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A deep learning model to classify 
neoplastic state and tissue origin 
from transcriptomic data
James Hong1,4, Laureen D. Hachem1,2,4 & Michael G. Fehlings1,2,3*

Application of deep learning methods to transcriptomic data has the potential to enhance the 
accuracy and efficiency of tissue classification and cell state identification. Herein, we developed 
a multitask deep learning model for tissue classification combining publicly available whole 
transcriptomic (RNA-seq) datasets of non-neoplastic, neoplastic and peri-neoplastic tissue to classify 
disease state, tissue origin and neoplastic subclass. RNA-seq data from a total of 10,116 patient 
samples processed through a common pipeline were used for model training and validation. The 
model achieved 99% accuracy for disease state classification (ROC-AUC of 0.98) and 97% accuracy 
for tissue origin (ROC-AUC of 0.99). Moreover, the model achieved an accuracy of 92% (ROC-AUC 
0.95) for neoplastic subclassification. This is the first multitask deep learning algorithm developed for 
tissue classification employing a uniform pipeline analysis of transcriptomic data with multiple tissue 
classifiers. This model serves as a framework for incorporating large transcriptomic datasets across 
conditions to facilitate clinical diagnosis and cell-based treatment strategies.

Accurate and expeditious tissue classification is central to the practice of clinical medicine and biological research. 
Disease diagnostics, subclassification and treatment decision-making rely heavily on interpreting the identity 
and status of patient tissue samples1. Moreover, identification of cellular phenotype, stress-state and viability is 
critical in translating cell-based transplantation strategies to clinical practice. Methods to analyze cellular identity 
and tissue health have traditionally relied on a finite number of histological markers and imaging characteristics. 
However, advances in sequencing technology over the last decade have transformed our ability to probe tissue 
and expanded the availability of transcriptomic data. The cellular transcriptome provides insight into both tissue 
identity and response to local environmental factors, which offers a more accurate assessment of tissue status as 
compared to conventional histological measures2. While transcriptomic analyses have been employed in select 
diseases or cell populations3–7, there remains a significant need to integrate the numerous sequencing datasets 
available in order to probe multiple features of a tissue sample including disease state, origin, and subclass. 
Artificial intelligence strategies offer a promising approach to address this need and to integrate this valuable 
resource into clinical and research practice.

Deep learning approaches have been increasingly incorporated into clinical medicine. Unlike standard 
machine learning, deep learning offers the ability to train on multiple layers of neural nets, therefore affording 
greater flexibility and the generation of more accurate models that allow for the identification of complex pat-
terns and granular subtyping8. To date, applications of deep learning methods have primarily been employed 
within specific disease types or in the processing of histological or radiographic images3,9. Recently, deep learning 
methods have begun to be applied to transcriptomic sequencing data in order to better understand heterogene-
ity in tissue samples10–13. Previous attempts to develop a comprehensive model based on transcriptomic data 
have often used standard machine learning approaches rather than multilayer neural networks10, and the use of 
non-uniform pipeline analyses of transcriptomic data processing thus lead to significant confounds in model 
training and output14. Furthermore, many previous models have been restricted to a single classifier of tissue 
identity10,13, and therefore do not capture the spectrum of disease states. Specifically, models do not distinguish 
non-neoplastic tissue from peri-neoplastic tissue despite there being significant differences in gene expression 
and microenvironment between these sample types15. As such, the development of an accurate and efficient 
transcriptomic deep learning model with multiple classifiers of tissue state is necessary.
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Herein, we developed a multitask deep learning model using publicly available data from the Genotype Tissue 
Expression (GTEx) Project16,17 and The Cancer Genome Atlas (TCGA) processed through a uniform analysis 
pipeline. Specifically, the model contains three classifiers including disease state, tissue origin and neoplastic 
subclass. Our model achieved high accuracy and performance metrics for all three classifiers and serves as a 
framework for incorporating large transcriptomic datasets across conditions to facilitate clinical diagnosis and 
research development.

Methods
RNA sequencing data.  RNA sequencing data was obtained from the Genotype Tissue Expression (GTEx) 
Project16,17 and The Cancer Genome Atlas (TCGA). As batch differences between different GTEx and TCGA 
submissions are well-documented, we utilized a common RNA-sequencing analysis pipeline to minimize batch 
effects18. Specifically, all raw reads were imported for alignment against hg19 in STAR, with quality control done 
in mRIN19 (mRIN < − 0.11 threshold for sample exclusion), quantification in featureCounts20 and batch effect 
correction in SVAseq21. In total, 10,116 patient samples were used with 17,993 genes included based on com-
monality across datasets (Supplementary Table 1). Dimensional reduction was performed using Sklearn package 
StandardScaler and principal component analysis (PCA), and 2000 principal components were used for model 
transformation. As a benchmark, 1000 top features selected by Random Forest and all 17,993 features (no PCA) 
were included in a separate run of the same models.

Deep learning model.  Our deep-learning model consists of two models executed in tandem, the first is a 
multi-tasking model which classifies the type (non-neoplastic, neoplastic or peri-neoplastic) and tissue origin 
of the tissue. The subsequent subtyping model is primed to be executed only if the sample’s tissue of origin has 
subtyping data available.

Based on prior work in deep learning processing of transcriptomic data and model tuning, the encoders 
for both models are comprised of 7 fully connected, feed-forward neural network layers (FFNN, Fig. 1B,C). 
The purpose of the 5 hidden layers is to bring down the dimensionality of the input transcriptomic data. Each 
of these layers has a Rectified Linear Unit (ReLU) activation function on top of their outputs, which is used to 
restrict the output of these layers. ReLU was selected over Sigmoid or Tanh due to the lack of vanishing gradient 
and sparsity, ultimately resulting in faster learning and quicker convergence22. Hidden layers 3 through 5 also 
have dropout layers between their output and the next layer to reduce overfitting. In the output layer, we have 
task heads, which are represented by layers with a Softmax activation function. These layers map their inputs 
to the dimension equal to the number of classes for that task. Specifically, for the multi-tasking model, the first 

Figure 1.   Bayesian Hyperparameter Tuning of Deep Learning Models. (A) Search space of hyperparameters 
for Bayesian tuning; (B) Architecture of multitask classifier for disease state and tissue origin along with tuned 
hyperparameters; (C) Architecture of neoplastic subtype classifier along with tuned hyperparameters.
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output head represents the type of tissue (non-neoplastic, neoplastic or normal peri-neoplastic, 3 classes) and 
the second output head represents the tissue origin (14 classes). Similarly, in the neoplastic subtype model, the 
output head presents the cancer subtype (11 classes). The Softmax activation function forces these output heads to 
output a probability distribution over their respective number of classes. All models were trained for 500 epochs.

Bayesian hyperparameter tuning.  We performed Bayesian hyperparameter optimization using the 
hyperopt package23, using the minimization of the cross-entropy loss as our optimization objective over 25 
epochs. For each of the FFNNs, the Cartesian product of the learning rate, batch size, dropout value, unit, opti-
mizer, and activation functions were selected as the search space (Fig. 1A). Instead of arbitrarily setting discrete 
values within the learning rate, batch size and units, we opted to randomize the range using the randint function. 
The optimal hyperparameters were then selected after 100 evaluations (Fig. 1A–C).

Benchmarking against other Machine Learning approaches.  We compared the balanced accuracy 
of our proposed deep learning classifiers against other machine learning algorithms in the Sckit-learn package24, 
including Decision Tree Classifier (DT), Extra Trees Classifier (ET), Support Vector Machine (SVM), Stochastic 
Gradient Descent (SGD) classifier, and K-nearest Neighbours Classifier (KNN). In these models, all 17,993 fea-
tures were used as inputs, and a 70:15:15 ratio was used for train/validation/test splits.

Results
Training dataset.  We used data from the Genotype Tissue Expression (GTEx) Project16,17 and The Cancer 
Genome Atlas (TCGA) for the training of our model. Specifically, 10,116 patient samples were included and 
processed through a uniform pipeline18. Seventy percent of the data was used for training with the remaining 
split evenly for validation (15%) and testing sets (15%). The model was trained for 500 epochs. The deep learning 
model consisted of a multi-tasking model that classifies disease state (non-neoplastic versus peri-neoplastic vs 
neoplastic) and tissue origin (14 tissue classes). A subsequent subtyping model was primed to be executed only 
if the sample’s tissue of origin had subtyping data available. The performance results reported here are from our 
proposed deep learning models with PCA dimensional reduction applied (DL PCA).

Multi‑task model: disease state and tissue origin classifiers.  The multitask portion of the model 
was trained on disease state (non-neoplastic versus peri-neoplastic vs neoplastic) and tissue origin (14 tissue 
classes). On the testing set, the disease state classifier achieved an overall accuracy of 0.99, precision of 0.99, 
recall of 0.99 and f1-score of 0.99 with high performance metrics for each subclass (Table 1). The associated con-
fusion matrix (Fig. 2A) and receiver operating characteristic (ROC) curves (Fig. 2B) demonstrate that the model 
achieved an area under the curve (AUC) of 0.98 for disease state classification. The top K plot demonstrates that 
the classifier had excellent predictive accuracy without overfitting (Fig. 2C).

In terms of the tissue origin classifier, the model achieved an accuracy of 0.97, precision of 0.97, recall of 0.97 
and f1-score of 0.97 (Table 2). ROC AUCs ranged from 0.97 to 1.00 for individual tissue origins with a macro 
average of 0.99 (Fig. 3B) with very few misclassifications (Fig. 3A). The top K plot demonstrates that the classifier 
had excellent predictive accuracy without overfitting (Fig. 3C).

Neoplasm subtype classifier.  For tissues with multiple neoplastic subclasses (n = 11), the model was 
trained on an additional subtype classifier. Here, the model achieved an overall accuracy of 0.92, precision of 
0.90, recall of 0.92 and F1-score of 0.91 (Table 3). ROC-AUC ranged from 0.55 to 1.00 for subtypes with a macro-
average of 0.95 (Fig. 4B). It should be noted that the majority of subtypes were accurately classified, with the only 
exception of urterine corpus endothelial carcinoma (ucec) being classified as glioblastomas (gbm) (Fig. 4A,B). 
Top K plot demonstrates that the classifier had excellent predictive accuracy without overfitting (Fig. 4C).

Benchmark against various feature sets and other machine learning algorithms.  We compared 
the balanced accuracy of our deep learning model (DL PCA) against deep learning models with either the full 
feature set (DL No PCA) or with the top 1,000 features selected by a Random Forest classifier (DL RF). Except for 
the neoplastic subtype classifier, DL PCA outperformed all other deep learning models. In both hyperparameter 
optimization and model training, DL PCA was 6 times more efficient compared to DL No PCA. The marginal 
gain in accuracy with the full feature set in the neoplastic subtype classifier justifies the use of PCA dimensional 

Table 1.   Disease state classifier.

Accuracy 0.9882

Balanced accuracy 0.9675

Class Precision Recall F1 Support

Non-Neoplastic 1.00 1.00 1.00 414

Neoplastic 0.99 0.99 0.99 1009

Peri-Neoplastic 0.94 0.91 0.93 105

Weighted Avg 0.99 0.99 0.99 1528
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reduction to improve model efficiency. In all classifiers, the DL PCA model outperformed classic machine learn-
ing algorithms (DT, ET, SVM, SGD, and KNN; Fig. 5A–C, Supplementary Table 1).

Discussion
In this study, we developed a multitask deep learning model based on the most recent compendium of RNAseq 
data from GTEx and TCGA. Our model achieves high performance on all metrics across the three tissue clas-
sifiers of disease state, tissue identity, and neoplastic subtype. This is the first multitask deep learning algorithm 
developed for tissue classification employing a uniform pipeline analysis of transcriptomic data with multiple 
tissue classifiers. This model serves as a foundation for incorporating large transcriptomic datasets to facilitate 
disease diagnosis, subclassification and treatment decision-making.

While previous models based on transcriptomic data have been attempted for neoplastic classification, these 
have typically employed a single neural layer and have demonstrated modest performance metrics25,26. The 
architecture of our model incorporates five feed forward layers, which affords increased accuracy and a greater 
number of classifiers. Indeed, our model achieves overall better accuracy with fewer samples and training epochs 
than previous models14. The ability of our model to perform well even in classes with small sample sizes is of 
significant value for application to rare diseases or tissue states whereby access to patient samples may be lim-
ited. Rare conditions can often pose the greatest clinical diagnostic challenges as standard histological measures 
may fail to achieve an accurate diagnosis27. Furthermore, our model was able to distinguish with high accuracy 
samples of non-neoplastic tissue versus peri-neoplastic tissue, thus demonstrating its utility in classifying tissue 
state along a spectrum of disease. The latter is defined by samples collected > 2 cm from the neoplastic margin 

Figure 2.   Performance of disease state classifier. (A) Confusion matrix of disease state classifier; (B) Receiver 
operating characteristic curve (ROC) with area under the curve (AUC); (C) top K accuracy plot.

Table 2.   Tissue origin classifier.

Accuracy 0.9705

Balanced accuracy 0.9587

Class Precision Recall F1 Support

Kidney 1.00 0.99 1.00 153

Colon 0.99 1.00 1.00 124

Esophageal 0.94 0.96 0.95 130

Lung 0.95 0.98 0.96 207

Uterus 0.97 0.93 0.95 41

Cervix 0.97 0.88 0.92 40

Liver 0.98 0.98 0.98 58

Thyroid 0.99 0.99 0.99 115

Stomach 0.94 0.96 0.95 98

Brain 1.00 0.99 0.99 141

Breast 1.00 0.99 0.99 202

Bladder 0.87 0.93 0.90 57

Kidney 1.00 1.00 1.00 82

Colon 0.91 0.85 0.88 80

Weighted Avg 0.97 0.97 0.97 1528
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Figure 3.   Performance of tissue origin classifier. (A) Confusion matrix of tissue origin classifier; (B) Receiver 
operating characteristic curve (ROC) with area under the curve (AUC); (C) top K accuracy plot.

Table 3.   Neoplastic subtype classifier.

Accuracy 0.9229

Balanced accuracy 0.8548

Class Precision Recall F1 Support

Luad 0.95 1.00 0.97 76

Lgg 0.89 0.94 0.91 79

Coad 0.95 0.90 0.92 82

Ucec 0.00 0.00 0.00 11

Read 0.94 0.96 0.95 70

Gbm 0.80 1.00 0.89 47

Kich 1.00 0.96 0.98 23

Ucs 0.88 0.88 0.88 8

Kirc 0.95 0.88 0.91 24

Kirp 1.00 0.90 0.95 30

Lusc 1.00 1.00 1.00 4

Weighted Avg 0.90 0.92 0.91 454

Figure 4.   Performance of neoplastic subtype classifier. (A) Confusion matrix of tissue origin classifier; (B) 
Receiver operating characteristic curve (ROC) with area under the curve (AUC); (C) top K accuracy plot.
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with normal histological features and is often used as healthy controls in oncological studies28,29. However, normal 
tissue adjacent to the neoplasm has been shown to have differences in gene expression profiles compared to purely 
non-neoplastic tissue and as such may represent a distinct entity on the spectrum of neoplastic phenotypes15. To 
date, this distinction has not previously been incorporated into models of tissue typing.

Importantly, we used a uniform pipeline for processing RNA sequencing data from GTEx and TCGA prior 
to inputting into our model. Specifically, this approach employed mRIN-based exclusion of degraded samples, 
uniform realignment and expression quantification, along with study-specific bias correction, as previously 
described18. Previous studies have demonstrated that without uniform reprocessing and batch-correction of 
RNAseq data obtained from various studies, samples of different tissue identity within a single study show 
stronger similarities than samples of the same tissue type derived from different studies18. This underscores the 
importance of uniform processing of data prior to model training, which is a major pitfall of previous models 
employing a deep model architecture14.

Ultimately, our model provides a framework to leverage large datasets of transcriptomic data across diseases 
and tissue states. Tissue profiling using transcriptomic data may be of particular use in situations of diagnosing 
cancers of unknown primary whereby standard clinicopathologic investigations do not yield a definitive source30. 
In our model, multiple classifiers including tissue origin and subtype may offer an advantage in the clinical 
diagnosis of these entities. While the model was trained on a set of non-neoplastic, normal peri-neoplastic and 
neoplastic tissue, in the future, additional transcriptomic data can be incorporated to include classifiers of tissue 
stress (e.g. inflammation or oxidative stress) and cellular phenotype (e.g. specific cell lineages), thus expanding 
the applications of this algorithm. Tissue profiling using this approach may be a valuable tool in determining 
the health and viability of cell lines used for clinical applications and in comparing cellular responses to injury 
and disease31.

Data availability
The datasets and codes for the training and validation of the model are included in the link at: https://​drive.​
google.​com/​drive/​folde​rs/​1rSKD​asV51​ve9tb​JjKtn​WH9FI​mDFK9​plb?​usp=​shari​ng. Details of the uniform pipe-
line analysis used for pre-processing of the RNAseq data are provided in the following link18: https://​github.​com/​
mskcc/​RNAse​qDB.
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