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ABSTRACT We present an implementation of a recently introduced method for estimating the allele-frequency spectrum under the
diffusion approximation. For single-nucleotide polymorphism (SNP) frequency data from multiple populations, the method computes
numerical solutions to the allele-frequency spectrum (AFS) under a complex model that includes population splitting events, migration,
population expansion, and admixture. The solution to the diffusion partial differential equation (PDE) that mimics the evolutionary
process is found by means of truncated polynomial expansions. In the absence of gene flow, our computation of frequency spectra
yields exact results. The results are compared to those that use a finite-difference method and to forward diffusion simulations. In
general, all the methods yield comparable results, although the polynomial-based approach is the most accurate in the weak-migration
limit. Also, the economical use of memory attained by the polynomial expansions makes the study of models with four populations
possible for the first time. The method was applied to a four-population model of the human expansion out of Africa and the peopling
of the Americas, using the Environmental Genome Project (EGP) SNP database. Although our confidence intervals largely overlapped
previous analyses of these data, some were significantly different. In particular, estimates of migration among African, European, and
Asian populations were considerably lower than those in a previous study and the estimated time of migration out of Africa was earlier.
The estimated time of founding of a human population outside of Africa was 52,000 years (95% confidence interval: 36,000–80,800
years).

THE study of demographic history from genetic data is
important for understanding how populations have di-

verged and come to be in their present state. In the case of
human populations, genetic studies of demographic history
can be a great complement to archaeological studies of hu-
man prehistory. Having a model of demographic history is
also important for facilitating the identification of genomic
regions that have been evolving under selective pressures.
The inference of signatures of natural selection from DNA
sequence data sets requires accounting for different demo-
graphic forces that contribute to shaping such patterns (Risch
and Merikangas 1996; Nielsen 2001; Goldstein and Chikhi

2002; Shriver et al. 2003; Laberge et al. 2005; Schaffner et al.
2005; Lao et al. 2006; Chen 2012).

The extraction of information from patterns of variation
in genetic data requires mathematical models that can
capture the diversity and richness of population histories,
as well as efficient statistical tools for fitting models to data.
The demands on models and on tools are especially great for
questions about human populations, which have a complex
history and for which large amounts of data can often be
brought to bear. An important approach to modeling de-
mographic history and comparing models to genetic data
focuses on the allele-frequency spectrum (AFS). Given DNA
sequence data from several individuals in K populations, the
resulting single-nucleotide polymorphism (SNP) joint AFS is
a K-dimensional matrix in which each cell specifies the num-
ber of derived alleles that were found at a particular set of K
frequencies in the data. Inference of a demographic model
of history for a data set consists of finding a model and a set
of parameter values that correspond to an expected AFS that
closely resembles the AFS that was observed in the data.
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In this article we present a software implementation of
a recently introduced spectral method (Lukic et al. 2011) for
estimating the AFS under the diffusion approximation. The
implementation allows for the study of a broad class of de-
mographic models for multiple closely related populations.
In this Introduction we review the history of methods for
solving these types of problems in population genetics, as
well as some of the limitations of the different approaches.

A brief history of the use of diffusion processes
for approximating the AFS

The classical approach to computing the AFS was developed
by Fisher (1930), Wright (1931), and Kimura (1964), who
introduced forward diffusion processes and irreversible muta-
tions in a single population to model the evolutionary pro-
cess. The theory was extended by Kimura (1969) to study
many nucleotide positions by introducing the infinite-sites
mutation model. Coalescent models can also be used to de-
velop exact solutions for the AFS under the infinite-sites as-
sumption, and these are particularly amenable for some
models with multiple populations (Wakeley and Hey 1997).

Until relatively recently, most applications of classical
forward diffusion theory to demographic inference were
limited to models that assumed some form of equilibrium
(mutation/drift equilibrium, mutation/selection equilib-
rium, etc.) and could be solved exactly (Sawyer and Hartl
1992; Ewens 2004). However, the recent introduction of
numerical methods to integrate arbitrary diffusion equations
has allowed for the relaxing of the assumption of equilibrium
so that general nonequilibrium scenarios can be studied. In
Williamson et al. (2005) a finite-difference scheme was used
to numerically solve the equations associated with a model
that combined the effects of selection and population-size
growth in one population. The finite-difference method is
a classical technique for numerically solving partial differen-
tial equations in which the density of allele frequencies is
approximated by a piecewise linear function, and the deriv-
atives are approximated by means of finite subtractions. The
piecewise linear approximation relies upon a grid defined on
frequency space, and the accuracy of the method increases
as the grid becomes finer. Later in Gutenkunst et al. (2009),
these techniques were implemented in the program @a@i
and extended to consider models with two and three simul-
taneous populations that undergo random drift, migration
events, arbitrary population size changes, admixture events,
and directional selection (e.g., Xing et al. 2010; Albert et al.
2011; Jensen and Bachtrog 2011).

Despite the superficial differences between these ap-
proaches to population genetics, it is known that both
coalescent and forward diffusion processes are dual pro-
cesses in an analytic sense (Griffiths and Spano 2010). The
connection between these dual processes can be made ex-
plicit through the application of orthogonal polynomial the-
ory to Wright–Fisher processes (see Griffiths and Spano
2010 for a recent review on the topic). Previous studies that
applied orthogonal polynomial theory to the two-allele neu-

tral Wright–Fisher process made it possible to solve the as-
sociated diffusion equations for one population (Myers et al.
2008). Also, a recently introduced spectral expansion makes
it possible to exactly integrate the same diffusion equations
with arbitrary diploid selection (Song and Steinrücken
2011). In this study, we employ series of orthogonal poly-
nomials to solve multipopulation Wright–Fisher processes
(Lukic et al. 2011), and we use these solutions to infer mod-
els of demographic history from genetic data. In general,
these methods provide approximate solutions for finite
numbers of polynomials and approach the exact solution
in the limit as the number of polynomials goes to infinity.
In the particular case of neutral models wherein each pop-
ulation size is fixed for the duration that a population per-
sists, and there is no gene exchange between populations,
our polynomial-based approach provides the exact solution
of the AFS, which was first described using a coalescent
approach by Wakeley and Hey (1997) (see supporting in-
formation, File S1, section 1).

The curse of dimensionality

Another important motivation for the use of orthogonal
polynomials is to be able to tackle models in which the high
dimensionality of the frequency spectra becomes an impor-
tant limitation. As the number of variables used to approx-
imate the density of population allele frequencies grows
exponentially, the total number of simultaneous populations
that one can study becomes limited. In particular, if we use
a grid of G grid points per population to approximate the
density of allele frequencies f as a piecewise linear function
on the grid, the number of variables used in the approxima-
tion is GK, with K the total number of populations.

The use of truncated polynomial expansions to approx-
imate the density of population allele frequencies has two
main advantages with respect to the piecewise linear
approximations on grids that are used in finite-difference
methods:

First, the contributions to an allele-frequency spectrum built
from C haploid genomes sampled per population can be
located in the first (C – 2)K terms of lowest degree of
a polynomial expansion of the density of population al-
lele frequencies f. More precisely, given an AFS fi1;i2;...iK
built from C sampled chromosomes in K populations,
a particular demographic scenario u, and a joint density
of population frequencies f(x|u) associated with u, we
know that the AFS and the joint density of frequencies
are related (Sawyer and Hartl 1992) as

fi1; i2;...iK ðuÞ

¼ ðC!ÞK

i1!ðC2 i1Þ!⋯iK !ðC2 iKÞ!

·
R
½0;1�KfðxjuÞx

i1
1 ð12x1ÞC2i1⋯xiKK ð12xKÞC2iK dx1⋯dxK :

(1)
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If f(x|u) is expanded in the basis of shifted Jacobi poly-
nomials TnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þð2nþ 3Þ=ðnþ 1Þ

p
Pð1;1Þn ð2x2 1Þ

(see Appendix),

fðxjuÞ ¼
XN

n1;...;nK¼0

an1;...;nK ðuÞTn1ðx1Þ⋯TnK ðxKÞ;

the following integrals,

R
½0;1�K Tn1 ðx1Þ⋯TnK ðxKÞx

i1
1 ð12x1ÞC2i1⋯xiKK ð12xKÞC2iK dx1⋯dxK ¼ 0;

(2)

vanish for n1 . C 2 2 or n2 . C 2 2 . . . or nK . C 2 2.
Therefore, only the first (C2 2)K terms of lowest degree in
the polynomial expansion yield nonzero contributions to
the AFS in Equation 1, for 0, i1 , C, . . . , 0, iK , C. This
means that the information in f(x, t) required to compute
the AFS can be represented as a vector in the vector space
spanned by fTiðxÞgi¼C22

i¼0 , i.e., the vector space of polyno-
mials of degree bounded by C 2 2 (see Appendix).

Second, it is known that polynomial approximations of smooth
functions exhibit exponential convergence (Hesthaven
et al. 2007). In particular, the amount of computational
resources needed to numerically solve the multipopula-
tion Wright–Fisher equations depends on the number of
variables needed to approximate f(x) (e.g., number of
floating-point values). We denote this number as nf.
Any other relevant quantity in the algorithm, such as
the number of variables needed to approximate the dif-
fusion operator or the number of operations needed
to evaluate the AFS, will be a function of nf. Therefore,
any efficient algorithm that solves the multipopulation
Wright–Fisher diffusion process needs to be designed
with the goal of minimizing nf given a fixed bound for
the numerical error. If one uses a finite-difference algo-
rithm, then nf = GK with G the number of grid points per
population. On the other hand, if one uses spectral meth-
ods, then nf = (L + 2)K 2 2. Here, L is the number of
polynomials per population and the term L + 2 comes
from the fact that each boundary component, except the
ancestral and derived vertices of the K-cube, contributes
its own polynomial expansion (Lukic et al. 2011). In both
algorithms the diffusion operator is approximated as
a sparse matrix of size nf · nf, and the number of oper-
ations needed to evaluate Equation 1 is the same function
of nf, K, and C. As the polynomial approximations of
smooth functions exhibit exponential convergence, we
can use lower values of L to accurately approximate
the solutions of the diffusion equations. This allows us
to use a larger number of populations.

As a simple illustration of the convergence properties
of polynomial expansions, we approximated the equilibrium
density of allele frequencies in one population [f(x) = dx/x
with 1/2 N # x # 1] by means of polynomial expansions
fL(x). Also, we considered piecewise linear approximations

fG(x) on grids of size G. For 0.005 # x # 1, the error
function decayed exponentially as

kfðxÞ2fLðxÞkL1 ¼
Z 1

1=2N
jfðxÞ2fLðxÞjdx � 72:16e20:65L;

with L the number of polynomials in the polynomial
approximation of the density of allele frequencies; see
Figure 1. However, in the case of piecewise linear approx-
imations, the error function decayed as a power law

kfðxÞ2fGðxÞkL1 ¼
Z 1

1=2N
jfðxÞ2fGðxÞjdx � 101:85G21:92;

with G the number of grid points; see Figure 1. The
parameters of the exponential and power law functions
were estimated by means of the least-squares method.
Therefore, given any fixed truncation nf = L= G, a poly-
nomial expansion gives a much more accurate approxi-
mation of the true density f(x).

Outline of the article

In this Introduction we have reviewed some of the history of
methods for modeling demographic history by means of
approximations of the AFS. Additionally, we have described
two numerical methods, the finite-difference method and
the spectral method, that can be used to solve different
diffusion equations that arise in the computation of AFS.
The benefits of the latter approach include exact solutions
for a large family of multipopulation models and rapidly
converging approximations for a larger class of models. In
the remainder of the article we describe the method in detail
and assess how well it performs both based on simulated
data sets and in comparison to a grid-based approach.
Finally, we report the analyses of a four-population model

Figure 1 Decay of the error function between the equilibrium density of
allele frequencies and its polynomial approximation and piecewise linear
approximation. The horizontal axis denotes the number of polynomials
for the lower curve and the number of grid points for the upper curve.
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of human history, using a SNP data set that has previously
been analyzed under three-population models, using the
grid-based approach.

Materials and Methods

Background

The observable object that we aim to reproduce theoretically
is the allele-frequency spectrum. In this section, we review
the definition of the AFS in a multipopulation context and
how one can approximate it with numerical solutions of
diffusion-based models that use truncated expansions by
orthogonal polynomials (Lukic et al. 2011).

The joint AFS is defined as a K-dimensional matrix built
from the allele counts observed in a sample of individuals
from K different populations. Each value in the matrix is an
expected number (in the case of an AFS calculated under
a theoretical model) or an observed number (in the case of
data) of diallelic polymorphisms that fall into a particular
frequency class. We denote as ni1;i2;...;iK an entry of the ob-
served joint AFS that specifies the number of SNPs in which
their derived state occurs i1 2 [0, C1] times in the first pop-
ulation, i2 2 [0, C2] times in the second population, etc.
Here, Ca is the total number of chromosomes sampled from
the ath population (a = 1, . . . , K). For simplicity in the no-
tation, we assume Ca = C for all a throughout this article.
Here, while ni1;i2;...;iK denotes an entry of the empirical AFS,
we denote as fi1;i2;...;iK ðuÞ the analogous entry of the theoret-
ical AFS.

The AFS can be seen as an object derived from the
distribution of population allele frequencies f(x) on [0, 1]K.
In particular, if the derived allele frequencies of a SNP taken
at random consist of a vector fxagKa¼1, where xa is the fre-
quency of the SNP in population a, independently and iden-
tically distributed with respect to the distribution f(x), the
AFS consists of a finite sample of population alleles as de-
fined in Equation 1. In our model-based approach f(x) is
interpreted as a present-time density that has been shaped
by a historical Wright–Fisher process on a population tree
specified by the parameters u. We denote the resulting
model-dependent joint density by f(x|u). The parameters
depend on the particular model and usually involve effective
population sizes, migration rates, splitting times, admixture
coefficients, population growth rates, etc. In the diffusion
approximation to multipopulation Wright–Fisher processes
exchanging migrants, the time evolution of f(x, t) obeys
a partial differential equation (PDE) of the type

@

@t
fðx; tÞ ¼

X
a;b

1
2

@2

@xa@xb
 

�
dab

xað12 xaÞ
2Ne;aðtÞ

fðx; tÞ
�

2
@

@xa
ðmabðtÞðxb2 xaÞfðx; tÞÞ þ rðx; tÞ:

(3)

Here, fNe;aðtÞgKa¼1 denotes the effective population sizes,
fmabðtÞgKa;b¼1 denotes the fraction of chromosomes that pop-

ulation a receives from b, and the nonhomogeneous term
r(x, t) describes the total incoming/outgoing flow of SNPs
per generation into the K-cube from different boundary
components of the K-cube and from de novo mutations.
These boundary conditions are treated in more detail later.

Approximate solutions by means of polynomial expan-
sions: Our approach to approximate the solutions of
Equation 3 assumes that the density solution f can be ex-
panded in a polynomial basis with time-dependent coeffi-
cients that can be determined numerically. The expansion
consists of a contribution associated with the bulk of the
K-cube and other different contributions associated with
each boundary component. The expansion can be expressed
compactly as

fðx; tÞ ¼
XLþ2

n1¼0

⋯
XLþ2

nK¼0

an1...nK ðtÞRn1ðx1Þ⋯RnK ðxKÞ; (4)

for a truncation parameter L. The set of functions
fRnðxÞgLþ2

n¼0 is defined as

RnðxÞ ¼ TnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þð2nþ 3Þ

nþ 1

r
Pð1;1Þn ð2x2 1Þ; n#L;

(5)

RnðxÞ ¼ dðxÞ; n ¼ Lþ 1; (6)

RnðxÞ ¼ dð12 xÞ; n ¼ Lþ 2; (7)

where Pð1;1Þn ðzÞ are the classical Jacobi polynomials defined
on the interval 21 # z # 1 with weight w(z) = (1 2 z)(1 +
z), and d(x) is the Dirac delta function (for more details on
the basis of polynomials see the Appendix). When the migra-
tion coefficients mab in Equation 3 vanish, and L = C 2 2
(with C the number of haploid genomes sampled in the
definition of the AFS), the truncated expansion Equation 4
yields an exact formula for the AFS (see File S1, section 1 for
a detailed derivation). However, in general the coefficients
an1...nK ðtÞ obey a numerically integrable ordinary differential
equation, and the truncated polynomial expansion in Equa-
tion 4 gives rise to approximations of the AFS that have the
potential to become more accurate as the truncation param-
eter L increases.

Some of the most important differences between scenar-
ios with and without migration originate in the delicate
dynamics of f at the boundary of the K-cube. In the follow-
ing paragraphs we review these boundary conditions. In the
next subsection we examine how to deal with numerical
artifacts (known as Gibbs phenomena) that appear when
we consider approximations with finite L.

By the boundary dynamics of f we mean the dynamics of
those SNPs that have an allele fixed in some populations but
that remain polymorphic in others and of those new SNPs
that arise by the influx of mutations. This class of SNPs is
described by those terms that are multiplied by Dirac deltas
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in Equation 4. For illustrative purposes we examine in detail
the particular case of two populations. When K = 2, we can
decompose Equation 4 as

fðx1; x2; tÞ
¼ fAðx1; x2; tÞ þ fB

ðx2¼0Þðx1; tÞdðx2Þ
þ fB

ðx2¼1Þðx1; tÞdð12 x2Þ þ fB
ðx1¼0Þðx2; tÞdðx1Þ

þ fB
ðx1¼1Þðx2; tÞdð12 x1Þ

þ fC
ðx1¼1; x2¼0ÞðtÞdð12 x1Þdðx2Þ

þ fC
ðx1¼0; x2¼1ÞðtÞdðx1Þdð12 x2Þ:

(8)

The terms that are multiplied by Dirac deltas represent the
density of allele frequencies of those SNPs that are localized
in the different boundary components. In particular, the A
term is localized in the bulk of the square, the four B terms
are localized in the edges of the square, and finally the two C
terms are localized in the two vertices of the square that are
not absorbing. The ancestral vertex (x1 = 0, x2 = 0) and the
derived vertex (x1 = 1, x2 = 1) are absorbing and hence do
not contribute SNPs to the density f(x1, x2, t). Now, we can
recover Equation 4 if we expand each term in Equation 8,
using the basis of shifted Jacobi polynomials Tn(x). In par-
ticular, we write the polynomial expansion of each term in
Equation 8 as

fAðx1; x2; tÞ ¼
PN

n;m¼0
aAnmðtÞTnðx1ÞTmðx2Þ;

fB
ðx2¼0Þðx1; tÞ ¼

PN
n¼0

aBðx2¼0Þ; nðtÞTnðx1Þ;

fB
ðx2¼1Þðx1; tÞ ¼

PN
n¼0

aBðx2¼1Þ; nðtÞTnðx1Þ;

fB
ðx1¼0Þðx2; tÞ ¼

PN
m¼0

aBðx1¼0Þ;mðtÞTmðx2Þ;

fB
ðx1¼1Þðx2; tÞ ¼

PN
m¼0

aBðx1¼1Þ;mðtÞTmðx2Þ;

fC
ðx1¼1; x2¼0ÞðtÞ ¼ aCðx1¼1; x2¼0ÞðtÞ;

fC
ðx1¼0; x2¼1ÞðtÞ ¼ aCðx1¼0; x2¼1ÞðtÞ:

(9)

The inflow/outflow of polymorphisms affects the dynamics
of each term differently. For instance, in every generation,
de novo mutations contribute a mass 2N1ud(x121/2N1) to
fB
ðx2¼0Þðx1; tÞ and a mass 2N2ud(x221/2N2) to fB

ðx1¼0Þðx2; tÞ,
where u is the mutation rate. This means that a total of
2Nau new SNPs at frequency xa = 1/2Na appear each gener-
ation in population a due to de novo mutation events. On the
other hand, random drift can fix some variants that were
polymorphic in populations 1 and 2. This means that a SNP
with allele frequencies distributed as fA(x1, x2, t) becomes
a SNP with allele frequencies distributed as fB

ðx2¼0Þðx1; tÞ,
fB
ðx2¼1Þðx1; tÞ, fB

ðx1¼0Þðx2; tÞ, or fB
ðx1¼1Þðx2; tÞ, depending on

which frequency class becomes fixed (x2 = 0, x2 = 1, x1 =
0, or x1 = 1). Finally, variants segregating on any of the edges
of the square can also become fixed because of random drift.
Therefore, the density of SNPs at the edge (x1 = 1, x2 = 0),
fC
ðx1¼1;x2¼0ÞðtÞ, receives SNPs that reach the fixed frequency

x1 = 1 from fB
ðx2¼0Þðx1; tÞ and SNPs that reach x2 = 0 from

fB
ðx1¼1Þðx2; tÞ. Similarly, fC

ðx1¼0;x2¼1ÞðtÞ receives SNPs that
reach x1 = 0 from fB

ðx2¼1Þðx1; tÞ and SNPs that reach x2 = 1
from fB

ðx1¼0Þðx2; tÞ. When the migration coefficients are
zero, this dynamic can be integrated exactly (see File S1,
section 1).

The boundary dynamics become more complicated when
the migration rates are nonzero. This is due to the fact that
when a SNP reaches fixation in one population and remains
polymorphic in the other, it can become polymorphic again
in the first population because of potential migration events.
This contrasts with the zero-migration scenario, in which
the number of populations where a SNP is polymorphic
decreases as a function of time. The contributions due to
migration events in the different components of Equation 8
follow a complicated formula that was previously analyzed
in the literature. We refer to Lukic et al. (2011) for more
detailed information on these terms and how to integrate
the full dynamics using a numerical method such as
a Runge–Kutta method. Here, for illustrative purposes,
we write only the contribution to fA due to migration
events,

Dmf
Aðx1; x2; tÞ
Dt

¼ fB
ðx2¼0Þðx1; tÞdðx2 2m21x1Þ

þ fB
ðx2¼1Þðx1; tÞdð12m21x1 2 x2Þ þ fB

ðx1¼0Þðx2; tÞdðx1 2m12x2Þ

þ fB
ðx1¼1Þðx2; tÞdð12m12x2 2 x1Þ;

where Dmf/Dt denotes the change in the density of SNPs
per unit of time due to migration events.

Gibbs phenomena: In general, it is not possible to work with
infinite sums such as the ones introduced in Equation 9. This
is why proper truncated expansions such as Equation 4 are
used instead. Although truncated polynomial expansions
can sometimes yield exact results, in general scenarios with
migration we are faced with the task of approximating the
influx of mutations 2Nud(x 2 1/2N), the contributions due
to migration events [e.g., fB

ðx2¼0Þðx1; tÞdðx2 2m21x1Þ], and
the time evolution of the density f by means of truncated
polynomial expansions. Technically, using a truncated poly-
nomial expansion to approximate a generalized function
such as a Dirac delta is a far from perfect approximation.
In particular, the approximations tend to exhibit oscillatory
behaviors and a slow convergence rate. The circle of phe-
nomena associated with imperfect polynomial approxima-
tions of nonsmooth functions is known as Gibbs phenomena.

A particular way to deal with this limitation consists of
using smooth exponential functions with proper normaliza-
tion constants, instead of plain Dirac deltas located near the
boundary. For instance, the influx of mutations can be
approximated by the term ck exp(2k(L)x) (see section 3 in File
S1 for a derivation of ck), and terms due to migration events
such as fB

ðx2¼0Þðx1; tÞdðx2 2m21x1Þ can be approximated by

Demographic Inference Using Spectral Methods 623

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141846/-/DC1/genetics.112.141846-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141846/-/DC1/genetics.112.141846-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.141846/-/DC1/genetics.112.141846-1.pdf


fB
ðx2¼0Þðx1; tÞckexpð2kðLÞðx2 2m21x1ÞÞ. Here, k(L) is a func-

tion of the truncation parameter, and it is defined as the
largest real number k that satisfies a bound for the trunca-
tion error between exp(2k(L)x) and its truncated polyno-
mial approximation.

This treatment of the boundary conditions is superficially
different from the conditions used by Gutenkunst et al.
(2009). In the case of one population, one can prove that
our solution and that of Gutenkunst et al. (2009) converge
to the same exact solution (see section 3 in File S1 for
a mathematical proof of this statement). The case of two
or more populations with migration is significantly more
difficult and we could not demonstrate that both treatments
of the boundary conditions yield the same exact solution in
the limits of infinite L and an infinitely fine grid. Our choice
of exponential functions to approximate the Dirac deltas
associated with migration events at the boundary is inspired
by the approximation of d(x 2 1/2N) in the one-population
case. Although we demonstrate that this approximation con-
verges to the exact solution in the one-population case, we
do not have an equivalent demonstration for the case of the
migration events at boundary. Therefore, our use of expo-
nential functions in the case of migration events is justified
by a heuristic argument and is not based on a mathematical
proof that the associated approximations converge to the
exact solution (for evidence using simulated data that both
approaches converge to the same solution see Comparison of
different diffusion theory-based approaches in Results).

Maximum-likelihood inference: We used a maximum-
likelihood approach to infer the model parameters and a
nonparametric bootstrap resampling approach to estimate
confidence intervals and confidence regions. In particu-
lar, given the theoretical AFS fi1;i2;...;iK ðuÞ as defined in
Equation 1, we used the likelihood function L(u|x) of
a random Poisson field as defined in Sawyer and Hartl
(1992),

LðujxÞ ¼
Y

i1; i2; ...; iK

exp
�
2 fi1; i2; ...; iK ðuÞ

�
fi1; i2; ...; iK ðuÞ

ni1 ; i2 ; ...; iK

ni1; i2; ...; iK !
;

(10)

with ni1;i2;...;iK the number of counts observed in the specified
bin of the empirical AFS. We also used the associated log-
likelihood function

ℓðuÞ ¼
X

i1 ; i2; ...; iK

ni1; i2 ; ...; iK log
�
fi1 ; i2; ...; iK ðuÞ

�
2 fi1; i2; ...; iK ðuÞ2 log  ni1; ...; iK !:

(11)

Simulations

To compare the different approaches to solving the diffusion
equations, we used simulated data. To simulate the AFS we
used an algorithm that mimics the forward diffusion process
on population trees. Although there are very efficient

coalescent-based tools to simulate data, we preferred to
use the forward simulation approach because it exactly
models the solution to the forward diffusion Equation 3 and
because it can be adapted to incorporate the effects of
natural selection more easily than coalescent-based models.
As a quality check, we compared our Monte Carlo simu-
lations with coalescent-based simulations [we used the
program ms (Hudson 2002)]. As expected, both approaches
produced nearly identical frequency spectra.

The basic approach is a standard one (Glasserman 2003)
and consists of three steps:

1. Specify the sample sizes in the AFS and a demographic
model. The model includes a population tree topology
and relevant demographic parameters such as effective
sizes, migration rates, and splitting times.

2. GenerateP stochastic sampling paths of SNP frequencies.
These will yield population allele frequencies associated
with P independent SNPs.

3. Map each population allele frequency to the AFS matrix
by using binomial sampling formulas for the target sam-
ple sizes and sum over all the P contributions. The var-
iance of each entry in the simulated AFS is inversely
proportional to P, as is standard in Monte Carlo
simulation.

The simulation of a single sampling path begins by
generating a random initial condition (i.e., initial time of
the sampling path and initial frequency), followed by sam-
pling a sequence of allele frequencies using the Euler
approximation

Xaðt þ DtÞ ¼ XaðtÞ þ
P
b
mab ðXbðtÞ2XaðtÞÞDt

þ  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XaðtÞð12XaðtÞÞ

2Na

s
ea

ffiffiffiffiffi
Dt

p
:

(12)

In this approximation we replace Dt with a short time in-
terval and we randomly sample K values feaga¼K

a¼1 from
the standard normal distribution N(0, 1) in each time step
(Matsumoto and Nishimura 1998).

The space of initial conditions depends on the particular
model, and it consists of the following:

The frequencies in the ancestral population at drift–
mutation equilibrium at time zero: These frequencies
are distributed as 4NAm/x.

De novo mutations on the different branches of the popula-
tion tree: In this case, the frequencies are fixed (xi = 1/
2Ni with i the population where the mutation event
arises, and xj6¼1 = 0 for the rest) and the time coordinate
is a random variable uniformly distributed on the time
interval.

As an example, let us consider a two-population model in
more detail (see Figure 2). An ancestral population with size
NA increases its size to NB at time t = 0; the population size
remains constant and equal to NB up to time t = t1; at time
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t = t1 the population splits into two populations with sizes
N1 and N2; the present time is reached at time t = t2. Time is
measured in units of generations. In this model one can
define the space of initial conditions as the union of sets

n
ð2NAÞ21# x, 1; t ¼ 0

o
[
n
x ¼ ð2NBÞ21; 0, t# t1

o
[
n
x1 ¼ ð2N1Þ21; x2 ¼ 0; t1 , t# t2

o
[
n
x1 ¼ 0; x2 ¼ ð2N2Þ21; t1 , t# t2

o
:

(13)

The probability density on this space of initial conditions is

�
4NAmdx

x
; 2NBmdt; 2N1mdt; 2N2mdt

�
:

Here, x is the random variable in the first set, and t is the
random variable in the remaining three sets. The total num-
ber of initial states is

Z ¼ 4NAm  logð2NAÞ þ 2NBmt1 þ 2N1mðt2 2 t1Þ þ 2N2mðt2 2 t1Þ:

Therefore, a random initial state is a random variable on the
space of initial conditions associated with the probability
density function

�
4NAmdx

Zx
;  

2NBmdt
Z

;  
2N1mdt

Z
;  

2N2mdt
Z

�
:

Finally, the simulated AFS nij associated with a sample of C
chromosomes per population is

nij ¼
Z
P

ðC!Þ2

i!ðC2 iÞ!j!ðC2 jÞ!
XP
p¼1

xip; 1
	
12xp;1


C2i x j
p; 2

	
12xp; 2


C2j
; (14)

with 0 # i # C, 0 # j # C, 0 , i + j , 2C, and
fðx1;p; x2;pÞgPp¼1 the simulated population allele frequencies.

Demographic scenarios: We simulated data under seven
different demographic histories for two and three populations
to compare different approaches to forward diffusions. We
generated 50,000 population allele frequencies using Monte
Carlo simulations in each of the seven demographic scenarios.
We sampled 20 chromosomes in the scenarios that involved
three populations and 50 chromosomes in the scenarios that
involved two populations. For each demographic scenario, we
computed the AFS with our polynomial-based approach
(MultiPop) and with the finite-difference method (@a@i) and
compared each AFS with the AFS computed with Monte Carlo
simulations. The different models and parameters used in the
simulations are described below.

Two populations: In all the two-population scenarios the
ancestral population size NA was 4000. The time from the
population splitting event up to the present was T = 150
generations. The population sizes after the splitting event
were N1 = 4000 and N2 = 1815.1. Finally, the migration
matrices were

m ¼
�
0 0
0 0

�

for the 2Nm = 0 scenario (model 1),

m ¼
�

0 0:0000375
0:00011 0

�

for the 2Nm , 0.5 scenario (model 2),

m ¼
�

0 0:0001
0:00022 0

�

for the 2Nm � 1 scenario (model 3), and

m ¼
�

0 0:00014
0:0003 0

�

for the 2Nm . 1 scenario (model 4).

Three populations: In all the three-population scenarios the
ancestral population size NA was 5000. The time from the
first population splitting event up to the second population
splitting event was T = 220 generations. The time from the
second population splitting event up to the present was T =

Figure 2 Simulation of two Brownian paths on a two-population tree.
The plot illustrates different types of initial conditions for the paths. The
initial condition can be either a random allele frequency in the ancestral
population at mutation–drift equilibrium (solid lines) or a de novo muta-
tion that arises in one of the populations after the ancestral population
leaves the state of equilibrium (shaded lines).
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130 generations. The population sizes after the first splitting
event were N1 = 1815.1 and N2 = 815.1. The second pop-
ulation splitting event occurred in population 2. The popu-
lation sizes after the second splitting event were N1 =
1815.1, N2 = 315.1, and N3 = 815.1. Finally, the migration
matrices were

ma ¼
�
0 0
0 0

�

and

mb ¼

0
@ 0 0 0

0 0 0
0 0 0

1
A

for the 2Nm = 0 scenario (model 5),

ma ¼
�

0 0:000005
0:0005 0

�

and

mb ¼

0
@ 0 0:0002 0:00003

0:0000005 0 0:00003
0:0003 0:0003 0

1
A

for the 2Nm � 1 scenario (model 6), and

ma ¼
�

0 0:000005
0:0012 0

�

and

mb ¼

0
@ 0 0:0006 0:00003

0:0000005 0 0:00003
0:0003 0:0003 0

1
A

for the 2Nm . 1 scenario (model 7).

Data

We used the Environmental Genome Project (EGP) SNP
database (Environmental Genome Project 2010) to deter-
mine the observed joint AFS in four human populations.
The sampled populations consist of 12 individuals of West
African ancestry (YRI), 22 individuals of northern European
ancestry (CEU), 24 individuals of East Asian ancestry (CHB),
and 22 individuals of Mexican ancestry (MEX). These data
are the result of direct Sanger resequencing (with a low
error rate) of environmental response genes and have been
the subject of several previous studies (Akey et al. 2004;
Williamson et al. 2005; Gutenkunst et al. 2009). We used
this data set to compare our method with that of Gutenkunst
et al. (2009). The number of environmentally responsive
genes sequenced as part of the EGP has been steadily in-
creasing since the project started in 2001 (Environmental
Genome Project 2010), and the EGP database is now larger
than when Gutenkunst et al. (2009) performed their study.
However, the number of individuals in the data set has not

changed. As we were not able to reconstruct the original set
of SNPs used in Gutenkunst et al. (2009), we instead used
all the available loci. The difference between the data sets
turned out to be small; while Gutenkunst et al. (2009) used
27,824 SNPs of noncoding DNA, we used 28,875 SNPs.

We considered all 28,875 diallelic SNPs located in 4.07
Mb of noncoding DNA resequenced from 197 different
autosomal genic regions. Each SNP was ordered into an
ancestral and a derived state, using the pairwise alignment
from chimpanzee to human available in the UCSC panTro2
draft of the chimpanzee genome (Chimpanzee-Sequencing-
Consortium 2005). We computed the context-dependent
probability of misidentification of the ancestral state and in-
troduced the associated corrections in the allele-frequency
spectrum (see Hernandez et al. 2007 and File S1, section
2). As in Gutenkunst et al. (2009), we assumed a diver-
gence time of 6 million years between human and chim-
panzee and a generation time of 25 years. We estimated
a mutation rate of m = 2.35 · 1028 per site per generation
from sequence divergence present in the data. This is iden-
tical to the estimate by Gutenkunst et al. (2009) and com-
parable to other estimates (e.g., Nachman and Crowell
2000).

As the number of chromosomes in the data varies depend-
ing on the particular SNP, we projected the AFS down to
a fixed number of chromosomes. If the number of chromo-
somes sampled in each population is the same and equal to C,
the total number of bins in the associated AFS will be (C +
1)4 2 2. Also, as the theoretical value of each bin fi1;i2;i3;i4ðuÞ
in the AFS is computed as the four-dimensional integral de-
fined by Equation 1, the computational time needed to eval-
uate a single bin of the theoretical AFS is larger than in the
cases of two or three populations. To reduce the computa-
tional burden of evaluating Equation 1 many times, we used
an adaptive allele-frequency spectrum in which we decom-
posed the AFS into bins of different sizes, depending on the
fraction of SNPs that occupy a particular region of the fre-
quency space. We fixed the bin sizes by sampling 19, 9, or 4
chromosomes per population. We chose 19 as the maximum
number of chromosomes because 19 + 1 can be divided twice
by two, which allows us to easily build an adaptive histogram
using three different bin sizes. To this end we first projected
the empirical AFS down to 4 chromosomes per population. In
our adaptive construction the coarsest AFS possible has (4 +
1)4 bins, which we further refine by considering bins of size
1/9 and 1/19 within each bin of size 1/4. We computed the
fraction of SNPs present in each bin of size 1/4, and if this
fraction exceeded a certain bound b, we further refined the
adaptive AFS to consider bins of size 1/9. Recursively, we
isolated those bins of size 1/9 that contained a fraction of
SNPs .b and further refined them into smaller bins of size
1/19. Using all the SNP data and a bound parameter of b =
5 · 1024, the total number of bins of the adaptive AFS
becomes 5078 (452 bins of size 1/4, 2644 bins of size
1/9, and 1982 bins of size 1/19). This is a significant re-
duction in the total number of bins for a four-population
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AFS relative to a full representation for 19 chromosomes,
which has 204 2 2 = 159,998 bins.

Implementation

In our software implementation we use two different bases
of the vector space spanned by polynomials on 0 , x ,
1 with degree #L. We use the shifted Gegenbauer
polynomials TnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þð2nþ 3Þ=ðnþ 1Þ

p
Pð1;1Þn ð2x2 1Þ

and the shifted Chebyshev polynomials CnðxÞ ¼ ðð1=
ffiffiffiffi
p

p
2ffiffiffiffiffiffiffiffiffi

2=p
p

Þd0;n þ
ffiffiffiffiffiffiffiffiffi
2=p

p
Þ · cosðn arccosð2x21Þ (see the Appen-

dix for more details). We inject mutations at the boundary,
using the term ckexp(2kx). Similarly, the associated drift–mu-
tation equilibrium density that we use as the initial condition
in our demographic models is (see section 3 of File S1 for more
details)

feqðxÞ

¼ 4NAm
12 x þ ðð1þ kð12 xÞÞexpð2 kÞ2 expð2 kxÞÞ=ð12 expð2 kÞ2 k expð2 kÞÞ

xð12 xÞ :

We evaluated the integrals that appear in Equation 1, such
as IðyÞ ¼

R y
0 TnðxÞxið12 xÞjdx, by means of the Runge–Kutta

four method. In particular, I(y) obeys the ordinary differen-
tial equation (ODE)

dI
dy

¼ Tnð yÞ yið12yÞ j;

and I(1) is obtained as the integral of the ODE between
0 and 1.

Population splitting events were modeled by assuming
that the distributions of allele frequencies in the two
daughter populations are identical; i.e., f(x, xK+1) = d(xi 2
xK+1)f(x), with i and K + 1 the populations that arise after
the divergence of i. The Dirac delta was approximated by
a Gaussian function peaked at the diagonal xi = xK+1 with
a user-defined standard deviation that we call a thickening
parameter in the software implementation. Such a smooth
Gaussian approximation allows us to use a truncated poly-
nomial expansion to accurately approximate the density af-
ter the splitting event. The larger the truncation parameter
used, the smaller the standard deviation that can be used
and the closer the approximation will resemble f(x, xK+1) =
d(xi 2 xK+1)f(x).

The computer implementation was written in the C++
language, and the source code is freely available in Google
Code (http://www.code.google.com/p/multipop/). We com-
pared the results found using the MultiPop program to those
found using a different class of numerical techniques that
estimate the time evolution of f, using grid approximations
and a finite-difference method to integrate the PDE. The lat-
ter method was implemented in the computer program @a@i
(Gutenkunst et al. 2009).

Nonlinear optimization: When inferring the demographic
parameters of a model given the simulated data or the human
data set, we have to maximize the likelihood-function

Equation 11. Maximizing Equation 11 on a high-dimensional
model parameter space is a challenging nonlinear optimiza-
tion problem. To this end, we used three classical algorithms
in nonlinear optimization: simulated annealing, the downhill
simplex method, and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method. When inferring the parame-
ters from the simulated data, we used only local optimization
techniques (downhill simplex). We used the true value as the
initial point in the local optimization algorithm. We checked
that a local maximum had been reached by numerically
evaluating the Hessian of the minus log-likelihood at the
critical point and confirmed that its eigenvalues were positive.
This technique allowed us to determine the local maximum of
the likelihood surface closest to the true value.

In the case of the human data, we performed an initial
exploration of the parameter space by means of simulated
annealing to find the global maximum for a fixed empirical
AFS with all the SNPs. Subsequent maxima of the likelihood
function associated with bootstrapped samples were com-
puted by means of local optimization algorithms (e.g.,
downhill simplex or quasi-Newton). When using a local op-
timization algorithm, we used as initial seed the global max-
imum initially determined by means of simulated annealing.

Statistical inference and bootstrap strategy

The theoretical AFS can be considered as both the density of
the allele frequency for a single diallelic locus and the
expected distribution for a very large set of independent
diallelic loci. Therefore, the calculation of the likelihood
using Equation 10 is accurate only if each SNP has been
sampled independently from other SNPs. This is indeed the
approach that we follow with the simulated data, where
each SNP is independent from the others.

One approach to dealing with nonindependent (i.e.,
linked) SNPs is to use Equation 10 with all linked SNPs
and treat the result as a composite likelihood. In the case
of the human data set, the EGP database consists of just 170
independent loci with 80% of the SNPs occurring in 30% of
the loci. As the SNPs are tightly linked within each locus,
unusual histories of a DNA segment with many tightly
linked SNPs can overrepresent the inferred demographic
history when the number of independent loci is small. In
other words, although composite-likelihood estimators are
known to be consistent (Wiuf 2006), they can be biased
when the sample size is small.

Because the human EGP data set consists of a relatively
small number of SNPs, many of which lie close to one
another, we have tried to minimize the effects of linkage in
our bootstrap approach to estimate parameters and confi-
dence intervals. For each sample, 170 SNPs were selected at
random, conditioned on their being separated from each
other by at least 200 kb. Multiple sets of 170 SNPs were
sampled with replacement from the data set, which yielded
different maximum-likelihood points fûi*gBi¼1 in the parame-
ter space. Here, B is the number of bootstrap samples.
Ninety-five percent confidence intervals and regions were
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calculated using the percentile approximation (DiCiccio and
Efron 1996). We used the marginal distribution of maxi-
mum-likelihood values for each parameter to estimate the
confidence intervals by considering the 2.5th percentile and
the 97.5th percentile.

Results

Comparison of different diffusion
theory-based approaches

To study the biases introduced by the different numerical
approximations, we computed the AFS in seven different
demographic scenarios with varying numbers of populations
and intensities of gene flow (models 1–7). We used spectral
methods, finite-difference methods, and Monte Carlo simu-
lations of the forward diffusion process. The different fre-
quency spectra were compared by means of the chi-square
statistic (Table 1 and Figures 3 and 4). We found that using
35 polynomials per population gives rise to very good
approximations of the true AFS in the seven scenarios. In
the limit of very small gene flow, the chi-square statistic
associated with the spectral method approach converged
much faster to zero as the truncation parameter L was
increased. This behavior, which was observed in two- and
three-population models, is the expected one as the
polynomial-based approach yields exact solutions of the
AFS in the absence of migration. As the intensity of migra-
tion increases, the rate of convergence to the exact AFS in
the spectral method approach worsens. This behavior is also
the expected one (Lukic et al. 2011), as the polynomial
expansion does not yield exact solutions of the diffusion
PDEs with nonzero gene flow. Also, it becomes more difficult
to implement exactly the boundary conditions because of
the emission of polymorphisms to other populations. How-
ever, as the truncation parameter L increases, the quality of
the approximations of the AFS increases in all scenarios.

Similarly, the finite-difference approach gave rise to
approximations of the AFS of a comparable quality to those
of the approach that uses polynomial series expansions.
In particular, it produced better approximations when
the intensity of gene flow was strong. However, the rates
of convergence in the two-population models were very
different from the ones in the three-population models. In
the limit of zero gene flow the rate of convergence in the
two-population model was significantly faster than that in
the three-population model. There is not a simple way to
explain these results, because among other things we do not
know how the numerical discretization used in the finite-
difference scheme relates to the exact AFS in any subset of
the parameter space for a finite grid size.

Although using the chi-square statistics (e.g., Figures 3
and 4) is helpful for quantifying the numerical error in the
AFS, this measure of error is not informative enough to
estimate the optimal numerical error given a certain level
of statistical uncertainty when inferring demographic
parameters. This is because the “numerical error” (here,

error measures the deviation of the approximated AFS from
the exact AFS) can be very different from the “propagated
numerical error” (here, error measures the deviation of the
numerically approximated likelihood peak from the exact
likelihood peak), even if both decay as the truncation pa-
rameter increases. For instance, the appearance of nearly
flat directions of the likelihood function on the parameter
space might amplify the numerical errors that arise in the
numerical solution of the PDE, giving rise to large propa-
gated numerical errors. To estimate correctly the optimal
error given a certain level of statistical uncertainty, one
should compare the location of the maximum-likelihood
peaks in the numerical approximation with the true location
of the peaks. We perform this analysis in the following
subsection.

The inverse problem: maximum-likelihood estimates: To
study these propagated numerical errors we inferred the
maxima of the likelihood functions. In this case, the effective
population sizes, splitting times, and migration rates were
free parameters, and the observed frequency spectra were
constructed using Monte Carlo simulations. We computed the
maximum-likelihood peaks associated with the polynomial-
based and grid-based approximations of the maximum-
likelihood function in each demographic model (see Table
2). In our polynomial approximation we used 40 polyno-
mials per population in the two-population scenarios and
35 polynomials per population in the three-population
scenarios. For the finite-difference method we used 100
grid points per population in the two-population and
three-population scenarios.

We found that in models with few parameters both
approaches yield maximum-likelihood peaks that are close
to the true values (see Table 2). As a general trend, the
finite-difference method tends to overestimate the amount
of gene flow while the spectral method tends to overestimate
the largest effective population size. We also observe that as
the number of model parameters increases, many inferred
migration rates deviate significantly from the true values
(for instance, see models 6 and 7 in Table 2). As we simulated
large sets of SNP allele frequencies for each scenario, the
statistical noise was very small and the main source of bias
that we observe can be attributed to numerical errors.

These biases are caused by two main factors: the prop-
agation of numerical errors in the evaluation of the likeli-
hood function and the geometry of the likelihood function
associated with a particular model. In particular, models in
which a set of parameters yields flat directions around the
likelihood peak will be particularly prone to propagate small
numerical errors toward large errors in the inferred param-
eters. One can interpret the biases obtained in the migration
rates of models 6 and 7 in Table 2 along these lines. Here,
the large number of migration parameters introduced in the
models gave rise to many flat directions that amplified nu-
merical errors associated with the evaluation of the likeli-
hood function.
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Computational performance: Our current implementation
of the spectral method to study demography with diffusion
approximations is optimized to use little memory to tackle
more than three populations. This economical use of memory
is attained by increasing the number of operations in the
algorithm and hence reducing its speed. @a@i is optimized to
work with two and three populations and is significantly
faster than our current implementation (see Table 3).

One way to increase the speed of the method is to
reconsider the memory model used for cases with two and
three populations. In particular, the diffusion operator is
a matrix of size [(L + 2)K 2 2]2, whose storage requires
a very large amount of memory. Our present implementation
needs only four matrices of size L2 for any K, which are used
to recover the full diffusion operator at running time by
exploiting its tensorial structure. This implementation is
very economical from the point of view of memory use.
However, it makes the algorithm significantly slower. An
implementation that uses sparse matrices to approximate
the full diffusion operator will significantly reduce the num-
ber of operations and increase the speed of the algorithm
when K , 4.

Worldwide human expansion out of Africa
and peopling of the Americas

We considered a four-population model with 18 free
parameters to model the human expansion out of Africa
and peopling of the Americas (see Figure 5). The model is
inspired by several studies reported in the literature (e.g.,
see Gutenkunst et al. 2009; Gravel et al. 2011). The root of
the population tree consists of an ancestral human popula-
tion in Africa at mutation–drift equilibrium. Such a popula-
tion experiences a sudden increase of its effective population
size at some time before the out-of-Africa event. The diver-
gence of non-African populations after the out-of-Africa
event is further modeled by population splits with gene flow.
These population splits describe the European–Asian split
and the bottleneck associated with the peopling of the
Americas. An exponential growth model is then used to de-

scribe the population growths of Europeans, Asians, and
Native Americans after they become independent popula-
tions, and recent population admixture is introduced to
model high European gene flow into the ancestral Amerin-
dian population associated with the Mexican population. To
reduce the number of parameters, we considered symmetric
migration rates except during the first stage of the out-of-
Africa event (mAF/B 6¼mB/AF). We did not assume that this
migration rate was symmetrical because mAF/B might be
significantly larger than mB/AF as one indeed infers from
the data (see Table 4). We used a basis of polynomials up
to degree 20 (L = 20) to approximate the density of
population frequencies. Taking into account boundary con-
tributions, the dimension of the space of densities was 224 2
2 = 234,254.

The inferred parameters and confidence intervals are
shown in Table 4. Our estimate of the time at which the
ancestral Amerindian population split from the ancestral
East Asian population is earlier than previous estimates for
the time of settling of the Americas. This is compatible with
the fact that the ancestral population of the people of the
Americas should have shared a common ancestor with East
Asians some time before the Americas were peopled. The
other inferred parameters are consistent with those of many
previous studies. For instance, we infer that the human dis-
persal out-of-Africa event took place �52,000 years ago
(95% confidence interval: 36–81 KYA) followed by a high
migration rate. This agrees with previous studies that infer
a separation of Africans and non-Africans �60,000 years
ago followed by significant genetic exchange up until
20,000240,000 years ago (see Reich 2001; Keinan et al.
2007; Gravel et al. 2011; Li and Durbin 2011). Our esti-
mates are also in broad agreement with previously reported
values using the diffusion approximation in demographic
inference. For instance, Gravel et al. (2011) find a time of
split between Africans and Eurasians of 51,000 years ago
(95% confidence interval: 45–69 KYA) by applying a similar
demographic model to the 1000 genomes project data set.
In the case of Gutenkunst et al. (2009), the inferred param-
eters are broadly consistent with our estimates, although
our resulting confidence intervals are substantially narrower
than the intervals determined by the authors using conven-
tional bootstrap. In particular, Gutenkunst et al. (2009) use
a combination of two three-population models very similar
to our four-population model and apply it to the EGP data
set. In this case the time of the out-of-Africa event was
inferred to be 140,000 years ago (95% confidence interval:
40–270 KYA).

The differences in the width of the confidence intervals
are due to a combination of different factors. The most
important factor is that we use a four-population model
instead of two three-population models, and this choice
limits the number of polynomials that we can use to solve
the diffusion PDEs associated with the model. In particular,
we used only 20 polynomials per population. As we dis-
cussed in the previous subsection using simulated data (see

Table 1 Comparison of numerical approximations of the AFS
and the simulated AFS

Model no.

Intensity of
migration
(2Nm)

MPop vs.
Monte Carlo
(chi-square
statistic)

@a@i vs.
Monte Carlo
(chi-square
statistic)

1 0 0.001265 0.002479
2 ,0.5 0.00894 0.005955
3 1 0.01076 0.006457
4 .1 0.01140 0.006286
5 , 0.5 0.007558 0.04684
6 1 0.01511 0.02882
7 .1 0.02979 0.01791

Chi-square statistics associated with seven demographic scenarios are shown. The
AFS computed by MultiPop (MPop) corresponds to the L = 35 AFS, and the AFS
computed by @a@i corresponds to a grid size of 40 grid points per population. The
frequency spectra were normalized in all the cases such that the total number of
SNPs was 1.
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Figures 3 and 4), for any fixed value of L the quality of the
approximations of the frequency spectra worsens as the in-
tensity of gene flow increases. Similarly, for any fixed values
of the migration rates the quality of the approximations
worsens as the number of polynomials used decreases.
Therefore, choosing L = 20 has given rise to poor approx-
imations of the AFS in regions of the parameter space that
involve high intensities of gene flow. The associated distor-
tions of the AFS have yielded artificially low likelihoods in
those regions of the parameter space. Hence, this numerical
artifact is largely responsible for producing narrower confi-

dence intervals in our study than those in the study by
Gutenkunst et al. (2009). For instance, for the time out of
Africa we inferred smaller confidence intervals (36–81 KYA)
than those in Gutenkunst et al. (2009) (40–270 KYA). While
Gutenkunst et al. (2009) infer very large values for the gene
flow between populations after the out-of-Africa event, our
confidence intervals for the migration rates are significantly
smaller and closer to the zero-migration limit. Other differ-
ences between this study and the one by Gutenkunst et al.
(2009) are in the bootstrap strategy and the particular data
set. In our bootstrap strategy we sample one SNP per locus

Figure 3 Decay of the chi-square statistic in
MultiPop (top) and @a@i (bottom). Four different
demographic scenarios with two simultaneous
populations and 50 chromosomes sampled per
population are considered. For simplicity, the aver-
age scaled migration rate is used to label each sce-
nario. The observed AFS were constructed using
P = 50,000 independent loci produced with Monte
Carlo simulations.
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each time, and each pair of SNPs is set to be separated by at
least 200 kb. In the analysis by Gutenkunst et al. (2009) the
statistical artifacts due to linked SNPs were corrected by
considering simulations with linked loci in a parametric
bootstrap approach to compute confidence intervals. How-
ever, no constraint for the distance between pairs of SNPs
was imposed in their nonparametric bootstrap approach. If
no constraints are imposed on the minimal distance between
any two SNPs in each bootstrap, SNPs from loci with high
SNP density will be sampled more often. Therefore, the de-
mographic history of a locus with a high density of SNPs will

be overrepresented in the overall inference. Although both
bootstrap strategies should converge to the same result in
the limit of a large number of loci, in the case of a data set
with a small number of loci, such as the EGP data set, the
differences might be more important. Indeed, the study by
Gravel et al. (2011) inferred significantly narrower confi-
dence intervals by applying @a@i to genome-wide sequence
data. Finally, although the EGP data set contains a few more
sequenced loci since the study by Gutenkunst et al. (2009)
and this fact affects the width of the confidence intervals,
this contribution should be small.

Figure 4 Decay of the chi-square statistic in
MultiPop (top) and @a@i (bottom). Three different
demographic scenarios with three simultaneous
populations and 20 chromosomes sampled per
population are considered. For simplicity, the aver-
age scaled migration rate is used to label each sce-
nario. The observed AFS were constructed using
P = 50,000 independent loci produced with Monte
Carlo simulations.
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One of the inferred parameters that is most different
between our study and that of Gutenkunst et al. (2009) is
the proportion of European ancestry in Mexicans. We infer
an admixture proportion of 20.4% (95% C.I.: 3.2–41%),
while the three-population model used by @a@i inferred 48%
(95% C.I.: 42–60%) (Gutenkunst et al. 2009). In this case the
confidence intervals do not overlap. Again, explanations of this
discrepancy range from the presence of more sequence data in
the EGP data set since the study by Gutenkunst et al. (2009)
was done to small differences in the statistical analyses
made. Other studies have pointed out the difficulty of esti-
mating admixture proportions when data of one of the pre-
admixture ancestral populations are missing (Alexander
et al. 2009). Therefore, it is not surprising that slight differ-
ences in the data set and in the statistical analyses can yield
significant differences in the inferred parameters. In partic-
ular, Alexander et al. (2009) found that the European ad-
mixture proportion in the individuals of Mexican ancestry
genotyped by HapMap III was �20% if inferred by the algo-
rithm ADMIXTURE, while it was inferred to be �50% by the
algorithm STRUCTURE using the same data set.

Discussion

Forward diffusion equations played an important role during
the development of classical population genetics, as they
were originally introduced by R. Fisher and S. Wright to
model the evolutionary process (Kimura 1964). With the
arrival of modern DNA sequencing technologies, forward
diffusion processes have been applied to the inference of de-
mographic parameters and the effects of natural selection
(Williamson et al. 2005; Boyko et al. 2008; Gutenkunst
et al. 2009). These studies have been limited to scenarios with
one, two, and three simultaneous populations. In this article,
we have introduced a different approach to solving the for-
ward diffusion equations by means of truncated polynomial
expansions. These methods yield exact solutions of the AFS in
the absence of migration; they can be used equally to study
demographic models in one, two, and three populations with
gene flow, and furthermore they can be applied to study
models with four simultaneous populations.

We have applied our method to the study of the human
expansion out of Africa and peopling of the Americas by
means of a model with four simultaneous populations. Our
four-population model can be seen as a combination of two
three-population models that were studied before by means
of diffusion-theory–based techniques (Gutenkunst et al.
2009). Similarly, we used the Environmental Genome Pro-
ject SNP database. The demographic parameters that we
have inferred in this model are similar to many recent

Table 2 Comparison of maximum-likelihood estimates using
different numerical approximations

Model
Model

parameter True value u MPop u @a@i

1 4NAu 1 1 1
1 N1/NA 1 1.015 1.042
1 N2/NA 0.4538 0.4385 0.4421
1 T/2NA 0.01875 0.01788 0.01840
2 4NAu 1 1 1
2 N1/NA 1 1.08 1.042
2 N2/NA 0.4538 0.6467 0.6379
2 T/2NA 0.01875 0.02304 0.02720
2 2NAm1/2 0.3 0.5706 3.529
2 2NAm2/1 0.88 0.8735 3.228
3 4NAu 1 1 1
3 N1/NA 1 1.099 1.044
3 N2/NA 0.4538 0.6648 0.6497
3 T/2NA 0.01875 0.02287 0.02783
3 2NAm1/2 0.8 0.5873 4.022
3 2NAm2/1 1.76 0.9469 3.965
4 4NAu 1 1 1
4 N1/NA 1 1.086 1.068
4 N2/NA 0.4538 0.6712 0.6493
4 T/2NA 0.01875 0.02258 0.02592
4 2NAm1/2 1.12 0.6190 2.574
4 2NAm2/1 2.64 0.9910 3.798
5 4NAu 1 1 1
5 N1/NA 0.3630 0.3713 0.3522
5 N2/NA 0.1630 0.1540 0.1440
5 N3/NA 0.06302 0.05673 0.05569
5 Ta/2NA 0.022 0.02158 0.02041
5 Tb/2NA 0.013 0.01225 0.01152
6 4NAu 1 1 1
6 N1/NA 0.3630 0.3713 0.3344
6 N2/NA 0.1630 0.17855 0.1527
6 N3/NA 0.06302 0.05950 0.06112
6 Ta/2NA 0.022 0.02996 0.01749
6 Tb/2NA 0.013 0.01211 0.01249
6 2NAma

1/2 0.05 0.04562 0.0001828
6 2NAma

2/1 5 0.02345 0.0009895
6 2NAmb

1/2 2 0.002115 0.003311
6 2NAmb

1/3 0.3 0.3897 1.505
6 2NAmb

2/1 0.005 0.007982 0.09358
6 2NAmb

2/3 0.3 0.0007637 4.4e-09
6 2NAmb

3/1 3 0.6831 3.398
6 2NAmb

3/2 3 1.788 2.640
7 4NAu 1 1 1
7 N1/NA 0.3630 0.3874 0.3138
7 N2/NA 0.1630 0.1724 0.1445
7 N3/NA 0.06302 0.05843 0.05589
7 Ta/2NA 0.022 0.02415 0.01296
7 Tb/2NA 0.013 0.01155 0.01115
7 2NAma

1/2 0.05 0.02982 0.7007
7 2NAma

2/1 12 0.007439 0.004225
7 2NAmb

1/2 6 0.0007166 0.0003699
7 2NAmb

1/3 0.3 0.00090192 3.1354
7 2NAmb

2/1 0.005 0.0003413 0.0020024
7 2NAmb

2/3 0.3 0.0007713 0.0001095
7 2NAmb

3/1 3 0.007362 3.232
7 2NAmb

3/2 3 0.4090 0.01191

Maximum-likelihood estimates of seven different demographic scenarios are
shown. Many results are biased due to numerical errors in the calculation of the
frequency spectra (see subsection Numerical errors and bias-corrected confidence
intervals for a detailed discussion on how numerical errors affect the location of the
maximum-likelihood peak). In the case of MultiPop, 40 polynomials were used in
the two-population models and 35 polynomials in the three-population models. We

used 100 grid points in all models approximated with finite-difference schemes. The
observed AFS were constructed using P = 50,000 independent loci produced with
Monte Carlo simulations. The maximum-likelihood peak was found by means of the
BFGS method, using the coordinates of the true peak as the initial point in this local
optimization algorithm.
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results (see Reich 2001; Keinan et al. 2007; Gravel et al.
2011; Li and Durbin 2011). However, some of our inferred
parameters are substantially different from the parameters
inferred in another study that used numerical solutions to
forward diffusion equations (Gutenkunst et al. 2009).

In this article we have also studied the behavior of different
numerical solutions of the diffusion PDEs that approximate

the AFS under a specified demographic model. In particular,
we have compared the polynomial-based approach introduced
in Lukic et al. (2011) with the finite-difference approach
implemented in Gutenkunst et al. (2009). Although the meth-
ods exhibit comparable behaviors, we found that the polyno-
mial-based approach obtains better results in the regime
where it yields exact solutions of the AFS, i.e., in the zero-
migration limit (see Table 1 and Figures 3 and 4). Also, we
confirmed that the polynomial-based approach allows us to
broadly predict the magnitude of the numerical error as a func-
tion of the model parameters for a given truncation parameter
L. The finite-difference approach exhibited a better behavior
in the models with strong intensity of migration that we have
considered in this work. However, in the case of the method
introduced in Gutenkunst et al. (2009) there is not a general
theory that allows us to predict how the numerical error
behaves as a function of the parameter space.

Numerical errors and bias-corrected confidence intervals

A common limitation that both approaches sometimes exhibit
is that small numerical errors in the computation of the AFS
can propagate to large biases in the parameter space when we
search for the maxima of the numerical approximation of the
likelihood function. Hence, even if biases due to numerical
errors can be minimized, in some cases small but significant

Table 3 Comparison of computing time

Model

No.
polynomials

(MPop)

Computing
time of

MPop (sec)

Grid
size
(@a@i)

Computing
time of
@a@i (sec)

2 15 0.27 15 0.07
2 20 0.61 50 0.10
2 25 1.10 100 0.13
2 30 1.86 500 1.43
2 35 2.92 1000 5.68
6 15 3.1 15 0.16
6 20 7.95 50 0.86
6 25 17.31 100 6.33
6 30 33.3 200 68.41
6 35 57.41 300 253.85

Computing times required to evaluate an allele-frequency spectrum using MultiPop
and @a@i are shown. The demographic scenarios involved two populations and 50
chromosomes sampled per population or three populations and 20 chromosomes
sampled per population. The CPU used to measure the computing times was an
Intel Core(TM)2 Duo P8600 with speed 2.40 GHz.

Figure 5 A graphical representation of a four-population
model for the human expansion out of Africa and peo-
pling of the Americas. The nonconstancy of the population
sizes of CEU, CHB, and MEX is modeled by means of
an exponential growth model with growth rates rEU, rAS,
and rMX.
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numerical sources of error that affect the statistical accuracy
of the inferred demographic parameters will remain. For
example, Table 2 exhibits several cases where the bias is very
large. These biases are not expected to diminish as the sample
size grows, or as the number of SNPs increases, because they
are due to numerical artifacts. One could minimize these
biases by choosing a larger truncation L. However, numerical
floating-point errors in the evaluation of polynomials become
important sources of numerical error when the degree of the
polynomial is large enough. In our implementation, we found
that for values of L . 40 these sources of numerical error
became larger than the truncation error due to a finite choice
of L.

To minimize the impact of such biases one can either
consider models with fewer parameters or introduce statisti-
cal corrections to the propagated numerical errors. Here, we
apply standard bootstrap methods to correct for bias in the
estimators and confidence intervals (see Efron and Tibshirani
1994; DiCiccio and Efron 1996) of some of the models stud-
ied above. If ûL* is the maximum-likelihood estimator of a de-
mographic model, where L denotes the truncation parameter
of the numerical approximation, the bias is defined as

b
�
ûL
*
�
¼ E

�
ûL
*
�
2E

�
û*
�
:

Here, EðûL*Þ is the expected biased estimator and Eðû*Þ is
the expected unbiased estimator. Although we do not know
the unbiased estimator, we can estimate the bias by means
of the parametric bootstrap. In particular, we simulate a
large number of SNP allele frequencies under the estimated
parameters ûL

* and consider the associated AFS for each
set of simulated SNPs. We denote by û*ðbÞL the maximum-
likelihood estimate associated with the bth simulated AFS

(where 1 # b # B and B is the number of bootstraps).
Therefore, the bootstrap estimate of bias is

b̂
�
ûL
*
�
�

XB
b¼1

û*ðbÞL
B

 2  ûL
*;

where ûL
* is the original maximum-likelihood estimate. This

approximation will be valid as long as the bias is small and
the number of bootstraps B is large enough. Given b̂, we can
now compute the bias-corrected 95% confidence intervals
using nonparametric bootstraps (see DiCiccio and Efron
1996) as ðûL* 2 b̂ðûL*ÞÞ6DûL

*ðaÞ, where DûL
*ðaÞ is the 100 �

ath percentile of the nonparametric bootstrap distribution.
As an example, in model 3 we used the parameters

inferred by maximum likelihood that are shown in Table 2
to simulate 10,000 SNPs per bootstrap by means of Monte
Carlo methods. After estimating the bias with the parametric
bootstrap, the 95% bias-corrected confidence intervals for
the parameters of model 3 are 0.98821.04 for 4NAu,
0.722–1.26 for N1/NA, 0.255–0.488 for N2/NA, 0.0136–
0.0197 for T/2NA, 0.479–0.83 for 2NAm1/2, and 1.69–
2.24 for 2NAm2/1.

Overcoming current limitations

Several limitations exist in the use of joint allele-frequency
spectra with many populations. The most important one is
that given the joint density of population frequencies fðxjuÞ,
the time needed to compute an AFS grows exponentially
with the number of populations. Therefore, the only way
to extract demographic information from such a high num-
ber of populations requires reducing the number of cells in
the AFS to be computed. Because of this, future applications
of our method for K . 3 will require the use of either

Table 4 Inference of a four-population model for the human expansion out of Africa and peopling of the Americas

Model parameters u MPop 95% C.I. u @a@i, 1 95% C.I. u @a@i, 2 95% C.I.

NA 10,400 8,670–12,200 7,300 4,400–10,100
NAF 17,300 10,900–29,300 12,300 11,500–13,900
NB 2,060 346–5,070 2,100 1,400–2,900
NEU0 1,710 1,030–3,020 1,000 500–1,900 1,500 700–2,100
rEU (generation21) 0.0055 0.00351–0.0103 0.004 0.0015–0.0066 0.0023 0.0008–0.0045
NAS0 453 210–800 510 310–910 590 320–800
rAS (generation21) 0.016 0.0102–0.0301 0.0055 0.0023–0.0088 0.0037 0.0016–0.006
mAF/B (·1025) 6.06 0.0–13.6 25 15–34
mAF/B (·1025) 1.63 0.0–3.47 3.0 2.0–6.0
mAF/B (·1025) 0.487 0.0–1.07 25 15–34
mAF/B (·1025) 1.54 0.0–2.96 9.6 2.3–17.4
TAF (yr) 125,400 54,300–250,000 220,000 100,000–510,000
TB (yr) 52,400 36,000–80,800 140,000 40,000–270,000
TEU/AS (yr) 29,500 23,500–38,000 21,200 17,200–26,500 26,400 18,100–43,100
NMX0 3,200 1,100–6,100 800 160–1,800
rMX (generation21) 0.0071 0.0043–0.011 0.005 0.0014–0.0117
TMX (yr) 29,300 23,000–37,500 21,600 16,300–26,900
fMX (%) 20.4 3.2–41 48 42–60

Inference of parameters by means of maximum likelihood is shown. Confidence intervals were computed by means of nonparametric bootstrap. The estimated parameters u
with MultiPop correspond to the mean of the bootstrap distribution. The estimates by MultiPop are compared with the estimates by @a@i with two three-population models.
@a@i 1 denotes the three-population model for the out-of-Africa event described in Gutenkunst et al. (2009). @a@i 2 denotes the three-population model for the peopling of
the Americas studied in Gutenkunst et al. (2009).
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adaptive frequency spectra or projections of high-dimen-
sional AFS into triplets or couplets of populations. For in-
stance, by integrating out populations we can compute the
joint density of frequencies associated with every triplet of
populations from the higher joint density as

~fðx1; x2; x3juÞ ¼
Z 1

0
⋯

Z 1

0
fðx1; . . . ; xK juÞdx4⋯ xK :

The associated three-population AFS is derived from Equa-
tion 1 and the density ~fðx1; x2; x3juÞ.

A second question that remains to be explored concerns
the bias of the estimator. For a given observed AFS, our
method yields a sequence of maximum-likelihood peaks
fûL*g labeled by the number of polynomials L used. The
convergence of the numerical approximation to the exact
AFS in the limit of an infinite number of polynomials guar-
antees that ûL¼N

* is an unbiased estimator. It is important to
understand the asymptotic behavior of the sequence of
peaks fûL*g to estimate ûL¼N

* given a few finite values of
the sequence ½fûL*g; fûLþ1

* g; . . .�. In this study we computed
different estimators for several values of L, to confirm that
our estimators were converging toward the unbiased true
estimator. In practice, this is an elaborate approach that
requires running nonlinear optimization algorithms for dif-
ferent values of the parameters used in the approximation. A
better understanding of this asymptotic behavior will allow
the simplification of the analysis of propagated numerical
errors associated with finite values of L. Similarly, it is im-
portant to identify the maximum sample size (number of
SNPs) used in each bootstrap that allows us to estimate
accurate confidence intervals for a given L and a demo-
graphic model. The importance of choosing the right sample
size for a given L lies in that statistical error decreases as
sample size increases and propagated numerical error
decreases as L increases. Therefore, for any given L there
exists a large enough sample size that, if used to estimate
confidence intervals, will yield significantly biased intervals
that are difficult to correct via standard statistical methods.
This is due to the fact that the numerical error produced
by a given L will be significantly larger than the statistical
error produced by a large enough sample size. In our four-
population model we used only 170 SNPs per bootstrap,
which yields a conservative estimate of the confidence inter-
vals as we confirmed in simulations. However, in the general
case when more data are available and it is not clear what
sample size to use in the bootstrap for a given L, one can
combine parametric and nonparametric bootstrap techniques
to estimate the sample size and the bias. In the parametric
bootstrap, one generates simulated data with specified
parameters that one uses to estimate the bias due to numer-
ical errors. Also, one can determine which sample sizes are
small enough to produce larger statistical errors than numer-
ical errors. Then one can use this knowledge to estimate
accurate confidence intervals by applying corrections for bias
in the nonparametric bootstrap. This approach, although

elaborate, will help to estimate accurate confidence intervals
for any value of L in a wide variety of models.
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Appendix

Here, we describe some basic relationships between the orthogonal polynomials that we use in our implementation of the
spectral method. In our numerical solutions of the diffusion equations, we make great use of the vector space of polynomials
on the interval [0, 1] with degree bounded by the truncation parameter L. In this Appendix, we denote such a vector space as
VL. We use two different orthonormal bases on VL: the basis of Gegenbauer polynomials and the basis of Chebyshev
polynomials. In particular, the vector space spanned by the Gegenbauer polynomials of degree #L and the vector space spanned
by the Chebyshev polynomials of degree #L is the same vector space VL. They are different orthonormal bases with re-
spect to different inner products. This implies that any truncated expansion in terms of Gegenbauer polynomials can
be exactly written as a truncated expansion of Chebyshev polynomials bounded by the same degree. More precisely,
if TnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þð2nþ 3Þ=ðnþ 1Þ

p
Pð1;1Þn ð2x2 1Þ denotes the normalized Gegenbauer polynomials and CnðxÞ ¼

ðð1=
ffiffiffiffi
p

p
2

ffiffiffiffiffiffiffiffiffi
2=p

p
Þd0;n þ

ffiffiffiffiffiffiffiffiffi
2=p

p
Þ · cosðn arccosð2x2 1ÞÞ denotes the normalized Chebyshev polynomials on the interval

[0, 1], the corresponding orthonormality relationships are

hTn;TmiL2ðTÞ ¼
Z 1

0
TnðxÞTmðxÞxð12 xÞ  dx ¼ dnm;

hCn;CmiL2ðCÞ ¼
Z 1

0
CnðxÞCmðxÞ

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð12 xÞ

p ¼ dnm:

One can write any Gegenbauer polynomial Tn(x) in the basis of Chebyshev polynomials as the linear combination

TnðxÞ ¼
Xn
i¼0

CiðxÞ
Z 1

0
Tnð yÞCið yÞ

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð12 yÞ

p ;

with the coefficients
R 1
0 Tnð yÞCið yÞðdy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð12 yÞ

p
Þ ¼ 0 for all i . n. Analogously, one can write any Chebyshev polynomial

Cn(x) in the basis of Gegenbauer polynomials as the linear combination

CnðxÞ ¼
Xn
i¼0

TiðxÞ
Z 1

0
Cnð yÞTið yÞyð12 yÞdy;

with the coefficients
R 1
0 CnðyÞTiðyÞyð12 yÞ  dy ¼ 0 for all i . n. We can summarize the changes of basis by introducing the

square matrices M and L, defined as

Mmn ¼
Z 1

0
Tmð yÞCnð yÞ

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð12 yÞ

p ;

and

Lmn ¼
Z 1

0
Cmð yÞTnð yÞ yð12 yÞ  dy;

being both related asMT = L21 (i.e., the transpose matrix ofM equals the inverse matrix of L), as is expected. As an example,
the first 6 · 6 coefficients of M and L are
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M ¼

0
BBBBBBBBBBBBBBBBBBBBB@

ffiffiffiffiffiffiffiffiffi
15p

p
0 0 0 0 0

0
5
4

ffiffiffiffiffiffiffiffiffi
21p
2

r
0 0 0 0

27
8

ffiffiffiffiffiffi
5p
2

r
0

21
8

ffiffiffiffiffiffi
5p
2

r
0 0 0

0
7

ffiffiffiffiffiffiffiffiffiffiffiffi
165p

p

16
0

21
ffiffiffiffiffiffiffiffiffiffiffiffi
165p

p

64
0 0

25
ffiffiffiffiffiffiffiffiffiffiffiffi
273p

p

64
0

45
ffiffiffiffiffiffiffiffiffiffiffiffi
273p

p

128
0

33
ffiffiffiffiffiffiffiffiffiffiffiffi
273p

p

128
0

0
675

ffiffiffiffiffiffiffiffiffiffiffiffi
105p

p

1024
0

297
ffiffiffiffiffiffiffiffiffiffiffiffi
105p

p

512
0

429
ffiffiffiffiffiffiffiffiffiffiffiffi
105p

p

1024

1
CCCCCCCCCCCCCCCCCCCCCA

;

and

L ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1ffiffiffiffiffiffiffiffiffi
15p

p 0 0 0 0 0

0
4
5

ffiffiffiffiffiffiffiffiffi
2

21p

r
0 0 0 0

2
3
7

ffiffiffiffiffiffi
3
5p

r
0

8
21

ffiffiffiffiffiffi
2
5p

r
0 0 0

0 2
16
15

ffiffiffiffiffiffiffiffiffi
2

21p

r
0

64

21
ffiffiffiffiffiffiffiffiffiffiffiffi
165p

p 0 0

1
21

ffiffiffiffiffiffi
5
3p

r
0 2

8

ffiffiffiffiffiffi
10
p

r
77

0
128

33
ffiffiffiffiffiffiffiffiffiffiffiffi
273p

p 0

0
4
55

ffiffiffiffiffiffi
6
7p

r
0 2

128
91

ffiffiffiffiffiffiffiffiffi
3

55p

r
0

1024

429
ffiffiffiffiffiffiffiffiffiffiffiffi
105p

p

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The reason we use two different bases of the same vector space is for the sake of convenience. The basis of Gegenbauer
polynomials is convenient because the diffusion operator Df ¼ ðd2=dx2Þ½xð12 xÞf� is diagonal in such a basis and the
integrals that define the AFS become zero when the degree of the polynomial is larger than the number of chromosomes
that define the AFS, as defined in Equation 2. The basis of Chebyshev polynomials is convenient to project a given density
such as the mutation density m(x) = exp(2kx) or the associated equilibrium density described in Lukic et al. (2011), onto the
vector space VL. The advantage of using Chebyshev polynomials to project the mutation density rather than the Gegenbauer
polynomials is that the weight associated with the Chebyshev polynomials w ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð12 xÞ

p
is very high near the boundaries

x = 0, 1, where most of the information contained in the mutation density is located. On the other hand, the weight
associated with the Gegenbauer polynomials w= x(12x) vanishes on the boundaries. There exist several bases of orthogonal
polynomials associated with weights that are high at the boundaries x = 0, 1; however, we chose the basis of Chebyshev
polynomials because of the simplicity associated with their implementation.

Being more precise, the two different L2 products that we use allow us to project the mutation density m(x) onto VL in two
different ways:

PL;CmðxÞ ¼
XL
n¼0

CnðxÞ
Z 1

0
mðyÞCnðyÞ

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð12 yÞ

p ;

and

PL;T mðxÞ ¼
XL
n¼0

TnðxÞ
Z 1

0
mðyÞTnðyÞyð12 yÞdy:
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Generically, PL,Cm(x) and PL,Tm(x) are two different polynomials in VL. Even if m(x) is a smooth function, and |PL,Cm(x) 2
PL,Tm(x)| / 0 in the limit of large L, both finite polynomials will be different. In our work we use the projection PL,Cm(x),
which is implemented by means of the Gauss–Chebyshev quadrature. The implementation of the Gauss quadrature also
illustrates the benefits of using the Chebyshev projection. In particular, Gauss quadratures are evaluated by means of the
roots {xi} of an orthogonal polynomial of high degree and a set of weights {wi}:

Z 1

0
f ðxÞwðxÞdx ’

Xd
i¼1

wi f ðxiÞ:

Given a degree d, the roots of the Chebyshev polynomial are closer to the boundaries x = 0, 1 than the roots of the
Gegenbauer polynomial. For instance, given d = 10, the roots of C10(x) are 0.994, 0.946, 0.854, 0.727, 0.578, 0.422,
0.273, 0.146, 0.054, and 0.006, while the roots of T10(x) are 0.972, 0.910, 0.816, 0.699, 0.568, 0.432, 0.3, 0.184, 0.090,
and 0.028.
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SUPPORTING INFORMATION FOR “DEMOGRAPHIC INFERENCE USING
SPECTRAL METHODS ON SNP DATA FROM MULTIPLE POPULATIONS,

WITH ESTIMATES OF PARAMETERS FOR RECENT HUMAN
OUT-OF-AFRICA EXPANSION”

SERGIO LUKIĆ1 AND JODY HEY2

1. MULTI-POPULATION WRIGHT-FISHER PROCESSES WITH NO MIGRATION

In this section we compute the solution to the diffusion equations that describe the time
evolution of the density of population allele frequencies under random drift, mutational in-
flux and no migration between populations. First, we review the solution given by Kimura
in [1] when the number of populations is K = 1. Second, we consider K = 2 popula-
tions. To this end we use the boundary conditions introduced in [2], solve the associated
equations and finally, we show how this solution can be extended to an arbitrary number
of populationsK.

1.1. One population. When the number of populations is one, the density of population
allele frequencies φ(x, t) satisfies the diffusion equation:

(1)
∂φ(x, t)

∂t
=

1

4N

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N),

whereN is the effective population size of a diploid panmictic population, δ(x−1/2N) is
the Dirac delta peaked at x = 1/2N , and φ(x, t) satisfies absorbing boundary conditions
at x = 0 and x = 1. In more general scenarios we can use an effective mutation density
µ(x) instead of the Dirac delta term, [2].
Kimura showed in [1] how Eq. (1) can be solved explicitly by expressing φ(x, t) as

a polynomial expansion. In particular, he used the basis of Gegenbauer polynomials in
which the diffusion operator can be expressed as an infinite diagonal matrix. The shifted
Gegenbauer polynomials are a class of classical polynomials on the interval [0, 1] defined
as
(2)

Tn(x) =

√

(n+ 2)(2n+ 3)

n+ 1
P (1,1)
n (2x− 1),

∫ 1

0
Tn(x)Tm(x)x(1− x)dx = δnm

where P (1,1)
n (z) are the classical Jacobi polynomials defined on the interval −1 ≤ z ≤ 1

with weight w(z) = (1 − z)(1 + z). These polynomials satisfy the associated Jacobi
equation:

(3)
∂2

∂x2
[x(1− x)Tn(x)] = −(n+ 1)(n+ 2)Tn(x).

Date: July 27, 2012.
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Thus, if we expand the density of population frequencies in this polynomial basis

φ(x, t) =
∞
∑

n=0

an(t)Tn(x),

the diffusion equation in Eq. (1) can be written as
(4)
∞
∑

n=0

dan(t)

dt
Tn(x) = −

∞
∑

n=0

(n+ 1)(n+ 2)

4N
an(t)Tn(x)+2Nu

∞
∑

n=0

Tn(1/2N)
1− 1/2N

2N
Tn(x).

For simplicity and to shorten the notation, we denote as µn the contribution due to muta-
tional influx µn = 2NuTn(1/2N) 1−1/2N

2N . Using this notation, the Ordinary Differential
Equation that obeys the coefficients an(t) can be written as:

(5)
dan(t)

dt
= −

(n+ 1)(n+ 2)

4N
an(t) + µn.

Eq. (5) is a linear differential equation of first order with an inhomogeneous term; this
class of equations have a known simple solution which can be written as

(6) an(t) =

[

an(0)−
4Nµn

(n+ 1)(n+ 2)

]

exp

(

−
(n+ 1)(n+ 2)

4N
t

)

+
4Nµn

(n+ 1)(n+ 2)
.

Here, an(0) are the coefficients associated with the polynomial expansion of the initial
density of population frequencies, which can be computed as

an(0) =

∫ 1

0
φ(x, 0)Tn(x)x(1− x)dx.

Therefore, given any density of population frequencies φ(x, 0) at time t = 0, we can
compute the resulting density φ(x, t) after t generations evolving under random drift and
mutational influx by means of the Gegenbauer expansion φ(x, t) =

∑∞

n=0 an(t)Tn(x).
The time-dependent coefficients an(t) determined in Eq. (6), are a function of the co-
efficients at initial time and other population genetic parameters such as population size,
mutation rate and time. Given the solution φ(x, t), the Allele Frequency Spectrum asso-
ciated with a sample of C chromosomes is easily computed by introducing the binomial
distribution with parameters C and x as:

fi(t) =
C!

(C − i)!i!

∞
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx, 0 < i < C,

where fi is the expected number of SNPs that have the derived state in exactly i chromo-
somes (out of a sample of C chromosomes). Properties of the Jacobi polynomials show
that all terms of this sum vanish for n > C − 2, thus the AFS can be computed exactly as
the finite sum

(7) fi(t) =
C!

(C − i)!i!

C−2
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx.

This exact solution can be generalized to an arbitrary number of populations. In the
next subsection we show how to compute the solution to the time-evolution of the density
of allele frequencies when the number of populations is two.
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1.2. Two populations. The diffusion equation that describes the dynamics of the density
of allele frequencies in two isolated populations is a natural generalization of the one-
population case studied above. In particular, if x1 and x2 are the derived allele frequencies
in population 1 and 2, N1 and N2 are the effective population sizes of both populations
and φ(x1, x2, t) is the joint density of population frequencies, φ(x1, x2, t) satisfies the
following forward diffusion equation

∂φ

∂t
=

1

4N1

∂2

∂x2
1

[x1(1− x1)φ] + 2N1uδ(x1 − 1/2N1)δ(x2)

+
1

4N2

∂2

∂x2
2

[x2(1− x2)φ] + 2N2uδ(x1)δ(x2 − 1/2N2).(8)

As was shown in [2], the solution to Eq. (8) can be expressed as a generalized density
with contributions from the different boundary components of the square [0, 1]× [0, 1]:

φ(x1, x2, t) = φA(x1, x2, t) + φB
(x2=0)(x1, t)δ(x2) +

φB
(x2=1)(x1, t)δ(1− x2) + φB

(x1=0)(x2, t)δ(x1) + φB
(x1=1)(x2, t)δ(1− x1) +

φC
(x1=1,x2=0)(t)δ(1− x1)δ(x2) + φC

(x1=0,x2=1)(t)δ(x1)δ(1− x2).(9)
The terms that are multiplied by Dirac deltas represent the contributions to the density that
are localized in the different boundary components. In particular, theA-term is localized in
the bulk of the square, the four B-terms are localized in the edges of the square and finally,
the two C-terms are localized in the two vertices of the square that are not absorbing. The
Ancestral vertex (x1 = 0, x2 = 0) and the Derived vertex (x1 = 1, x2 = 1) are absorbing
and hence do not contribute SNPs to the density φ(x1, x2, t).
As Eq. (8) is the natural extension of the one-population process and the one-population

diffusion equation can be solved by means of polynomials expansions, we expand each
term in Eq. (9) using the same basis of Jacobi polynomials Tn(x) defined in Eq. (2). As
we will see at the end of this section, such a polynomial expansion will allow us to find
the exact solution of the two-population process. In particular, we write the polynomial
expansion of each term in Eq. (9) as:

φA(x1, x2, t) =
∞
∑

n,m=0

aAnm(t)Tn(x1)Tm(x2),

φB
(x2=0)(x1, t) =

∞
∑

n=0

aB(x2=0),n(t)Tn(x1),

φB
(x2=1)(x1, t) =

∞
∑

n=0

aB(x2=1),n(t)Tn(x1),

φB
(x1=0)(x2, t) =

∞
∑

m=0

aB(x1=0),m(t)Tm(x2),

φB
(x1=1)(x2, t) =

∞
∑

m=0

aB(x1=1),m(t)Tm(x2),

φC
(x1=1,x2=0)(t) = aC(x1=1,x2=0)(t),

φC
(x1=0,x2=1)(t) = aC(x1=0,x2=1)(t).(10)

In this polynomial basis, Eq. (8) requires that the a-variables satisfy a set of Ordinary
Differential Equations (ODE) that can be integrated exactly. The associated ODEs can

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	   	  



S.	  Lukic	  and	  J.	  Hey	   5	  SI	  
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be determined by taking into account the different contributions to the dynamics of the
a-variables (random drift, influx of polymorphisms in the boundary components due to
fixation events, and influx of polymorphisms due to mutations). Following [2] we know
that the dynamics of the aAnm(t)-terms is just governed by random drift (there is no in-
flux of polymorphisms). On the other hand, the dynamics of the terms aB(x1=1),m(t) and
aB(x2=1),n(t) depend on both random drift and the influx of polymorphisms that reach fix-
ation at either x1 = 1 or x2 = 1. The terms aB(x2=0),n(t) and aB(x1=0),m(t) furthermore
receive the constant influx of polymorphisms due to de novo mutations at the popula-
tion level. Finally, the time evolution of the terms aC(x1=1,x2=0)(t) and aC(x1=0,x2=1)(t)

is described by the influx of polymorphisms that reach fixation from φB
(x2=0)(x1, t) and

φB
(x1=1)(x2, t), in the case of aC(x1=1,x2=0)(t), or from φB

(x1=0)(x2, t) and φB
(x2=1)(x1, t) in

the case of φC
(x1=0,x2=1)(t).

The dynamics of the a-coefficients can be made quantitatively explicit in the following
system of linear differential equations:

(11)
daAnm
dt

= −
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

aAnm,

(12)
daB(x2=0),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=0),n + µ1

n +
∞
∑

m=0

aAnmTm(0)

4N2
,

here, µ1
n = 2N1u × Tn(1/2N1)

1−1/2N1

2N1
is the contribution due to mutational influx in

population 1,

(13)
daB(x1=0),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=0),m + µ2

m +
∞
∑

n=0

aAnmTn(0)

4N1
,

here, µ2
m = 2N2u × Tm(1/2N2)

1−1/2N2

2N2
is the contribution due to mutational influx in

population 2,

(14)
daB(x2=1),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=1),n +

∞
∑

m=0

aAnmTm(1)

4N2
,

(15)
daB(x1=1),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=1),m +

∞
∑

n=0

aAnmTn(1)

4N1
,

(16)
daC(x1=1,x2=0)

dt
=

∞
∑

n=0

aB(x2=0),nTn(1)

4N1
+

∞
∑

m=0

aB(x1=1),mTm(0)

4N2
,

and

(17)
daC(x1=0,x2=1)

dt
=

∞
∑

n=0

aB(x2=1),nTn(0)

4N1
+

∞
∑

m=0

aB(x1=0),mTm(1)

4N2
.

This system of coupled linear differential equations can be solved by integrating first the
uncoupled equation Eq. (11), using the corresponding solution to solve Eqs. (12), (13),
(14), and (15), and finally using those solutions to solve Eq. (16) and Eq. (17). At each
step, one has to integrate a set of linear ODEs of first order whose solutions are known.
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The solution of Eq. (11) is:

(18) aAnm(t) = aAnm(0) exp

[

−
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

t

]

,

with aAnm(0) the coefficients associated with φA(x1, x2, 0) at initial time:

aAnm(0) =

∫ 1

0

∫ 1

0
φA(x1, x2, 0)Tn(x1)Tm(x2)x1(1− x1)x2(1− x2)dx1dx2.

Now, we can use the solution Eq. (18) to integrate Eqs. (12), (13), (14), and (15). Hence,
we can write the solution of Eq. (12) as
(19)

aB(x2=0),n(t) = bB(x2=0),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

+
4N1µ1

n

(n+ 1)(n+ 2)
−

∞
∑

m=0

aAnm(t)Tm(0)

(m+ 1)(m+ 2)
,

with bB(x2=0),n a time-independent function defined as

bB(x2=0),n = aB(x2=0),n(0)−
4N1µ1

n

(n+ 1)(n+ 2)
+

∞
∑

m=0

aAnm(0)Tm(0)

(m+ 1)(m+ 2)
.

The coefficients aB(x2=0),n(0) are associated with the initial-time density as

aB(x2=0),n(0) =

∫ 1

0
φB
(x2=0)(x1, 0)Tn(x1)x1(1− x1)dx1.

Similarly, the solution of (13) is
(20)

aB(x1=0),m(t) = bB(x1=0),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

+
4N2µ2

m

(m+ 1)(m+ 2)
−

∞
∑

n=0

aAnm(t)Tn(0)

(n+ 1)(n+ 2)
,

with bB(x1=0),m defined as

bB(x1=0),m = aB(x1=0),m(0)−
4N2µ2

m

(m+ 1)(m+ 2)
+

∞
∑

n=0

aAnm(0)Tn(0)

(n+ 1)(n+ 2)
.

The solution of (14) is

(21) aB(x2=1),n(t) = bB(x2=1),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

−
∞
∑

m=0

aAnm(t)Tm(1)

(m+ 1)(m+ 2)
,

with bB(x2=1),n defined as

bB(x2=1),n = aB(x2=1),n(0) +
∞
∑

m=0

aAnm(0)Tm(1)

(m+ 1)(m+ 2)
.

And finally, for this class of solutions, the solution of (15) is

(22) aB(x1=1),m(t) = bB(x1=1),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

−
∞
∑

n=0

aAnm(t)Tn(1)

(n+ 1)(n+ 2)
,

with bB(x1=1),m defined as

bB(x1=1),m = aB(x1=1),m(0) +
∞
∑

n=0

aAnm(0)Tn(1)

(n+ 1)(n+ 2)
.
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The solutions to Eqs. (16) and (17) are frequency-independent functions of time which can
be obtained by integrating Eqs. (19), (20), (21), and (22):
(23)

∆aC(x1=1,x2=0)(t) =
∞
∑

n=0

Tn(1)

4N1

∫ t

0
aB(x2=0),n(u)du+

∞
∑

m=0

Tm(0)

4N2

∫ t

0
aB(x1=1),m(u)du,

and
(24)

∆aC(x1=0,x2=1)(t) =
∞
∑

n=0

Tn(0)

4N1

∫ t

0
aB(x2=1),n(u)du+

∞
∑

m=0

Tm(1)

4N2

∫ t

0
aB(x1=0),m(u)du,

where the∆a terms are defined as:
∆aC(x1=1,x2=0)(t) := aC(x1=1,x2=0)(t)− aC(x1=1,x2=0)(0),

and
∆aC(x1=0,x2=1)(t) := aC(x1=0,x2=1)(t)− aC(x1=0,x2=1)(0).

In summary, the solution of Eq. (8) can be written as a generalized density with seven
components (as in Eq. (9)). Each of these seven boundary-specific densities can be ex-
panded by means of a polynomial expansion (as in Eq. (10)). The time-dependent coeffi-
cients associated with these expansions were obtained in Eqs. (18)-(24).
Given an explicit solution φ(x1, x2, t), one can make connections with measurable

quantities by computing the theoretical prediction of some of them. For instance, one
can compute the Allele Frequency Spectrum associated with a sample of C chromosomes
by introducing the binomial distribution as:
(25)

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jφ(x1, x2, t)dx1dx2,

for 0 ≤ i ≤ C, 0 ≤ j ≤ C and 0 < i+ j < 2C. Here, fij is the expected number of SNPs
in which the derived state is found in i chromosomes in population one and j chromosomes
in population two. In general, evaluating Eq. (25) requires integrating φ(x1, x2, t), which
involves computing several infinite sums. However, this formula becomes particularly
simple when 0 < i < C and 0 < j < C:

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∞
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2,

and because of properties of the Jacobi polynomials this simplifies to the finite sum

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

C−2
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2.

This resembles the simple formula Eq. (7) derived in the one-population case. Hence,
after including the contributions from every boundary component, the solution of the two-
population diffusion equation describing the time evolution of the density of allele fre-
quencies is a natural extension of the one-population solution. One can also generalize the
two-population case studied here, to a scenario with an arbitrary number of populations.
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MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A A

A

A’

MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A’

A AA’

FIGURE 1. Most probable histories of a diallelic locus (with alleles
A and A’). In red we denote the derived allele that arises as a mutation
since the split with the most recent common ancestor. Here we assume
that one of the alleles is identical to the orthologous base in an outgroup
species that shares a recent common ancestor, such as Pan troglodytes or
Rhesus macaque in the case of homo sapiens.

write the probability of mutation as

p(xAy → xA′y|τ) = p(xAy has diverged sinceMRCA|τ)

×
p(xAy → xA′y|xAy has diverged sinceMRCA; τ)

p(xAy has diverged sinceMRCA|xAy → xA′y; τ)
(26)

Here, x and y are the flanking nucleotides that define the context, and τ is the time of diver-
gence between the species under consideration. Eq. (26) allows to estimate the mutation
rates using genome wide data on the divergence between species. More explicitly, each
term in (26) can be computed as:

p(xAy has diverged sinceMRCA|τ) = 64× rdiv × πxAy(27)
p(xAy → xA′y|xAy has diverged sinceMRCA; τ) =

(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)))×
(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)) +

πA;B,ApM (A|A,B) + πB;B,A(1− pM (B|B,A)) +

πA;B′,ApM (A|A,B′) + πB′;B′,A(1− pM (B′|B′, A)))−1(28)
p(xAy has diverged sinceMRCA|xAy → xA′y; τ) = 1.0(29)

In Eq. (27), rdiv is the probability that two random homologous nucleotides are different,
which is estimated to be 1.57/100 between human and chimp. πxAy is the genome-wide
average frequency of trinucleotides xAy, and 64 = 43 is a normalization constant. In Eq.
(28), πw;z,w is the genome-wide frequency of trinucleotides xwy in the outgroup species
whose orthologous has polymorphisms xwy and xzy in the species under consideration.
The probability pM (w|w, z) is a shorthand for

p(xwy isMRCA|Outgroup = xwy,Alleles = xzy, xwy).

And finally, B and B′ are the two nucleotides in g, t, a, c, which are not A nor A′; i.e.
B and B′ span the complementary set to A and A′ in {g, t, a, c}. Therefore, all parame-
ters that appear in Eq. (26) can be estimated using genomic and polymorphic data, except
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p(xAy → xA′y|τ) and pM (w|w, z). The probability functions 1 − pM (w|w, z) are ex-
actly the quantities that define the probability of ancestral allele misidentification using the
outgroup base. Such probabilities also satisfy :

pM (w|w, z) = p(xwy → xzy|τ)p(xwy → xwy|τ)×
(p(xwy → xzy|τ)p(xwy → xwy|τ) +
p(xzy → xwy|τ)p(xzy → xwy|τ))−1.(30)

Here, p(xwy → xwy|τ) equals 1−
∑

z∈S p(xwy → xzy|τ), with S the set {g, t, a, c}\w.
In other words, pM (w|w, z) is approximately equal to the probability that the history rep-
resented in the left tree of Fig. 1 actually happened, given that the left and right trees
represent the most probable events.
Thus, by substituting Eq. (26) into Eq. (30), one gets a system of equations in the

unknown variables pM (w|w, z), which can be solved easily.
We estimated the probabilities of ancestral allele misidentification in humans, using the

chimp as the outgroup species. Using the human and chimp genomes, plus the EGP SNP
data, we estimated all the parameters in Eqs. (27), (28) and (29). By starting with initial
values p0M (w|w, z) = 1, one can solve Eq. (26) and recompute p1M (w|w, z) using Eq.
(30). This yields an iterative mechanism that produces a quickly convergent sequence of
probabilities pnM (w|w, z) towards a unique fixed point, solution of the system of equations.
We found that the resulting probabilities 1 − pM (w|w, z) can be broken down into CpG
and non-CpG contexts. In the non-CpG context, i.e. mutations which are not of the
type CG to TG nor CT to CA, all the probabilities 1 − pM (w|w, z) are smaller than
0.006. However, for mutations of the type CG to TG or CT to CA, the probabilities
1− pM (w|w, z) range between a maximum of 0.16 and a minimum of 0.06. This result is
very similar to the one given in [4].

3. COMPARISON OF THE DIFFERENT BOUNDARY CONDITIONS USED IN THIS STUDY

The one-population two-allele Wright-Fisher diffusion with influx of mutations can be
defined by means of the PDE

(31)
∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N).

Here, Ne denotes the effective population size, N is the census population size and u the
mutation rate. The boundary conditions at x = 0 and x = 1 are absorbing, and the term
2Nuδ(x− 1/2N) denotes the source of new mutations that arise at frequency x = 1/2N
for largeN . It is very important to understand how to regularize δ(x− 1/2N) in any finite
approximation that one applies to numerically solve Eq. (31). In particular, experience
with different numerical solutions of Eq. (31) suggests that small changes in the finite
regularization of the Dirac delta might have large effects on the numerical solution of Eq.
(31).
In this section, we study the convergence properties of the finite-difference method used

in [6] and the spectral method used in this paper for the particular case of Eq. (31). Al-
though several sources of numerical error exist (e.g. either the truncated spectral expansion
or the finite-difference approximation of φ(x, t)), here we only consider the contribution
to error due to the finite regularization of δ(x− 1/2N).
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In particular, the finite regularizations of δ(x − 1/2N) that we consider here can be
described using the diffusion equation

(32) ∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + uµ(x),

with µ(x) a function of the frequency that depends on the particular choice of numerical
method. The standard diffusion in Eq. (31) is recovered when µ(x) = 2Nδ(x − 1/2N).
In general, we denote this function as
(33) µN (x) = 2Nδ(x− 1/2N).

In the case of the spectral method (see [2]) we instead use the function
(34) µk(x) = ck exp(−kx),

with
ck =

k2

1− exp(−k)− k exp(−k)
.

Here, k is a positive real number that depends monotonically on the truncation parameter
Λ. In particular, k is chosen such that the truncated polynomial approximation of Eq. (34)
is accurate enough. Thus, the limit of large Λ corresponds with the limit of large k.
In the case of the finite-difference method, one approximates φ(x, t) as a piece-wise

linear function. More precisely, if {xj}Gj=0 are the grid points on [0, 1] that we use in the
finite-difference scheme, we introduce a basis of functions {fj(x)}Gj=0 with

fj(x) = θ(x− xj−1)θ(xj+1 − x)

(

x− xj−1

xj − xj−1
θ(xj − x) +

xj+1 − x

xj+1 − xj
θ(x− xj)

)

,

for 0 < j < G,

f0(x) = θ(x1 − x)

(

x1 − x

x1 − x0
θ(x− x0)

)

,

and
fG(x) = θ(x− xG−1)

(

x− xG−1

xG − xG−1
θ(xG − x)

)

,

such that the finite-difference approximation of φ(x, t) can be written as

φ(x, t) "
j=G
∑

j=0

φt
jfj(x).

Here, x0 = 0, xG = 1 and θ(x) is the Heaviside step function (defined as θ(x) = 0 for
x < 0 and θ(x) = 1 for x > 0). In Gutenkunst et al. [6] the authors use an adaptive
grid on [0, 1] that is uniform near x = 0. Therefore, for f0(x) and f1(x) we assume that
x1 − x0 = x2 − x1 = ∆, x0 = 0, and the corresponding basis functions are

f0(x) = θ(∆− x)

(

∆− x

∆
θ(x)

)

,

and
f1(x) = θ(2∆− x)

(

x

∆
θ(∆− x) +

2∆− x

∆
θ(x−∆)

)

.

Gutenkunst et al. [6] inject new mutations at each time-step by updating the value of φt
1 as

(see Eq. (S9) in [6])

(35)
φt+dt
1 − φt

1

dt
=

u

∆2
.
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Remark 1. Note that Gutenkunst et al. [6] write Eq. (32) using different units. In par-
ticular, they introduce a reference population size N0 with θ = 4N0u and write Eq. (32)
as

(36)
∂φ

∂τ
=

1

2ν

∂2

∂x2
[x(1− x)φ(x, τ)] +

θ

2
µ(x),

with τ = t/2N0 and ν = Ne/N0. In their notation the value of φτ
1 is updated as

φτ+dτ
1 − φτ

1

dτ
=

θ

2∆2
.

Updating the value of φt
1, as in Eq. (35), when solving the diffusion equations is equiv-

alent to using Eq. (32) and the function

(37) µ∆(x) = c∆∆f1(x) = c∆[xθ(∆− x) + (2∆− x)θ(x−∆)θ(2∆− x)],

with c∆ = ∆−3. Observe that θ(∆−x)θ(2∆−x) = θ(∆−x) and that θ(x) denotes here
the Heaviside step function.
It is not obvious that µ∆(x) in Eq. (37) or µk(x) in Eq. (34) converge to µN (x) =

2Nδ(x− 1/2N) in the limits N → ∞, k → ∞ and ∆ → 0. Hence, it is not obvious that
the solutions associated with each finite regularization converge to the exact solution of
Eq. (31). However, in the remainder of this section we demonstrate how both approximate
solutions actually converge to the exact solution.

Proposition 1. Let φN (x, t), φk(x, t), and φ∆(x, t) be the solutions of Eq. (32) corre-
sponding to the functions µ(x) defined in Eq. (33) for φN (x, t), Eq. (34) for φk(x, t) and
Eq. (37) for φ∆(x, t). Additionally, let the initial condition be the same arbitrary density
ϕ(x) in all of the three cases:

φN (x, t = 0) = φk(x, t = 0) = φ∆(x, t = 0) = ϕ(x).

Then, iff ck in Eq. (34) is defined as

ck =
k2

1− exp(−k)− k exp(−k)
,

φk(x, t) converges to the exact solution φN (x, t) in the limits k → ∞, N → ∞ and finite
Ne. In particular,

‖ φN→∞(x, t)− φk(x, t) ‖L1≤
4Neu

k
(1 + exp(−t/2Ne)), t ≥ 0.

Similarly, iff c∆ in Eq. (37) is defined as c∆ = ∆−3, φ∆(x, t) converges to the exact
solution φN (x, t) in the limits∆ → 0, N → ∞ and finite Ne. In particular,

‖ φN→∞(x, t)− φ∆(x, t) ‖L1≤
7

3
Neu∆(1 + exp(−t/2Ne)), t ≥ 0.

Proof. The proof consists of three parts. First, we describe the solution of Eq. (32) for
an arbitrary choice of µ(x); second, we derive a general bound for the L1-norm of the
difference of two solutions associated with different choices of µ(x) (see Eq. (42)); and
third, we apply this general argument to the particular cases of φN (x, t), φk(x, t), and
φ∆(x, t) and the L1-norms

‖ φN→∞(x, t)− φk(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φk(x, t)|x(1− x)dx,
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and

‖ φN→∞(x, t)− φ∆(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φ∆(x, t)|x(1− x)dx.

Any solution of Eq. (32) can be described as the sum of a homogeneous solution and an
inhomogeneous solution. In particular, if φe,µ(x) is the steady state solution that satisfies

(38) 0 =
1

4Ne

∂2

∂x2
[x(1− x)φe,µ(x)] + uµ(x),

φµ(x, t = 0) = ϕ(x) is the initial condition, and γ(x, t) = exp(tLFP )γ(x, 0) is the
solution to the homogenous (µ(x) = 0) problem

∂γ(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)γ(x, t)] ,

then one can write the solution of Eq. (32) as
φµ(x, t) = exp(tLFP )(ϕ(x)− φe,µ(x)) + φe,µ(x).

Here, exp(tLFP ) denotes the time evolution operator, and LFP denotes the Fokker-Planck
diffusion operator. Therefore, if φµ1

(x, t) and φµ2
(x, t) are solutions of Eq. (32) associ-

ated with the functions µ1(x) and µ2(x), the difference φµ1
− φµ2

satisfies
φµ1

(x, t)− φµ2
(x, t) = exp(tLFP )(φe,µ2

(x)− φe,µ1
(x)) + φe,µ1

(x)− φe,µ2
(x).

In order to bound ‖ φµ1
− φµ2

‖L1 we apply the Minkowski inequality as follows:
‖ φµ1

(x, t)−φµ2
(x, t) ‖L1=‖ exp(tLFP )(φe,µ2

(x)−φe,µ1
(x))+φe,µ1

(x)−φe,µ2
(x) ‖L1≤

(39) ‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1 .

In our particular case (in which µ1(x) = µN→∞(x) and µ2(x) = µk(x) or µ2(x) =
µ∆(x)), φe,µ1

(x) − φe,µ2
(x) is non-negative for all x ∈ (0, 1). As the time-evolution

operator exp(tLFP ) preserves the non-negativity of the density, we can write Eq. (39) as
‖ exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) ‖L1 + ‖ φe,µ1

(x)− φe,µ2
(x) ‖L1=

∫ 1

0
exp(tLFP )(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx+

∫ 1

0
(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx.

The operator exp(tLFP ) is diagonal in the basis spanned by the Gegenbauer polynomials
(see Eq. (2)). In particular, we can write exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) as

exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) =
∞
∑

n=0

an exp(−t(n+ 1)(n+ 2)/4Ne)Tn(x),

with

an =

∫ 1

0
Tn(x)(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx.

Now, using this expansion and the fact that T0(x) =
√
6, we can write

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx =

1√
6

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))T0(x)x(1− x)dx =

1√
6

∞
∑

n=0

an exp(−t(n+1)(n+2)/4Ne)

∫ 1

0
Tn(x)T0(x)x(1−x)dx =

a0√
6
exp(−t/2Ne).
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Therefore, if we define Iµ1,µ2
as

(40) Iµ1,µ2
=

∫ 1

0
(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx,

then a0 =
√
6Iµ1,µ2

and the sum of L1-norms is

‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1=

(41) Iµ1,µ2
(1 + exp(−t/2Ne)).

Now, from Eq. (39) it follows that

(42) ‖ φµ1
(x, t)− φµ2

(x, t) ‖L1≤ Iµ1,µ2
(1 + exp(−t/2Ne)).

In order to determine the bound in Eq. (42) one needs only to evaluate the integral in
Eq. (40). This requires solving Eq. (38) to obtain a closed-form expression for φe,µ1

(x)
and φe,µ2

(x). One can solve Eq. (38) simply by integrating the equation twice
∫ x

0

∫ y

0

d2ψ(z)

dz2
dzdy = −4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

ψ(x) = ψ(0) + ψ′(0)x− 4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

with ψ(x) = x(1− x)φe,µ(x) and ψ′(x) = dψ/dx. We require φe,µ(x) to be finite at the
boundaries x = 0 and x = 1, i.e. ψ(0) = ψ(1) = 0. Therefore, for the particular functions
µ(x) that we consider here (Eq. (33), Eq. (34) and Eq. (37)) we find the following solutions
of Eq. (38):

(43) φe,N (x) =
4Neu

x(1− x)
[(2N − 1)x− 2N(x− 1/2N)θ(x− 1/2N)] ,

(44) φe,k(x) =
4Neu

x(1− x)

ck
k2

[x(exp(−k)− 1)− exp(−kx) + 1] .

and

φe,∆(x) =
4Neu

x(1− x)
c∆ ∆3

[

(∆−1 − 1)x−
x3

6∆3
θ(∆− x) +

(

x3

6∆3
−

x2

∆2
+

x

∆
−

1

3

)

θ(x−∆)θ(2∆− x) + (1−∆−1x)θ(x− 2∆)

]

.(45)

Note that Eq. (43) yields φe,N (x) = 4Neu/x for x > 1/2N . Thus, the limit N → ∞
of Eq. (43) corresponds with φe,N (x) = 4Neu/x for 0 < x ≤ 1. Note also that only
if ck = k2/(1 − exp(−k) − k exp(−k)) then φe,k(x) converges to 4Neu/x near x = 1.
Similarly, only if c∆ = ∆−3 then φe,∆(x) converges to 4Neu/x near x = 1.
Now we can evaluate the integral in Eq. (40) for µ1(x) = µN (x), µ2(x) = µk(x) and

ck = k2/(1− exp(−k)− k exp(−k)), as

(46)
∫ 1

0

(

4Neu

x
− φe,k(x)

)

x(1− x)dx = 4Neu
1 + k/2 + (1− exp(k))/k

1 + k − exp(k)
,

which in the limit of large k converges to

(47) IµN→∞,µk
=

4Neu

k
.
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Similarly, for µ1(x) = µN (x), µ2(x) = µ∆(x) and c∆ = ∆−3, we find

(48) IµN→∞,µ∆
=

∫ 1

0

(

4Neu

x
− φe,∆(x)

)

x(1− x)dx =
7

3
Neu∆.

By using Eq. (47) and Eq. (48) in Eq. (41) we obtain the bounds that are stated in
Proposition 1. !
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SUPPORTING INFORMATION FOR “DEMOGRAPHIC INFERENCE USING
SPECTRAL METHODS ON SNP DATA FROM MULTIPLE POPULATIONS,

WITH ESTIMATES OF PARAMETERS FOR RECENT HUMAN
OUT-OF-AFRICA EXPANSION”

SERGIO LUKIĆ1 AND JODY HEY2

1. MULTI-POPULATION WRIGHT-FISHER PROCESSES WITH NO MIGRATION

In this section we compute the solution to the diffusion equations that describe the time
evolution of the density of population allele frequencies under random drift, mutational in-
flux and no migration between populations. First, we review the solution given by Kimura
in [1] when the number of populations is K = 1. Second, we consider K = 2 popula-
tions. To this end we use the boundary conditions introduced in [2], solve the associated
equations and finally, we show how this solution can be extended to an arbitrary number
of populationsK.

1.1. One population. When the number of populations is one, the density of population
allele frequencies φ(x, t) satisfies the diffusion equation:

(1)
∂φ(x, t)

∂t
=

1

4N

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N),

whereN is the effective population size of a diploid panmictic population, δ(x−1/2N) is
the Dirac delta peaked at x = 1/2N , and φ(x, t) satisfies absorbing boundary conditions
at x = 0 and x = 1. In more general scenarios we can use an effective mutation density
µ(x) instead of the Dirac delta term, [2].
Kimura showed in [1] how Eq. (1) can be solved explicitly by expressing φ(x, t) as

a polynomial expansion. In particular, he used the basis of Gegenbauer polynomials in
which the diffusion operator can be expressed as an infinite diagonal matrix. The shifted
Gegenbauer polynomials are a class of classical polynomials on the interval [0, 1] defined
as
(2)

Tn(x) =

√

(n+ 2)(2n+ 3)

n+ 1
P (1,1)
n (2x− 1),

∫ 1

0
Tn(x)Tm(x)x(1− x)dx = δnm

where P (1,1)
n (z) are the classical Jacobi polynomials defined on the interval −1 ≤ z ≤ 1

with weight w(z) = (1 − z)(1 + z). These polynomials satisfy the associated Jacobi
equation:

(3)
∂2

∂x2
[x(1− x)Tn(x)] = −(n+ 1)(n+ 2)Tn(x).

Date: July 27, 2012.
1
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Thus, if we expand the density of population frequencies in this polynomial basis

φ(x, t) =
∞
∑

n=0

an(t)Tn(x),

the diffusion equation in Eq. (1) can be written as
(4)
∞
∑

n=0

dan(t)

dt
Tn(x) = −

∞
∑

n=0

(n+ 1)(n+ 2)

4N
an(t)Tn(x)+2Nu

∞
∑

n=0

Tn(1/2N)
1− 1/2N

2N
Tn(x).

For simplicity and to shorten the notation, we denote as µn the contribution due to muta-
tional influx µn = 2NuTn(1/2N) 1−1/2N

2N . Using this notation, the Ordinary Differential
Equation that obeys the coefficients an(t) can be written as:

(5)
dan(t)

dt
= −

(n+ 1)(n+ 2)

4N
an(t) + µn.

Eq. (5) is a linear differential equation of first order with an inhomogeneous term; this
class of equations have a known simple solution which can be written as

(6) an(t) =

[

an(0)−
4Nµn

(n+ 1)(n+ 2)

]

exp

(

−
(n+ 1)(n+ 2)

4N
t

)

+
4Nµn

(n+ 1)(n+ 2)
.

Here, an(0) are the coefficients associated with the polynomial expansion of the initial
density of population frequencies, which can be computed as

an(0) =

∫ 1

0
φ(x, 0)Tn(x)x(1− x)dx.

Therefore, given any density of population frequencies φ(x, 0) at time t = 0, we can
compute the resulting density φ(x, t) after t generations evolving under random drift and
mutational influx by means of the Gegenbauer expansion φ(x, t) =

∑∞

n=0 an(t)Tn(x).
The time-dependent coefficients an(t) determined in Eq. (6), are a function of the co-
efficients at initial time and other population genetic parameters such as population size,
mutation rate and time. Given the solution φ(x, t), the Allele Frequency Spectrum asso-
ciated with a sample of C chromosomes is easily computed by introducing the binomial
distribution with parameters C and x as:

fi(t) =
C!

(C − i)!i!

∞
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx, 0 < i < C,

where fi is the expected number of SNPs that have the derived state in exactly i chromo-
somes (out of a sample of C chromosomes). Properties of the Jacobi polynomials show
that all terms of this sum vanish for n > C − 2, thus the AFS can be computed exactly as
the finite sum

(7) fi(t) =
C!

(C − i)!i!

C−2
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx.

This exact solution can be generalized to an arbitrary number of populations. In the
next subsection we show how to compute the solution to the time-evolution of the density
of allele frequencies when the number of populations is two.
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1.2. Two populations. The diffusion equation that describes the dynamics of the density
of allele frequencies in two isolated populations is a natural generalization of the one-
population case studied above. In particular, if x1 and x2 are the derived allele frequencies
in population 1 and 2, N1 and N2 are the effective population sizes of both populations
and φ(x1, x2, t) is the joint density of population frequencies, φ(x1, x2, t) satisfies the
following forward diffusion equation

∂φ

∂t
=

1

4N1

∂2

∂x2
1

[x1(1− x1)φ] + 2N1uδ(x1 − 1/2N1)δ(x2)

+
1

4N2

∂2

∂x2
2

[x2(1− x2)φ] + 2N2uδ(x1)δ(x2 − 1/2N2).(8)

As was shown in [2], the solution to Eq. (8) can be expressed as a generalized density
with contributions from the different boundary components of the square [0, 1]× [0, 1]:

φ(x1, x2, t) = φA(x1, x2, t) + φB
(x2=0)(x1, t)δ(x2) +

φB
(x2=1)(x1, t)δ(1− x2) + φB

(x1=0)(x2, t)δ(x1) + φB
(x1=1)(x2, t)δ(1− x1) +

φC
(x1=1,x2=0)(t)δ(1− x1)δ(x2) + φC

(x1=0,x2=1)(t)δ(x1)δ(1− x2).(9)
The terms that are multiplied by Dirac deltas represent the contributions to the density that
are localized in the different boundary components. In particular, theA-term is localized in
the bulk of the square, the four B-terms are localized in the edges of the square and finally,
the two C-terms are localized in the two vertices of the square that are not absorbing. The
Ancestral vertex (x1 = 0, x2 = 0) and the Derived vertex (x1 = 1, x2 = 1) are absorbing
and hence do not contribute SNPs to the density φ(x1, x2, t).
As Eq. (8) is the natural extension of the one-population process and the one-population

diffusion equation can be solved by means of polynomials expansions, we expand each
term in Eq. (9) using the same basis of Jacobi polynomials Tn(x) defined in Eq. (2). As
we will see at the end of this section, such a polynomial expansion will allow us to find
the exact solution of the two-population process. In particular, we write the polynomial
expansion of each term in Eq. (9) as:

φA(x1, x2, t) =
∞
∑

n,m=0

aAnm(t)Tn(x1)Tm(x2),

φB
(x2=0)(x1, t) =

∞
∑

n=0

aB(x2=0),n(t)Tn(x1),

φB
(x2=1)(x1, t) =

∞
∑

n=0

aB(x2=1),n(t)Tn(x1),

φB
(x1=0)(x2, t) =

∞
∑

m=0

aB(x1=0),m(t)Tm(x2),

φB
(x1=1)(x2, t) =

∞
∑

m=0

aB(x1=1),m(t)Tm(x2),

φC
(x1=1,x2=0)(t) = aC(x1=1,x2=0)(t),

φC
(x1=0,x2=1)(t) = aC(x1=0,x2=1)(t).(10)

In this polynomial basis, Eq. (8) requires that the a-variables satisfy a set of Ordinary
Differential Equations (ODE) that can be integrated exactly. The associated ODEs can
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4 SERGIO LUKIĆ1 AND JODY HEY2

be determined by taking into account the different contributions to the dynamics of the
a-variables (random drift, influx of polymorphisms in the boundary components due to
fixation events, and influx of polymorphisms due to mutations). Following [2] we know
that the dynamics of the aAnm(t)-terms is just governed by random drift (there is no in-
flux of polymorphisms). On the other hand, the dynamics of the terms aB(x1=1),m(t) and
aB(x2=1),n(t) depend on both random drift and the influx of polymorphisms that reach fix-
ation at either x1 = 1 or x2 = 1. The terms aB(x2=0),n(t) and aB(x1=0),m(t) furthermore
receive the constant influx of polymorphisms due to de novo mutations at the popula-
tion level. Finally, the time evolution of the terms aC(x1=1,x2=0)(t) and aC(x1=0,x2=1)(t)

is described by the influx of polymorphisms that reach fixation from φB
(x2=0)(x1, t) and

φB
(x1=1)(x2, t), in the case of aC(x1=1,x2=0)(t), or from φB

(x1=0)(x2, t) and φB
(x2=1)(x1, t) in

the case of φC
(x1=0,x2=1)(t).

The dynamics of the a-coefficients can be made quantitatively explicit in the following
system of linear differential equations:

(11)
daAnm
dt

= −
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

aAnm,

(12)
daB(x2=0),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=0),n + µ1

n +
∞
∑

m=0

aAnmTm(0)

4N2
,

here, µ1
n = 2N1u × Tn(1/2N1)

1−1/2N1

2N1
is the contribution due to mutational influx in

population 1,

(13)
daB(x1=0),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=0),m + µ2

m +
∞
∑

n=0

aAnmTn(0)

4N1
,

here, µ2
m = 2N2u × Tm(1/2N2)

1−1/2N2

2N2
is the contribution due to mutational influx in

population 2,

(14)
daB(x2=1),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=1),n +

∞
∑

m=0

aAnmTm(1)

4N2
,

(15)
daB(x1=1),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=1),m +

∞
∑

n=0

aAnmTn(1)

4N1
,

(16)
daC(x1=1,x2=0)

dt
=

∞
∑

n=0

aB(x2=0),nTn(1)

4N1
+

∞
∑

m=0

aB(x1=1),mTm(0)

4N2
,

and

(17)
daC(x1=0,x2=1)

dt
=

∞
∑

n=0

aB(x2=1),nTn(0)

4N1
+

∞
∑

m=0

aB(x1=0),mTm(1)

4N2
.

This system of coupled linear differential equations can be solved by integrating first the
uncoupled equation Eq. (11), using the corresponding solution to solve Eqs. (12), (13),
(14), and (15), and finally using those solutions to solve Eq. (16) and Eq. (17). At each
step, one has to integrate a set of linear ODEs of first order whose solutions are known.
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The solution of Eq. (11) is:

(18) aAnm(t) = aAnm(0) exp

[

−
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

t

]

,

with aAnm(0) the coefficients associated with φA(x1, x2, 0) at initial time:

aAnm(0) =

∫ 1

0

∫ 1

0
φA(x1, x2, 0)Tn(x1)Tm(x2)x1(1− x1)x2(1− x2)dx1dx2.

Now, we can use the solution Eq. (18) to integrate Eqs. (12), (13), (14), and (15). Hence,
we can write the solution of Eq. (12) as
(19)

aB(x2=0),n(t) = bB(x2=0),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

+
4N1µ1

n

(n+ 1)(n+ 2)
−

∞
∑

m=0

aAnm(t)Tm(0)

(m+ 1)(m+ 2)
,

with bB(x2=0),n a time-independent function defined as

bB(x2=0),n = aB(x2=0),n(0)−
4N1µ1

n

(n+ 1)(n+ 2)
+

∞
∑

m=0

aAnm(0)Tm(0)

(m+ 1)(m+ 2)
.

The coefficients aB(x2=0),n(0) are associated with the initial-time density as

aB(x2=0),n(0) =

∫ 1

0
φB
(x2=0)(x1, 0)Tn(x1)x1(1− x1)dx1.

Similarly, the solution of (13) is
(20)

aB(x1=0),m(t) = bB(x1=0),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

+
4N2µ2

m

(m+ 1)(m+ 2)
−

∞
∑

n=0

aAnm(t)Tn(0)

(n+ 1)(n+ 2)
,

with bB(x1=0),m defined as

bB(x1=0),m = aB(x1=0),m(0)−
4N2µ2

m

(m+ 1)(m+ 2)
+

∞
∑

n=0

aAnm(0)Tn(0)

(n+ 1)(n+ 2)
.

The solution of (14) is

(21) aB(x2=1),n(t) = bB(x2=1),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

−
∞
∑

m=0

aAnm(t)Tm(1)

(m+ 1)(m+ 2)
,

with bB(x2=1),n defined as

bB(x2=1),n = aB(x2=1),n(0) +
∞
∑

m=0

aAnm(0)Tm(1)

(m+ 1)(m+ 2)
.

And finally, for this class of solutions, the solution of (15) is

(22) aB(x1=1),m(t) = bB(x1=1),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

−
∞
∑

n=0

aAnm(t)Tn(1)

(n+ 1)(n+ 2)
,

with bB(x1=1),m defined as

bB(x1=1),m = aB(x1=1),m(0) +
∞
∑

n=0

aAnm(0)Tn(1)

(n+ 1)(n+ 2)
.
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The solutions to Eqs. (16) and (17) are frequency-independent functions of time which can
be obtained by integrating Eqs. (19), (20), (21), and (22):
(23)

∆aC(x1=1,x2=0)(t) =
∞
∑

n=0

Tn(1)

4N1

∫ t

0
aB(x2=0),n(u)du+

∞
∑

m=0

Tm(0)

4N2

∫ t

0
aB(x1=1),m(u)du,

and
(24)

∆aC(x1=0,x2=1)(t) =
∞
∑

n=0

Tn(0)

4N1

∫ t

0
aB(x2=1),n(u)du+

∞
∑

m=0

Tm(1)

4N2

∫ t

0
aB(x1=0),m(u)du,

where the∆a terms are defined as:
∆aC(x1=1,x2=0)(t) := aC(x1=1,x2=0)(t)− aC(x1=1,x2=0)(0),

and
∆aC(x1=0,x2=1)(t) := aC(x1=0,x2=1)(t)− aC(x1=0,x2=1)(0).

In summary, the solution of Eq. (8) can be written as a generalized density with seven
components (as in Eq. (9)). Each of these seven boundary-specific densities can be ex-
panded by means of a polynomial expansion (as in Eq. (10)). The time-dependent coeffi-
cients associated with these expansions were obtained in Eqs. (18)-(24).
Given an explicit solution φ(x1, x2, t), one can make connections with measurable

quantities by computing the theoretical prediction of some of them. For instance, one
can compute the Allele Frequency Spectrum associated with a sample of C chromosomes
by introducing the binomial distribution as:
(25)

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jφ(x1, x2, t)dx1dx2,

for 0 ≤ i ≤ C, 0 ≤ j ≤ C and 0 < i+ j < 2C. Here, fij is the expected number of SNPs
in which the derived state is found in i chromosomes in population one and j chromosomes
in population two. In general, evaluating Eq. (25) requires integrating φ(x1, x2, t), which
involves computing several infinite sums. However, this formula becomes particularly
simple when 0 < i < C and 0 < j < C:

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∞
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2,

and because of properties of the Jacobi polynomials this simplifies to the finite sum

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

C−2
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2.

This resembles the simple formula Eq. (7) derived in the one-population case. Hence,
after including the contributions from every boundary component, the solution of the two-
population diffusion equation describing the time evolution of the density of allele fre-
quencies is a natural extension of the one-population solution. One can also generalize the
two-population case studied here, to a scenario with an arbitrary number of populations.
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MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A A

A

A’

MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A’

A AA’

FIGURE 1. Most probable histories of a diallelic locus (with alleles
A and A’). In red we denote the derived allele that arises as a mutation
since the split with the most recent common ancestor. Here we assume
that one of the alleles is identical to the orthologous base in an outgroup
species that shares a recent common ancestor, such as Pan troglodytes or
Rhesus macaque in the case of homo sapiens.

write the probability of mutation as

p(xAy → xA′y|τ) = p(xAy has diverged sinceMRCA|τ)

×
p(xAy → xA′y|xAy has diverged sinceMRCA; τ)

p(xAy has diverged sinceMRCA|xAy → xA′y; τ)
(26)

Here, x and y are the flanking nucleotides that define the context, and τ is the time of diver-
gence between the species under consideration. Eq. (26) allows to estimate the mutation
rates using genome wide data on the divergence between species. More explicitly, each
term in (26) can be computed as:

p(xAy has diverged sinceMRCA|τ) = 64× rdiv × πxAy(27)
p(xAy → xA′y|xAy has diverged sinceMRCA; τ) =

(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)))×
(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)) +

πA;B,ApM (A|A,B) + πB;B,A(1− pM (B|B,A)) +

πA;B′,ApM (A|A,B′) + πB′;B′,A(1− pM (B′|B′, A)))−1(28)
p(xAy has diverged sinceMRCA|xAy → xA′y; τ) = 1.0(29)

In Eq. (27), rdiv is the probability that two random homologous nucleotides are different,
which is estimated to be 1.57/100 between human and chimp. πxAy is the genome-wide
average frequency of trinucleotides xAy, and 64 = 43 is a normalization constant. In Eq.
(28), πw;z,w is the genome-wide frequency of trinucleotides xwy in the outgroup species
whose orthologous has polymorphisms xwy and xzy in the species under consideration.
The probability pM (w|w, z) is a shorthand for

p(xwy isMRCA|Outgroup = xwy,Alleles = xzy, xwy).

And finally, B and B′ are the two nucleotides in g, t, a, c, which are not A nor A′; i.e.
B and B′ span the complementary set to A and A′ in {g, t, a, c}. Therefore, all parame-
ters that appear in Eq. (26) can be estimated using genomic and polymorphic data, except
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p(xAy → xA′y|τ) and pM (w|w, z). The probability functions 1 − pM (w|w, z) are ex-
actly the quantities that define the probability of ancestral allele misidentification using the
outgroup base. Such probabilities also satisfy :

pM (w|w, z) = p(xwy → xzy|τ)p(xwy → xwy|τ)×
(p(xwy → xzy|τ)p(xwy → xwy|τ) +
p(xzy → xwy|τ)p(xzy → xwy|τ))−1.(30)

Here, p(xwy → xwy|τ) equals 1−
∑

z∈S p(xwy → xzy|τ), with S the set {g, t, a, c}\w.
In other words, pM (w|w, z) is approximately equal to the probability that the history rep-
resented in the left tree of Fig. 1 actually happened, given that the left and right trees
represent the most probable events.
Thus, by substituting Eq. (26) into Eq. (30), one gets a system of equations in the

unknown variables pM (w|w, z), which can be solved easily.
We estimated the probabilities of ancestral allele misidentification in humans, using the

chimp as the outgroup species. Using the human and chimp genomes, plus the EGP SNP
data, we estimated all the parameters in Eqs. (27), (28) and (29). By starting with initial
values p0M (w|w, z) = 1, one can solve Eq. (26) and recompute p1M (w|w, z) using Eq.
(30). This yields an iterative mechanism that produces a quickly convergent sequence of
probabilities pnM (w|w, z) towards a unique fixed point, solution of the system of equations.
We found that the resulting probabilities 1 − pM (w|w, z) can be broken down into CpG
and non-CpG contexts. In the non-CpG context, i.e. mutations which are not of the
type CG to TG nor CT to CA, all the probabilities 1 − pM (w|w, z) are smaller than
0.006. However, for mutations of the type CG to TG or CT to CA, the probabilities
1− pM (w|w, z) range between a maximum of 0.16 and a minimum of 0.06. This result is
very similar to the one given in [4].

3. COMPARISON OF THE DIFFERENT BOUNDARY CONDITIONS USED IN THIS STUDY

The one-population two-allele Wright-Fisher diffusion with influx of mutations can be
defined by means of the PDE

(31)
∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N).

Here, Ne denotes the effective population size, N is the census population size and u the
mutation rate. The boundary conditions at x = 0 and x = 1 are absorbing, and the term
2Nuδ(x− 1/2N) denotes the source of new mutations that arise at frequency x = 1/2N
for largeN . It is very important to understand how to regularize δ(x− 1/2N) in any finite
approximation that one applies to numerically solve Eq. (31). In particular, experience
with different numerical solutions of Eq. (31) suggests that small changes in the finite
regularization of the Dirac delta might have large effects on the numerical solution of Eq.
(31).
In this section, we study the convergence properties of the finite-difference method used

in [6] and the spectral method used in this paper for the particular case of Eq. (31). Al-
though several sources of numerical error exist (e.g. either the truncated spectral expansion
or the finite-difference approximation of φ(x, t)), here we only consider the contribution
to error due to the finite regularization of δ(x− 1/2N).
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In particular, the finite regularizations of δ(x − 1/2N) that we consider here can be
described using the diffusion equation

(32) ∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + uµ(x),

with µ(x) a function of the frequency that depends on the particular choice of numerical
method. The standard diffusion in Eq. (31) is recovered when µ(x) = 2Nδ(x − 1/2N).
In general, we denote this function as
(33) µN (x) = 2Nδ(x− 1/2N).

In the case of the spectral method (see [2]) we instead use the function
(34) µk(x) = ck exp(−kx),

with
ck =

k2

1− exp(−k)− k exp(−k)
.

Here, k is a positive real number that depends monotonically on the truncation parameter
Λ. In particular, k is chosen such that the truncated polynomial approximation of Eq. (34)
is accurate enough. Thus, the limit of large Λ corresponds with the limit of large k.
In the case of the finite-difference method, one approximates φ(x, t) as a piece-wise

linear function. More precisely, if {xj}Gj=0 are the grid points on [0, 1] that we use in the
finite-difference scheme, we introduce a basis of functions {fj(x)}Gj=0 with

fj(x) = θ(x− xj−1)θ(xj+1 − x)

(

x− xj−1

xj − xj−1
θ(xj − x) +

xj+1 − x

xj+1 − xj
θ(x− xj)

)

,

for 0 < j < G,

f0(x) = θ(x1 − x)

(

x1 − x

x1 − x0
θ(x− x0)

)

,

and
fG(x) = θ(x− xG−1)

(

x− xG−1

xG − xG−1
θ(xG − x)

)

,

such that the finite-difference approximation of φ(x, t) can be written as

φ(x, t) "
j=G
∑

j=0

φt
jfj(x).

Here, x0 = 0, xG = 1 and θ(x) is the Heaviside step function (defined as θ(x) = 0 for
x < 0 and θ(x) = 1 for x > 0). In Gutenkunst et al. [6] the authors use an adaptive
grid on [0, 1] that is uniform near x = 0. Therefore, for f0(x) and f1(x) we assume that
x1 − x0 = x2 − x1 = ∆, x0 = 0, and the corresponding basis functions are

f0(x) = θ(∆− x)

(

∆− x

∆
θ(x)

)

,

and
f1(x) = θ(2∆− x)

(

x

∆
θ(∆− x) +

2∆− x

∆
θ(x−∆)

)

.

Gutenkunst et al. [6] inject new mutations at each time-step by updating the value of φt
1 as

(see Eq. (S9) in [6])

(35)
φt+dt
1 − φt

1

dt
=

u

∆2
.
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Remark 1. Note that Gutenkunst et al. [6] write Eq. (32) using different units. In par-
ticular, they introduce a reference population size N0 with θ = 4N0u and write Eq. (32)
as

(36)
∂φ

∂τ
=

1

2ν

∂2

∂x2
[x(1− x)φ(x, τ)] +

θ

2
µ(x),

with τ = t/2N0 and ν = Ne/N0. In their notation the value of φτ
1 is updated as

φτ+dτ
1 − φτ

1

dτ
=

θ

2∆2
.

Updating the value of φt
1, as in Eq. (35), when solving the diffusion equations is equiv-

alent to using Eq. (32) and the function

(37) µ∆(x) = c∆∆f1(x) = c∆[xθ(∆− x) + (2∆− x)θ(x−∆)θ(2∆− x)],

with c∆ = ∆−3. Observe that θ(∆−x)θ(2∆−x) = θ(∆−x) and that θ(x) denotes here
the Heaviside step function.
It is not obvious that µ∆(x) in Eq. (37) or µk(x) in Eq. (34) converge to µN (x) =

2Nδ(x− 1/2N) in the limits N → ∞, k → ∞ and ∆ → 0. Hence, it is not obvious that
the solutions associated with each finite regularization converge to the exact solution of
Eq. (31). However, in the remainder of this section we demonstrate how both approximate
solutions actually converge to the exact solution.

Proposition 1. Let φN (x, t), φk(x, t), and φ∆(x, t) be the solutions of Eq. (32) corre-
sponding to the functions µ(x) defined in Eq. (33) for φN (x, t), Eq. (34) for φk(x, t) and
Eq. (37) for φ∆(x, t). Additionally, let the initial condition be the same arbitrary density
ϕ(x) in all of the three cases:

φN (x, t = 0) = φk(x, t = 0) = φ∆(x, t = 0) = ϕ(x).

Then, iff ck in Eq. (34) is defined as

ck =
k2

1− exp(−k)− k exp(−k)
,

φk(x, t) converges to the exact solution φN (x, t) in the limits k → ∞, N → ∞ and finite
Ne. In particular,

‖ φN→∞(x, t)− φk(x, t) ‖L1≤
4Neu

k
(1 + exp(−t/2Ne)), t ≥ 0.

Similarly, iff c∆ in Eq. (37) is defined as c∆ = ∆−3, φ∆(x, t) converges to the exact
solution φN (x, t) in the limits∆ → 0, N → ∞ and finite Ne. In particular,

‖ φN→∞(x, t)− φ∆(x, t) ‖L1≤
7

3
Neu∆(1 + exp(−t/2Ne)), t ≥ 0.

Proof. The proof consists of three parts. First, we describe the solution of Eq. (32) for
an arbitrary choice of µ(x); second, we derive a general bound for the L1-norm of the
difference of two solutions associated with different choices of µ(x) (see Eq. (42)); and
third, we apply this general argument to the particular cases of φN (x, t), φk(x, t), and
φ∆(x, t) and the L1-norms

‖ φN→∞(x, t)− φk(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φk(x, t)|x(1− x)dx,
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and

‖ φN→∞(x, t)− φ∆(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φ∆(x, t)|x(1− x)dx.

Any solution of Eq. (32) can be described as the sum of a homogeneous solution and an
inhomogeneous solution. In particular, if φe,µ(x) is the steady state solution that satisfies

(38) 0 =
1

4Ne

∂2

∂x2
[x(1− x)φe,µ(x)] + uµ(x),

φµ(x, t = 0) = ϕ(x) is the initial condition, and γ(x, t) = exp(tLFP )γ(x, 0) is the
solution to the homogenous (µ(x) = 0) problem

∂γ(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)γ(x, t)] ,

then one can write the solution of Eq. (32) as
φµ(x, t) = exp(tLFP )(ϕ(x)− φe,µ(x)) + φe,µ(x).

Here, exp(tLFP ) denotes the time evolution operator, and LFP denotes the Fokker-Planck
diffusion operator. Therefore, if φµ1

(x, t) and φµ2
(x, t) are solutions of Eq. (32) associ-

ated with the functions µ1(x) and µ2(x), the difference φµ1
− φµ2

satisfies
φµ1

(x, t)− φµ2
(x, t) = exp(tLFP )(φe,µ2

(x)− φe,µ1
(x)) + φe,µ1

(x)− φe,µ2
(x).

In order to bound ‖ φµ1
− φµ2

‖L1 we apply the Minkowski inequality as follows:
‖ φµ1

(x, t)−φµ2
(x, t) ‖L1=‖ exp(tLFP )(φe,µ2

(x)−φe,µ1
(x))+φe,µ1

(x)−φe,µ2
(x) ‖L1≤

(39) ‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1 .

In our particular case (in which µ1(x) = µN→∞(x) and µ2(x) = µk(x) or µ2(x) =
µ∆(x)), φe,µ1

(x) − φe,µ2
(x) is non-negative for all x ∈ (0, 1). As the time-evolution

operator exp(tLFP ) preserves the non-negativity of the density, we can write Eq. (39) as
‖ exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) ‖L1 + ‖ φe,µ1

(x)− φe,µ2
(x) ‖L1=

∫ 1

0
exp(tLFP )(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx+

∫ 1

0
(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx.

The operator exp(tLFP ) is diagonal in the basis spanned by the Gegenbauer polynomials
(see Eq. (2)). In particular, we can write exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) as

exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) =
∞
∑

n=0

an exp(−t(n+ 1)(n+ 2)/4Ne)Tn(x),

with

an =

∫ 1

0
Tn(x)(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx.

Now, using this expansion and the fact that T0(x) =
√
6, we can write

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx =

1√
6

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))T0(x)x(1− x)dx =

1√
6

∞
∑

n=0

an exp(−t(n+1)(n+2)/4Ne)

∫ 1

0
Tn(x)T0(x)x(1−x)dx =

a0√
6
exp(−t/2Ne).
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Therefore, if we define Iµ1,µ2
as

(40) Iµ1,µ2
=

∫ 1

0
(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx,

then a0 =
√
6Iµ1,µ2

and the sum of L1-norms is

‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1=

(41) Iµ1,µ2
(1 + exp(−t/2Ne)).

Now, from Eq. (39) it follows that

(42) ‖ φµ1
(x, t)− φµ2

(x, t) ‖L1≤ Iµ1,µ2
(1 + exp(−t/2Ne)).

In order to determine the bound in Eq. (42) one needs only to evaluate the integral in
Eq. (40). This requires solving Eq. (38) to obtain a closed-form expression for φe,µ1

(x)
and φe,µ2

(x). One can solve Eq. (38) simply by integrating the equation twice
∫ x

0

∫ y

0

d2ψ(z)

dz2
dzdy = −4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

ψ(x) = ψ(0) + ψ′(0)x− 4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

with ψ(x) = x(1− x)φe,µ(x) and ψ′(x) = dψ/dx. We require φe,µ(x) to be finite at the
boundaries x = 0 and x = 1, i.e. ψ(0) = ψ(1) = 0. Therefore, for the particular functions
µ(x) that we consider here (Eq. (33), Eq. (34) and Eq. (37)) we find the following solutions
of Eq. (38):

(43) φe,N (x) =
4Neu

x(1− x)
[(2N − 1)x− 2N(x− 1/2N)θ(x− 1/2N)] ,

(44) φe,k(x) =
4Neu

x(1− x)

ck
k2

[x(exp(−k)− 1)− exp(−kx) + 1] .

and

φe,∆(x) =
4Neu

x(1− x)
c∆ ∆3

[

(∆−1 − 1)x−
x3

6∆3
θ(∆− x) +

(

x3

6∆3
−

x2

∆2
+

x

∆
−

1

3

)

θ(x−∆)θ(2∆− x) + (1−∆−1x)θ(x− 2∆)

]

.(45)

Note that Eq. (43) yields φe,N (x) = 4Neu/x for x > 1/2N . Thus, the limit N → ∞
of Eq. (43) corresponds with φe,N (x) = 4Neu/x for 0 < x ≤ 1. Note also that only
if ck = k2/(1 − exp(−k) − k exp(−k)) then φe,k(x) converges to 4Neu/x near x = 1.
Similarly, only if c∆ = ∆−3 then φe,∆(x) converges to 4Neu/x near x = 1.
Now we can evaluate the integral in Eq. (40) for µ1(x) = µN (x), µ2(x) = µk(x) and

ck = k2/(1− exp(−k)− k exp(−k)), as

(46)
∫ 1

0

(

4Neu

x
− φe,k(x)

)

x(1− x)dx = 4Neu
1 + k/2 + (1− exp(k))/k

1 + k − exp(k)
,

which in the limit of large k converges to

(47) IµN→∞,µk
=

4Neu

k
.
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Similarly, for µ1(x) = µN (x), µ2(x) = µ∆(x) and c∆ = ∆−3, we find

(48) IµN→∞,µ∆
=

∫ 1

0

(

4Neu

x
− φe,∆(x)

)

x(1− x)dx =
7

3
Neu∆.

By using Eq. (47) and Eq. (48) in Eq. (41) we obtain the bounds that are stated in
Proposition 1. !
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