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ABSTRACT
Objective  To investigate correlations between biomarkers 
of bone remodelling and extracellular matrix turnover 
with baseline disease activity and treatment response in 
patients with early rheumatoid arthritis (RA).
Methods  Assessing Very Early Rheumatoid arthritis 
Treatment-2 (AVERT-2; NCT02504268) included disease-
modifying antirheumatic drug-naive, anti-citrullinated protein 
antibody (ACPA)-positive patients randomised to weekly 
subcutaneous abatacept+methotrexate (MTX) or abatacept 
placebo+MTX for 56 weeks. This post hoc exploratory 
subanalysis assessed the association between baseline 
disease activity and eight biomarkers (Spearman’s correlation 
coefficient), and whether baseline biomarkers (continuous 
or categorical variables) could predict treatment response at 
weeks 24 and 52 (logistic regression).
Results  Patient characteristics were similar between overall 
(n=752) and biomarker subgroup (n=535) populations 
and across treatments. At baseline, neoepitopes of matrix 
metalloproteinase-mediated degradation products of 
types III and IV collagen and of C reactive protein (CRP) 
showed the greatest correlations with disease activity; 
cross-linked carboxy-terminal telopeptide of type I collagen 
(CTX-I) showed weak correlation. Only CTX-I predicted 
treatment response; baseline CTX-I levels were significantly 
associated with achieving Simplified Disease Activity Index 
remission and Disease Activity Score in 28 joints (DAS28 
(CRP)) <2.6 (weeks 24 and 52), and American College of 
Rheumatology 70 response (week 52), in patients treated 
with abatacept+MTX but not abatacept placebo+MTX. CTX-I 
predicted significant differential response between arms for 
DAS28 (CRP) <2.6 (week 24). Treatment differences were 
greater for abatacept+MTX in patients with medium/high 
versus low baseline CTX-I.
Conclusion  In MTX-naive, ACPA-positive patients with 
early RA, baseline CTX-I predicted treatment response to 
abatacept+MTX but not abatacept placebo+MTX.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The availability of multiple therapeutic agents for the 
treatment of rheumatoid arthritis (RA) means that 
clinical remission is an achievable goal for some 
patients.

	⇒ The absence of effective biomarkers to aid clinical 
decision making for appropriate individualised tar-
geted therapy remains a significant unmet need.

WHAT THIS STUDY ADDS
	⇒ We report on the association of bone remodelling 
biomarkers, extracellular matrix turnover and base-
line disease activity in patients with early RA who 
were anti-citrullinated protein antibody-positive and 
methotrexate (MTX)-naive, and the ability of such 
biomarkers to predict clinical treatment response to 
abatacept+MTX.

	⇒ This post hoc analysis of data from a randomised 
controlled trial showed that biomarkers of synovial 
(matrix metalloproteinase (MMP)-mediated degra-
dation products of types III and IV collagen (C3M and 
C4M)) and systemic (MMP-mediated degradation 
product of C reactive protein) inflammation were as-
sociated with disease activity at baseline.

	⇒ Baseline cross-linked carboxy-terminal telopeptide 
of type I collagen (CTX-I), a biomarker of bone re-
modelling, predicted response to treatment with 
abatacept+MTX but not abatacept placebo+MTX.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Based on these data, further studies of CTX-I as a 
predictive biomarker of response to treatment with 
biologic disease-modifying antirheumatic drugs in 
patients with early RA are warranted.
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INTRODUCTION
Rheumatoid arthritis (RA), a heterogeneous chronic 
autoimmune inflammatory disease, is characterised by 
the production of both pathogenic autoantibodies (rheu-
matoid factor and anti-citrullinated protein antibodies 
(ACPAs)) and proinflammatory cytokines, leading to the 
development of synovitis and systemic inflammation.1–4 
Furthermore, the disease is associated with the resorp-
tion of cartilage and bone, the development of bone 
erosions and longer-term destruction of synovial joints.1–4

Treatment guidelines from both the American College 
of Rheumatology (ACR) and the European Alliance of 
Associations for Rheumatology (EULAR) recommend a 
treat-to-target approach to managing disease in patients 
with RA, with clinical remission as the main therapeutic 
target.5 6 However, recent guidance from ACR condition-
ally recommends an initial target of low disease activity, 
with a subsequent goal of remission, based on factors 
including patient preference.6

The increasing availability of multiple therapeutic 
agents with different mechanisms of action, which have 
the potential to be linked to the pathobiology of indi-
vidual patients, means that clinical remission is now an 
achievable goal for more patients than was previously 
considered.4 Nevertheless, a significant unmet need in 
the treatment of RA is the absence of effective biomarkers 
to aid clinical decision making for appropriate individu-
alised targeted therapy.

Patients with RA who are ACPA positive have a poorer 
prognosis and are more likely to develop severe erosive 
disease than patients who are ACPA negative.7 8 Data 
from clinical trials and real-world studies have shown that 
responses to treatment may vary based on ACPA status.9–12 
However, despite extensive study of many potential candi-
dates over the years, no effective serum biomarker, other 
than perhaps ACPA, has been found that reliably predicts 
disease progression or treatment response to specific 
medications prior to starting therapy.2 4 Additionally, no 
serum biomarker has been identified that can reliably 
assess treatment response (or lack of response) while 
receiving therapy in a meaningful number of patients.

Among patients with RA who are ACPA positive, bone 
loss can occur early and prior to the onset of clinical 
symptoms (eg, synovitis, arthralgia).13 Furthermore, loss 
of bone mineral density in early, undifferentiated arthritis 
can predict the development of RA.14 Thus, markers of 
bone remodelling and turnover of extracellular matrix 
(ECM) proteins might serve as disease-relevant surro-
gate biomarkers indicative of synovial joint pathophysi-
ology.15–17 Type I collagen is a major component of bone 
matrix, and fragments of type I collagen, known as cross-
linked carboxy-terminal telopeptide of type I collagen 
(CTX-I), can act as specific markers of bone resorption.18 
The breakdown of collagen by matrix metalloproteinases 
(MMPs) leads to an increase in serum levels of MMP-
degradation products of collagen type I (C1M), type 
III (C3M) and type IV (C4M).19–24 In addition, MMP-
mediated degradation of C reactive protein (CRPM) is a 

marker of MMP-mediated degradation of the acute phase 
reactant CRP and is released into the circulation during 
inflammation.25 Studies have shown that serum levels 
of CTX-I, C1M, C3M, C4M and CRPM are elevated in 
patients with RA and that their production can be signifi-
cantly reduced in response to treatment.15–17 20 23 26

Cathepsin K, released by osteoclasts, is the major 
producer of CTX-I through receptor activator of nuclear 
factor κ-Β ligand (RANKL)-dependent pathways.27 28 In 
patients with RA, RANKL is one of the principal factors 
involved in the differentiation of osteoclasts and their 
subsequent invasion of the periosteum.2 29 Furthermore, 
in RA, activated T cells produce high levels of RANKL and 
promote osteoclast differentiation through both RANKL-
dependent and RANKL-independent mechanisms.4 29 30

Abatacept, a selective T-cell costimulation modulator 
that blocks the interaction between cluster of differen-
tiation (CD)80 /CD86 on antigen-presenting cells and 
CD28 on T cells and disrupts naive T-cell activation, is 
effective in treating patients with RA, including those 
with early RA,31 32 when a window of opportunity may 
exist for improved long-term outcomes.33 34 The phase 
3b AVERT-2 (Assessing Very Early Rheumatoid arthritis 
Treatment-2) trial (NCT02504268) evaluated the efficacy 
of subcutaneous (SC) abatacept+methotrexate (MTX) 
versus abatacept placebo+MTX in treating MTX-naive 
patients with seropositive, early, active RA.35 Although 
the primary study endpoint (Simplified Disease Activity 
Index (SDAI) remission (≤3.3) at week 24) was not met, 
during the 56-week induction period of the AVERT-2 
trial, more patients achieved SDAI remission with abata-
cept+MTX versus abatacept placebo+MTX at week 52.35 
In addition, there was a significant difference favouring 
abatacept+MTX in the proportion of radiographic non-
progressors at week 52.35 This exploratory post hoc anal-
ysis used data from AVERT-2 to investigate the correlation 
between baseline biomarkers of bone remodelling and 
ECM turnover and baseline disease activity in patients 
with RA and whether such biomarkers predicted treat-
ment response, and assessed pharmacodynamic changes 
in biomarkers in response to treatment with abata-
cept+MTX versus abatacept placebo+MTX.

METHODS
Study design
AVERT-2 (NCT02504268) was a phase 3b, 132-week study 
of patients with active, early RA who were ACPA posi-
tive.35 This two-phase study consisted of a 56-week double-
blind, randomised, placebo-controlled induction period 
followed by a 48-week treatment de-escalation period. 
Full details of the study design have been reported previ-
ously.35 At the start of the induction period, patients were 
randomised (3:2) to weekly SC abatacept 125 mg+MTX 
(starting dose: 7.5–15 mg/week titrated to≥15 mg within 
8 weeks) versus abatacept placebo+MTX for 56 weeks.35 
The primary endpoint was the proportion of patients 
in SDAI remission (≤3.3) at week 24 of the induction 
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period.35 Other efficacy endpoints included the propor-
tion of patients in SDAI remission at week 52 and with 
Disease Activity Score in 28 joints using CRP (DAS28 
(CRP)) <2.6, in Boolean remission, or who achieved 
20%/50%/70% improvement in ACR criteria (ACR20, 
ACR50 or ACR70) response at weeks 24 and 52.

Patient population
The AVERT-2 trial included adult patients (aged ≥18 
years) with RA (defined by ACR/EULAR 2010 criteria36) 
of ≤6 months in duration who were ACPA positive and 
disease-modifying antirheumatic drug (DMARD)-naive.31 
Eligible patients had SDAI scores >11, ≥3 tender joints 
and ≥3 swollen joints, high-sensitivity CRP >3 mg/L or 
erythrocyte sedimentation rate ≥28 mm/hour at base-
line. Cohort 1 (the intention-to-treat (ITT) population) 
included all randomised patients who received at least 
one dose of the study drug during the 56-week induction 
period.35 This study was an exploratory post hoc analysis 
that included a subgroup of all randomised patients who 
had blood samples available for biomarker analysis.

Collection of blood samples
Patient blood samples were collected in standard serum 
separation tubes and prepared into aliquots. Serum 
samples were stored at ≤−70°C and shipped frozen on 
dry ice to Nordic Bioscience (Herlev, Denmark) for 
biomarker assessment.

Assessment of serum biomarkers
None of the biomarkers included in this analysis were 
prespecified. Baseline serum levels of biomarkers of ECM 
degradation and osteocalcin were measured at Nordic 
Bioscience following methods described previously, 
including: CTX-I; neoepitope of C3M19; neoepitope 
of MMP-2-degraded, MMP-9-degraded and MMP-12-
degraded C4M α1 chain37; neoepitope of granzyme 
B-mediated degradation of type IV collagen (C4G)38; 
neoepitope of MMP-1-degraded and MMP-8-degraded 
CRPM39; neoepitope of human neutrophil elastase-
mediated degradation of calprotectin (CPa9-HNE; 
unpublished data); and neoepitope of MMP-2-mediated, 
MMP-8-mediated and trypsin-mediated degradation of 
citrullinated vimentin (VICM).40 CTX-I and osteocalcin 
(N-MID) were measured using the Roche Diagnostic 
Cobas e411 platform. C3M, C4M, C4G, CRPM, CPa9-HNE 
and VICM were measured using manual competitive 
ELISA or the robotic platform IDS-i10 (Immunodiag-
nostic Systems, Tyne and Wear, UK). Samples were rerun 
if duplicate coefficients of variation were higher than 
15%. Intra-assay and interassay variation were <10% and 
<15%, respectively. All runs included three quality control 
samples, which were accepted within a 20% range of the 
target value. Serum levels of C3M, C4M and CRPM were 
also assessed at weeks 24 and 52. In this study, CTX-I 
levels were only assessed at baseline.

Serum levels of RANKL at baseline and weeks 24 and 52 
were tested using Quanterix’s (Billerica, Massachusetts, 

USA) fully automated Simoa HD-1/HD-X immunoassay 
platform at Rules Based Medicine (Austin, Texas, USA) 
according to the manufacturer’s instruction. Serum 
levels of ACPA were also assessed at baseline.

Data analysis
Analysis of baseline data
Normality testing was carried out after log2 trans-
formation of baseline levels of ECM biomarkers for 
all patients included in this study. Baseline values 
of RANKL and CTX-I were obtained from selected 
patients with baseline levels of both RANKL and ECM 
biomarkers available. The associations between baseline 
ECM biomarkers and baseline disease activity measures 
were assessed using Spearman’s correlation coefficient. 
Weak, moderate and high correlations were defined 
as 0 to <0.3, 0.3 to <0.6 and 0.6 to 1, respectively. The 
impact of sex and corticosteroid use at baseline on base-
line levels of CTX-I and the impact of baseline CTX-I 
levels on baseline levels of RANKL were assessed retro-
spectively.

Predictive analysis
A logistic regression model was used to assess the ability 
of baseline levels of ECM biomarkers to predict SDAI 
remission, DAS28 (CRP) <2.6, ACR70 response or 
Boolean remission at weeks 24 and 52. Biomarker levels 
were defined as either a continuous variable or categor-
ically (low, medium and high tertiles). Confounding 
factors were considered, including baseline disease 
activity score (SDAI), age, sex, region, baseline ACPA 
level, baseline erosion score and baseline corticosteroid 
use. Stepwise regression was used to select significant 
covariates, resulting in baseline disease activity score, 
age, and baseline erosion score being included in the 
final predictive model. In addition to these three covar-
iates, the model also included treatment arm, baseline 
biomarkers (continuous log2-transformed or categorised 
into tertiles), and biomarker-by-treatment group interac-
tion. Interaction-effect plots for continuous biomarkers, 
model estimates (βBM, βTrt*BM) and unadjusted p values 
were reported.

The estimated proportion of patients (95% CI) 
achieving SDAI remission, DAS28 (CRP) <2.6, ACR70 
response or Boolean remission was assessed at weeks 24 
and 52. Point estimates of ORs (95% CI) were assessed 
by baseline CTX-I and RANKL tertiles: low, medium and 
high CTX-I tertiles were categorised as 0.028–0.324 ng/
mL (n=178), 0.325–0.525 ng/mL (n=177) and 0.526–
1.570 ng/mL (n=178), respectively. Low, medium and 
high RANKL tertiles were categorised as 1.6–9.7 pg/
mL (n=180), 9.8–17 pg/mL (n=182) and 18–75 pg/mL 
(n=171), respectively.

Adjusted mean change from baseline over time in SDAI 
and DAS28 (CRP) scores, in swollen joint counts and in 
patient pain scores were evaluated for low, medium and 
high CTX-I tertiles.
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Pharmacodynamic analysis
A linear mixed-effects model was used to evaluate 
changes in ECM biomarker levels over time in response 
to treatment; all biomarker levels were log2-transformed. 
The difference in adjusted mean change in biomarker 
levels (least square means, converted to per cent change 
from baseline) between abatacept+MTX and abatacept 

placebo+MTX at the predefined time point, with corre-
sponding 95% CI and p values, was provided.

Table 1  Baseline characteristics in the overall AVERT-2 cohort 1 (ITT) population and the ECM biomarker subgroup by 
treatment arm

ITT population ECM biomarker subgroup

Abatacept+MTX
(n=451)

Abatacept 
placebo+MTX (n=301) p value

Abatacept+MTX
(n=330)

Abatacept 
placebo+MTX (n=205) p value

Age, years 49 (13) 49 (14) 0.69 48 (13) 47 (14) 0.52

Sex, female, n (%) 349 (77) 243 (81) 0.31 266 (81) 171 (83) 0.48

Race, n (%)

 � Asian 77 (17) 52 (17) 0.99 61 (18) 41 (20) 0.96

 � Black 20 (4) 15 (5) – 13 (4) 9 (4) –

 � Other 39 (9) 25 (8) – 31 (9) 19 (9) –

 � White 315 (70) 209 (69) – 225 (68) 136 (66) –

Duration of RA, months 1.2 (1.4) 1.2 (1.4) 0.7 1.2 (1.4) 1.2 (1.4) 0.81

RF-positive, n (%) 421 (93) 279 (93) N/A 304 (92) 189 (92) N/A

ACPA titre, U/mL 836 (1.4×103) 780 (1.5×103) 0.34 931 (1.6×103) 766 (1.3×103) 0.05

Tender joint count (68 joints) 21 (13.5) 22 (13.1) 0.46 21 (13.1) 22 (13.7) 0.45

Swollen joint count (66 joints) 13 (8.7) 14 (9.4) 0.19 14 (8.4) 15 (10.0) 0.41

Tender joint count (28 joints) 13 (6.8) 14 (6.8) 0.33 13 (6.7) 14 (6.8) 0.79

Swollen joint count (28 joints) 10 (5.7) 11 (5.8) 0.43 10 (5.6) 11 (6.0) 0.61

Erosion score 4.1 (7.0) 5.7 (8.7) <0.05 3.9 (6.7) 6.0 (8.7) <0.05

CRP, mg/L 20 (27) 19 (22) 0.34 19 (27) 17 (19) 0.35

Patient Global Assessment of disease activity 66 (23) 63 (24) 0.46 66 (24) 61 (25) 0.29

Physician Global Assessment of disease 
activity

65 (18) 66 (20) 0.67 64 (19) 63 (20) 0.89

SDAI score 38 (14) 39 (14) 0.25 39 (14) 39 (14) 0.87

DAS28 (CRP) score 5.6 (1.1) 5.6 (1.0) 0.36 5.6 (1.1) 5.6 (1.0) 0.99

HAQ-DI score 1.6 (0.7) 1.6 (0.7) 0.88 1.6 (0.7) 1.6 (0.7) 0.90

Patient assessment of pain (0–100 mm VAS) 66 (23) 65 (22) 0.44 66 (23) 65 (23) 0.55

Corticosteroid dose, mg 7.4 (4.3) 7.9 (6.5) 1 7.1 (4.1) 8.0 (6.9) 0.88

Corticosteroid use, n (%) 212 (47) 95 (32) N/A 163 (49) 70 (34) N/A

Biomarker name  �   �   �   �   �

 � CTX-I, ng/mL – – – 0.47 (0.26) 0.47 (0.25) 0.99

 � C3M, ng/mL – – – 20 (7.2) 20 (9.7) 0.45

 � C4M, ng/mL – – – 41 (17) 40 (15) 0.32

 � C4G, ng/mL – – – 41 (31) 44 (39) 0.40

 � CPa9-HNE, ng/mL – – – 137 (92) 158 (100) 0.04

 � CRPM, ng/mL – – – 16 (5.5) 16 (5.3) 0.94

 � N-MID, ng/mL – – – 18 (7.3) 19 (8.7) 0.97

 � VICM, ng/mL – – – 16 (23) 16 (23) 0.28

 � RANKL, pg/mL – – – 16 (9.7) 16 (11.0) 0.35

Data are mean (SD) unless otherwise stated. In this analysis, data for the ITT population (cohort 1) were adjusted to remove duplicate/missing data.
ACPA, anti-citrullinated protein antibody; AVERT-2, Assessing Very Early Rheumatoid arthritis Treatment-2; C4G, neo-epitope of granzyme B-mediated degradation of type IV 
collagen; C3M, neo-epitope of MMP-9–mediated degradation of type III collagen; C4M, neo-epitope of MMP-2-mediated, MMP-9-mediated and MMP-12-mediated degradation 
of type IV collagen α1 chain; CPa9-HNE, neoepitope of human neutrophil elastase-mediated degradation of calprotectin; CRP, C reactive protein; CRPM, neo-epitope of MMP-
1-mediated and MMP-8-mediated degradation of CRP; CTX-I, cross-linked carboxy-terminal telopeptide of type I collagen; DAS28, Disease Activity Score in 28 joints; ECM, 
extracellular matrix; HAQ-DI, Health Assessment Questionnaire-Disability Index; ITT, intention-to-treat; MMP, matrix metalloproteinase; MTX, methotrexate; N/A, not available; N-MID, 
osteocalcin; RA, rheumatoid arthritis; RANKL, receptor activator of nuclear factor κ-Β ligand; RF, rheumatoid factor; SD, standard deviation; SDAI, Simplified Disease Activity Index; 
VAS, visual analogue scale; VICM, neoepitope of MMP-2-mediated, MMP-8-mediated and trypsin-mediated degradation of citrullinated vimentin.
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RESULTS
Patients
Cohort 1 (ITT population) in the AVERT-2 trial 
included 752 patients who were randomised to receive 
abatacept+MTX (n=451) or abatacept placebo+MTX 
(n=301).35 Of these, 330 patients treated with abata-
cept+MTX and 205 treated with abatacept placebo+MTX 
had serum samples available for ECM biomarker deter-
mination and were included in the present analysis 
(table 1). A further subset of patients (n=533) had both 
ECM biomarker and RANKL data available.

Demographics and baseline characteristics were 
similar between the overall ITT population and the 
ECM biomarker subgroup, and across treatment arms in 
these two populations (table 1). There were no signifi-
cant differences between treatment arms in baseline 
levels of C3M, C4M, C4G, CRPM, CTX-I, osteocalcin or 
VICM (table  1). A significant difference was observed 
in CPa9-HNE (p=0.039; table  1). The sample size was 
smaller for CPa9-HNE; 26% of patients had missing data 
compared with other biomarkers studied.

Association between serum biomarkers and disease activity 
at baseline
Of the ECM biomarkers tested, baseline C3M, C4M 
and CRPM showed the greatest correlation with base-
line measures of disease activity (figure  1); although 
statistically significant, these correlations were weak to 
moderate. There was no significant correlation between 

CPa9-HNE, N-MID or VICM and measures of disease 
activity at baseline.

Baseline serum CTX-I levels showed a weak correla-
tion with baseline disease activity measures (figure 1). At 
baseline, CTX-I levels were significantly lower in females 
versus males (p=0.0021; online supplemental figure 1A). 
In addition, there was no significant difference in base-
line CTX-I levels based on corticosteroid use at baseline 
(online supplemental figure 1B).

In addition, there was no significant correlation 
between serum levels of RANKL at baseline and other 
baseline ECM biomarkers or measures of disease activity 
(figure 1).

Prediction of treatment response by baseline CTX-I level
Among the ECM biomarkers that were tested, only CTX-I 
was a significant predictor of response to treatment 
with abatacept+MTX. Higher baseline levels of CTX-I 
were significantly associated with a higher probability 
of achieving SDAI remission and DAS28 (CRP) <2.6 
at weeks 24 and 52, and ACR70 response at week 52 in 
patients treated with abatacept+MTX but not abatacept 
placebo+MTX (figure  2). The probability of achieving 
Boolean remission was also associated with baseline CTX-I 
levels, although this association was not statistically signif-
icant (figure 2). This predictive effect of CTX-I to show a 
differential treatment response between treatment arms 
was statistically significant for DAS28 (CRP) <2.6 at week 
24 (figure 2). In contrast, higher baseline C3M (online 
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supplemental figure 2), CRP (online supplemental 
figure 3) and ACPA (online supplemental figure 4) did 
not predict a differential treatment response between 
the two arms; however, higher baseline C4G levels were 
associated with a greater probability of achieving ACR70 
response at week 24 for abatacept+MTX (online supple-
mental figure 5).

Analysis of categorical variables also showed greater 
treatment differences between abatacept+MTX and 
abatacept placebo+MTX in patients with medium and 
high versus low baseline CTX-I levels (figure 3A). Statis-
tically significant treatment differences between the 
proportions of patients achieving efficacy outcomes were 
observed for SDAI remission (week 52), DAS28 (CRP) 
<2.6 (weeks 24 and 52) and Boolean remission (week 
52) in patients with high baseline CTX-I, and for ACR70 
response in patients with medium and high baseline 
CTX-I at weeks 24 and 52 (p<0.05; figure 3B).

Among patients with medium or high baseline CTX-I 
levels, significantly greater improvements in adjusted 
mean change from baseline (95% CI) in SDAI and DAS28 
(CRP) scores at all post baseline time points (figure 4) 
and in swollen joint count and patient pain at some 
post baseline time points (online supplemental figure 
6) were observed for abatacept+MTX versus abatacept 

placebo+MTX (p<0.05); patients with low baseline CTX-I 
levels generally showed fewer time points with signifi-
cantly greater improvements.

Prediction of treatment response by baseline RANKL level
The probability of achieving SDAI remission or ACR70 
response at week 52, as predicted by baseline RANKL 
levels, showed a differential treatment response between 
abatacept+MTX and abatacept placebo+MTX (figure 5). 
Differential treatment response for the probability of 
achieving SDAI remission at week 52 was statistically 
significant (p<0.05 for interaction effect). Similarly, cate-
gorical analysis demonstrated greater treatment differ-
ences at weeks 24 and 52 for abatacept+MTX versus abat-
acept placebo+MTX in patients with medium and high 
versus low baseline RANKL levels (figure 6).

Compared with patients with low baseline CTX-I, those 
with medium (p=0.059) or high (p=0.081) baseline CTX-I 
levels had numerically higher levels of RANKL, although 
statistical significance was not reached (online supple-
mental figure 7). Higher baseline CTX-I levels were not 
associated with a greater decrease in RANKL over time 
in response to treatment (online supplemental figure 
8A), and there was no significant correlation between 
serum RANKL and disease activity measures at week 52 
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in patients treated with abatacept+MTX (online supple-
mental figure 8B).

Pharmacodynamic changes in bone remodelling/ECM 
biomarkers
Compared with patients receiving abatacept place-
bo+MTX, patients treated with abatacept+MTX demon-
strated significantly greater adjusted mean percent 
change from baseline (95% CI) in C3M, C4M and RANKL 
at weeks 24 and 52 (p<0.01) and in CRPM at week 24 
(p<0.05; figure 7).

DISCUSSION
In MTX-naive patients with early RA who were ACPA 
positive, baseline levels of CTX-I, a biomarker of bone 
resorption, predicted differential SDAI remission and 
DAS28 (CRP) <2.6 in response to treatment with abata-
cept+MTX versus abatacept placebo+MTX. Higher base-
line CTX-I levels were associated with a greater proba-
bility of achieving efficacy endpoints for abatacept+MTX 
at weeks 24 and 52 of treatment. This relationship was 
not observed with abatacept placebo+MTX. In addi-
tion, differences between the two treatment groups were 
greatest among patients with medium or high baseline 
CTX-I levels.

Similarly, baseline levels of RANKL, which modulates 
differentiation and activation of osteoclasts, predicted 

a differential treatment response between abata-
cept+MTX and abatacept placebo+MTX in terms of the 
proportion of patients achieving SDAI remission. Again, 
this differential treatment response was greatest among 
patients with medium or high baseline RANKL levels. 
Treatment with abatacept+MTX also demonstrated signif-
icant pharmacodynamic effects on biomarkers of bone 
remodelling and ECM turnover, with statistically signifi-
cantly greater reductions in RANKL, C3M, C4M and 
CRPM over time compared with abatacept placebo+MTX.

The biomarkers measured in this study reflect different 
components of the inflammatory response and joint 
destruction: CTX-I is a marker of bone resorption and 
CRPM is a marker of systemic inflammation, while C3M 
and C4M are markers of synovial inflammation. Previous 
studies have shown that such markers of bone remodel-
ling and ECM turnover may be useful as disease-relevant 
surrogate biomarkers indicative of synovial joint patho-
physiology and treatment response. An evaluation of clus-
ters of biomarkers using data from two RA studies (LITHE 
(NCT00106535) and OSKIRA-1 (NCT01197521)) and 
two osteoarthritis studies demonstrated that clusters 
comprised predominantly of patients with RA showed 
high levels of cartilage turnover (MMP-degraded type 
II collagen (C2M)), CRP metabolism (CRPM), intersti-
tial matrix turnover (C1M and C3M) and bone turnover 
(CTX-I and procollagen type I N-terminal propeptide 
(PINP)).15 Another study demonstrated significantly 
higher serum levels of both C2M and C3M in patients with 
RA (n=47) compared with healthy controls (n=56),20 and 
a combination of these two markers predicted disease 
progression both in patients with RA and in those with 
ankylosing spondylitis with 80% sensitivity and 61% spec-
ificity. Furthermore, biomarkers of ECM turnover and 
systemic inflammation can be suppressed in response to 
treatment. In a prospective study of 149 Japanese patients 
with RA, serum levels of C1M, C3M, C4M and CRPM 
were elevated at baseline compared with healthy individ-
uals, and all four markers were significantly correlated 
with baseline DAS28 score (p<0.0001), demonstrating 
enhanced turnover of major collagen constituents of the 
synovial membrane in patients with active disease.16 In 
addition, levels of all four biomarkers were attenuated 
in response to treatment with several different drugs 
with varying mechanisms of action, including MTX, 
adalimumab, tocilizumab and tofacitinib.16 Recently, 
Jura-Półtorak et al17 reported significantly lower pretreat-
ment levels of serum PINP (a marker of bone forma-
tion) and higher levels of CTX-I and soluble RANKL 
(bone resorption) in 31 females with RA compared with 
healthy controls. Following 15 months of treatment with 
a tumour necrosis factor (TNF) inhibitor, they observed 
a decrease in CTX-I (partly due to the RANKL/osteopro-
tegerin reduction) and a concomitant increase in PINP 
levels.17

Building on such previous work, this study shows that 
baseline serum levels of C3M and C4M (markers of syno-
vial inflammation) and CRPM (a marker of systemic 
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based on tertiles 1 (n=178, 0.028–0.324 ng/mL), 2 (n=177, 
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inflammation) were all strongly correlated with measures 
of baseline disease activity in MTX-naive patients with 
early RA who were ACPA positive. In contrast, at baseline, 
CTX-I—a marker of bone turnover—was less strongly 
correlated with baseline disease activity and showed rela-
tively weak association with baseline erosion score (Spear-
man’s correlation coefficient=0.1). Although they had 
very severe disease, patients enrolled in the AVERT-2 trial 
had early or very early RA (disease duration ≤6 months). 
Therefore, it is possible that the CTX-I levels observed 
in this population may reflect active bone remodelling 
rather than the more severe bone erosion associated with 
more established disease. This idea of active bone remod-
elling is supported by a positive correlation between base-
line CTX-I and osteocalcin (N-MID) levels observed in 
this study (Spearman’s correlation coefficient=0.58). 
Osteocalcin is secreted by active osteoblasts.

CTX-I levels can also be affected by osteoclast activity in 
patients with osteoporosis, and osteoporosis is common 
among patients with RA. Although osteoporosis at base-
line was not measured in this study, CTX-I levels at base-
line were shown to be higher in males than females, and 
there was no significant difference in CTX-I levels by 
baseline corticosteroid use, which may alleviate concerns 
about confounding effects of baseline osteoporosis due 
to corticosteroid use on the study results.

In this study, baseline levels of CTX-I were signifi-
cantly associated with the probability of achieving SDAI 

remission and DAS28 (CRP) <2.6 at weeks 24 and 52, 
and ACR70 response at week 52 in patients treated 
with abatacept+MTX but not abatacept placebo+MTX. 
Furthermore, the ability of CTX-I to predict a differen-
tial treatment response in DAS28 (CRP) <2.6 between 
abatacept+MTX and abatacept placebo+MTX was statis-
tically significant at week 24. This differential treatment 
response was greatest among patients with medium or 
high baseline CTX-I. In patients with RA who have active 
disease, high levels of CTX-I may reflect increased acti-
vation of T lymphocytes. T-cell activation induces the 
formation of human osteoclasts, which leads to cathepsin 
K-mediated production of CTX-I2 4 and the breakdown 
of bone tissue via both RANKL-dependent and RANKL-
independent mechanisms.29 30 In patients with RA, acti-
vated T cells express high levels of soluble RANKL, and 
RANKL signalling pathways play a major role in the 
differentiation of osteoclast progenitors and expansion 
of mature osteoclasts.4 29 30 Activated T cells also secrete 
proresorptive cytokines, such as interleukin (IL)-1, IL-6 
and IL-17, which stimulate expression of RANKL on the 
cell surface of osteoblasts and fibroblasts, activating osteo-
clast formation through a contact-dependent process.29 30 
In this study, the association observed between baseline 
CTX-I and disease outcomes, in response to treatment 
with abatacept+MTX, suggests a possible role for the 
modulation of T-cell activation and subsequent effects on 
osteoclast differentiation. This is supported by the fact 
that higher C4G levels (a marker of T-cell activity) were 
also modestly correlated with a differential treatment 
response between abatacept+MTX and abatacept place-
bo+MTX. These data suggest that, following an inade-
quate response to MTX, patients with high serum levels 
of CTX-I could perhaps benefit from preferential treat-
ment with abatacept.

Furthermore, these findings suggest that abatacept 
may work better in DMARD-naive patients with early RA 
who have high levels of T-cell activation and are under-
going active bone remodelling, as shown by a significantly 
greater reduction in RANKL, C3M, C4M and CRPM 
over 52 weeks of treatment with abatacept+MTX versus 
abatacept placebo+MTX. In vitro studies have shown that 
cytotoxic T-lymphocyte-associated antigen 4 dependently 
inhibits RANKL-mediated and TNF-mediated osteoclas-
togenesis, further supporting a role for T-cell modulation 
in regulating RANKL-mediated bone destruction.41 42

There were some limitations to this study. This was a 
retrospective, hypothesis-driven exploratory analysis and 
none of the biomarkers studied were prespecified in the 
clinical protocol. This raises the question of which other 
biomarkers could have been assessed that might or might 
not predict response to treatment with abatacept+MTX or 
abatacept placebo+MTX. Not all patients randomised 
to the AVERT-2 ITT cohort had samples available for 
biomarker analysis. While the model suggests that there 
is potential predictive value of CTX-I and RANKL in 
the specific population of patients studied, this requires 
further evaluation in prospective clinical studies with 
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larger populations of patients with RA who have varying 
disease characteristics, including different stages of 
disease. In addition, CTX-I levels were not measured at 
time points beyond baseline (ie, on treatment). Future 
studies should assess CTX-I levels over the course of 
treatment to provide data on changes in CTX-I levels in 
response to treatment with abatacept and possible impli-
cations for joint erosions. While baseline CTX-I levels 
predicted treatment response to abatacept+MTX but not 
to abatacept placebo+MTX, it is not possible to discern 
whether it was predictive of response to treatment with 
abatacept alone or abatacept in combination with MTX. 
Although not assessed in this study, it would be of interest 
to investigate whether there is any correlation between 
reduction in markers of synovial inflammation, such as 
C3M and C4M, and reduction in synovitis in response to 
treatment. Finally, as with all biomarkers, to be of practi-
cable use to clinicians, an easy-to-perform, validated test 
for CTX-I would need to be readily available.

To conclude, in this study of MTX-naive patients with 
early RA who were ACPA-positive, baseline levels of the 
CTX-I bone remodelling biomarker were significantly 
associated with the probability of achieving SDAI remis-
sion and DAS28 (CRP) <2.6 at weeks 24 and 52, and 
ACR70 response at week 52 in patients treated with abata-
cept+MTX but not abatacept placebo+MTX. The predic-
tive effect of CTX-I to show a differential treatment 
response between the two treatment arms was statistically 
significant for DAS28 (CRP) <2.6 at week 24. This differ-
ence between the two treatment arms was greatest among 
patients who had medium or high baseline CTX-I levels. 
Thus, CTX-I may be useful as a predictive biomarker to 
select populations (eg, patients with early RA with an 
inadequate response to MTX) who might achieve early 
SDAI remission on treatment with abatacept+MTX. 
In addition, significant pharmacodynamic effects on 
serum levels of C3M, C4M, CRPM and RANKL were 
observed after 24 and 52 weeks of treatment with abata-
cept+MTX. Further studies of baseline CTX-I as a predic-
tive biomarker of response to treatment with abatacept 
in patients with early and very early RA, as well as for 
predicting those at high risk of developing RA likely to 
respond to disease intervention by abatacept treatment, 
are warranted.
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