inhibition: g, µ = −0.1, h, µ = −0.5, i, µ = −1.0. Dotted black curves

delineate boundaries between the limit cycle (gray region) and the unstable (white region) regimes, where instability

is defined as trajectories diverging in at least 50% of trials. Overall, increasing excitation (µ > 0) generally promotes

higher oscillation frequencies, especially at small input drives. While increasing inhibition (µ < 0) promotes lower

oscillation frequencies, especially at large input drives.
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G. Effect of critical slowing down on neural variability

A key marker of critical slowing down is a drastic increase in trial-to-trial neural variability

and noise correlations between neurons. To illustrate why this occurs, we consider the ORGaNICs

model with additive Gaussian white noise in the dynamical system:
τyẏi = −yi + zi + (1− a+)

N∑
j=1

Wijyj + σηi(t)

τaȧ = −a+ σ2
ss +

(
N∑
i=1

y+i

)
a+ σηa(t) ,

(40)

where ηi(t) and ηa(t) represent uncorrelated Gaussian white noise processes with zero mean and

unit variance (i.e., E[ηk(t)ηl(s)] = δklδ(t− s)), and σ here denotes the strength of this noise. Note

that σ2
ss is used for the semisaturation constant to avoid confusion with the noise strength σ. This

introduction of stochasticity is distinct from the randomness in the recurrent matrix W considered

in the main body of the manuscript.

Assuming the dynamical system operates in the vicinity of the stable fixed point (found in both

stable and critically slowed-down regimes) and that the noise strength σ is sufficiently small, we

can linearize the system around the fixed point. Let x be the vector of deviations from the fixed

point. The linearized system is:

ẋ(t) = Jx(t) + ση(t) , (41)

where J is the Jacobian matrix evaluated at the fixed point, and η(t) is the vector of white noise

processes. The steady-state covariance matrix P = E[xx⊤] (whose diagonal entries capture trial-

to-trial variability and off-diagonal entries capture noise correlations) is given by the solution to

the continuous-time Lyapunov equation:

JP+PJ⊤ + σ2I = 0 , (42)

where I is the identity matrix, and σ2I is the covariance matrix of the noise term ση(t).

Assuming that J is diagonalizable, we can write its eigendecomposition as J = VΛV−1, where

Λ is a diagonal matrix whose entries λi are the eigenvalues of J, and V is the matrix whose columns

are the corresponding eigenvectors. We can transform the coordinates to the eigenbasis of J by

defining y = V−1x. The covariance matrix of y is M = E[yy⊤] = V−1P(V−1)⊤ = V−1PV−⊤.

Left-multiplying Eq. (42) by V−1 and right-multiplying by V−⊤, we obtain:

V−1JV(V−1PV−⊤︸ ︷︷ ︸
M

) + (V−1PV−⊤︸ ︷︷ ︸
M

)V⊤J⊤V−⊤ + σ2V−1V−⊤ = 0 (43)
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Using V−1JV = V⊤J⊤V−⊤ = Λ and defining B = V−1V−⊤, Eq. (43) becomes:

ΛM+MΛ+ σ2B = 0 . (44)

This is the Lyapunov equation for the transformed coordinates y. Since Λ is diagonal, we can

solve for the entries of M element-wise:

Mij(λi + λj) + σ2Bij = 0 =⇒ Mij = − σ2Bij

λi + λj
. (45)

Therefore, if the real part of an eigenvalue, say Re(λk), approaches zero (which characterizes critical

slowing down), the denominator 2Re(λk) for the diagonal term Mkk becomes very small. Assuming

Bkk (which depends on the eigenvectors) is non-zero, Mkk will become very large:

Mkk = −σ2Bkk

2λk
. (46)

As Re(λk) → 0, the magnitude of Mkk tends to infinity. Since the original covariance matrix

entries Pmn are linear combinations of Mij (as P = VMV⊤), a large Mkk will typically lead to

large entries Pmn. This implies increased trial-to-trial variability (large diagonal elements of P)

and large noise correlations (large off-diagonal elements of P) when the system is in the critically

slowed-down regime compared to the stable and normalized regime.
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