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A B S T R A C T

Diagnosis of most ophthalmic conditions, such as diabetic retinopathy, generally relies on an 
effective analysis of retinal blood vessels. Techniques that depend solely on the visual observation 
of clinicians can be tedious and prone to numerous errors. In this article, we propose a semi- 
supervised automated approach for segmenting blood vessels in retinal color images. Our 
method effectively combines some classical filters with a Generalized Linear Model (GLM). We 
first apply the Curvelet Transform along with the Contrast-Limited Histogram Adaptive Equal
ization (CLAHE) technique to significantly enhance the contrast of vessels in the retinal image 
during the preprocessing phase. We then use Gabor transform to extract features from the 
enhanced image. For retinal vasculature identification, we use a GLM learning model with a 
simple link identity function. Binarization is then performed using an automatic optimal 
threshold based on the maximum Youden index. A morphological cleaning operation is applied to 
remove isolated or unwanted segments from the final segmented image. The proposed model is 
evaluated using statistical parameters on images from three publicly available databases. We 
achieve average accuracies of 0.9593, 0.9553 and 0.9643, with Receiver Operating Characteristic 
(ROC) analysis yielding Area Under Curve (AUC) values of 0.9722, 0.9682 and 0.9767 for the 
CHASE_DB1, STARE and DRIVE databases, respectively. Compared to some of the best results 
from similar approaches published recently, our results exceed their performance on several 
datasets.

1. Introduction

Changes in the retinal vasculature, such as microaneurysms, hemorrhages, and increased levels of vascular tortuosity, are often 
indicators of conditions like diabetic retinopathy, stroke and other vascular disorders [1–5]. Manual analysis of retinal images for the 
diagnostic of these diseases is both tedious and requires extensive expertise. Therefore, the automatic image analysis is essential for 
decision-making [6–13]. Typically, the implementation of an automatic image analysis system involves several phases, including 
denoising, edge detection or segmentation [14–19]. The effectiveness of these systems in preventing, diagnosing, or treating the 
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associated pathologies depends heavily on the accuracy of the segmentation processes. Consequently, the development of algorithms 
that improve the accuracy of retinal vessels detection remains a significant research challenge.

Many revolutionary segmentation techniques have been proposed to date, generally categorized into supervised or unsupervised 
approaches [20–33]. Supervised approaches typically rely on automated learning concepts, including Machine Learning (ML) or Deep 
Learning (DL). These methods use artificial neural networks to create classifiers that distinguish between pixels characteristic of vessels 
and non-vessels in retinal images. Classifiers are trained using a set of features extracted from images previously labeled by experts as 
either belonging to the vascular system or not. The vessel identification process relies on algorithms trained with these labeled images 
to accurately detect and segment the retinal vasculature. Supervised techniques generally offer high precision but can be challenging to 
implement due to their need for extensive training databases with a large number of images. Additionally, they require managing of 
multiple features and classifiers which imposes a significant computational load.

In contrast, unsupervised methods use models that incorporate multi-scale or morphological analyzes and adaptive filters to extract 
the vascular network from retinal images [6–12]. Each image is segmented independently, typically following several preprocessing 
steps and subsequent post-processing. While these methods are easier to implement and more effective at extracting thicker vessels 
with better precision, they usually have lower performance for segmenting thinner vessels compared to supervised techniques. 
Comparative data on the advantages and disadvantages of both categories of techniques can be found in Refs. [9,32].

Despite recent advances in segmentation approaches, their implementation remains challenging due to several factors. The quality 
of the results can be affected by issues such as noise during acquisition, compression errors, low contrast, non-uniform illumination, 
and variations in vessel width, which can lead to discontinuities and undesirable pixels [10–12,14]. Moreover, the uniqueness of the 
retinal morphology in each individual, whether healthy or diseased, along with unpredictable changes or lesions caused by various 
pathologies, affect the segmentation performance of even supervised methods. Implementing a training set that encompasses all 
necessary data to account for these diverse conditions is challenging, which limits the capacity of classifiers and, consequently, the 
overall performance of the proposed systems [15–33]. The main challenge is to develop a segmentation approach that is both easy to 
implement and capable of ensuring high accuracy in detecting retinal blood vessels, regardless of image quality or variability in 
observable changes.

In this work, we propose a new hybrid model for automated and accurate segmentation of retinal vascular structures. This model 
leverages the strengths of both supervised and unsupervised approaches. The approach focuses on enhancing the pre-processing and 
post-processing phases using traditional unsupervised techniques to effectively remove unconnected or unwanted components from 
the detected vascular system. Between these phases, the accuracy of thin vessel segmentation is improved by incorporating a su
pervised intermediate step, which uses only a portion of the image features for training [34–37].

Initially, we exploit the advantages of the Fast Discrete Curvelet Transform (FDCT) to enhance preprocessing quality, combining it 
with the Contrast-Limited Adaptive Histogram Equalization (CLAHE) technique. The digital implementation of FDCT addresses the 
limitations of other multiresolution techniques by effectively highlighting object contours in images with strong anisotropy [14–19]. 
This approach improves image quality while preserving its complex structures [38–41]. The integration of FDCT with the widely used 
CLAHE technique has optimized preprocessing performance, demonstrating a significant impact on enhancing the accuracy of the final 
segmentation [42,43].

The main features of each enhanced image are further extracted using Gabor wavelet transforms and then used as inputs to a 
Generalized Linear Model (GLM) with a simple identity link function and a regular distribution of the output response. Only half of the 
extracted features are utilized for training the model, while the remaining features are reserved for testing. Binarization is performed 
using an automatic optimal threshold determined by maximizing the Youden index. Finally, a morphological cleaning operation is 
applied to remove unconnected or unwanted pixels from the segmented image. We evaluated the model’s performance by computing 
several statistical and graphical measurement parameters using images from the CHASE_DB1, DRIVE and STARE databases. The ac
curacy (Acc), specificity (Sp), sensitivity (Se), and Area Under the Receiver Operating Characteristic Curve (AUC) were compared to 
the results from several recently published similar works to demonstrate the robustness and reliability of our algorithm.

In the following section, we review recent previous studies on retinal blood vessels segmentation. Section 3 presents materials and 
details of the methodology used in this article. Section 4 discusses the experimental results obtained with our model and compares 
them to recent methods. Finally, we conclude this work in section 5.

2. Previous works

Retinal images are often affected by various types of noise, such as Poisson noise or Gaussian noise, which arise from sensor im
perfections or digitization defects. To improve the quality of these images, it is crucial to apply preprocessing techniques such as 
illumination uniformization and artifact correction. Common methods include mean, median, and Gaussian filters, as well as contrast 
enhancement techniques like histogram equalization [10]. Several studies have clearly demonstrated the impact of appropriate 
preprocessing on the final accuracy of retinal blood vessel segmentation [12,16]. Some preprocessing techniques often involve contrast 
enhancement through various transforms in the spatial, frequency, or temporal domains. One notable enhancement method is contrast 
adjustment using wavelets, which leverages time-frequency multiresolution analysis [14–18]. Asem et al. [14] utilized these multi
resolution techniques to denoise images. Compared to spatial improvement methods, Zhen et al. [15], Bankhead et al. [17], and Zhang 
et al. [18] have shown that wavelet transforms can significantly enhance edge highlighting and overall image quality.

However, these transforms have faced difficulties in describing objects with significant anisotropy. The Curvelet Transform was 
designed to better overcome the limitations of the separable wavelet transform in representing curves and edges. It has achieved 
significant success in various image processing tasks, such as improving image quality. The Curvelet transform is localized in the 
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directional, frequency, and spatial domains, and it exhibits high directional or anisotropic sensitivity [19]. One of its variants, known 
as the Fast Discrete Curvelet Transform (FDCT), is characterized by its ability to efficiently represent object boundaries, lines, curves, 
and edges in many directions. This variant was employed by Rahulkar et al. [39] for image feature extraction, and by Altan et al. [41] 
as a crucial method for image contrast enhancement in conjunction with other models. With the aim of further improving segmentation 
accuracy, several authors, including Soares et al. [28], Aslan et al. [29], and Fang et al. [32], have successfully utilized image 
transformation techniques involving filters or Gabor wavelets. Note that Gabor filters can be defined as the product of a sinusoidal or 
harmonic function and a Gaussian function. Considered as edge, line, or shape detectors, the main characteristic of these filters is their 
ability to adapt to different frequencies and orientations [44,45].

Overall, the segmentation techniques for the vascular system are summarized into two broad categories: supervised and unsu
pervised techniques [16–33,46–70]. Unsupervised approaches do not require prior training data. They rely on the application of 
various morphological functions to analyze and segment retinal images. Tavakoli et al. [3] presented an unsupervised automated 
approach for extracting the retinal vasculature, utilizing morphological operators during the preprocessing phase to enhance the 
structural network of blood vessels. The main processing phase involves applying the Radon transform to overlapping windows. 
Finally, they refined and reconstructed the vessels to achieve the final binarization. Dash and Bhoi [8] implemented a recursive 
approach to ophthalmoscopic image segmentation by applying a vessel enhancement technique with CLAHE, preceded by gamma 
correction. They then used an iterative adaptive thresholding method to extract blood vessels. The final segmented images, with 
appreciable average precision, were obtained using a morphological cleaning operation.

Ravichandran et al. [10] presented a fully automatic approach for blood vessel extraction using enhancement and thresholding 
techniques. The input image is improved through histogram matching and CLAHE methods. They employed Wiener filtering to remove 
background noise. To finally extract the retinal vasculature from Gabor filter responses of the CLAHE-enhanced image, a thresholding 
approach based on local entropy was applied. Saleh et al. [12] focused on major preprocessing algorithms, such as contrast 
enhancement and thresholding, to develop an automatic process for segmenting retinal vessels. Mean-C thresholding was used by Dash 
et al. [16] to segment the retinal vascular network, after enhancing the performance of the Curvelet Transform, by combining it with a 
Jerman filter. Dash et al. [33] combined a homomorphic filter with the CLAHE technique to extract the retinal vascular network while 
maintaining a low computational load.

Geethalakshmi et al. [35] explored another unsupervised technique for segmenting retinal vessels. This technique is based on 
CLAHE combined with median filtering methods to enhance the vascular network. The main segmentation phase was achieved using 
maximum principal curvature and various morphological functions. Jadoon et al. [49] and Nayab et al. [59] proposed unsupervised 
vessel segmentation approaches that also start with CLAHE-based contrast enhancement. Jadoon et al. [49] applied then the Top-Hat 
morphological operation for denoising, followed by High Boost and Frangi filters, and ISODATA thresholding to obtain the final binary 
image. Meanwhile, Nayab et al. [59] employed Gabor wavelets combined with an appropriate filter, followed by a human visual 
system (HVS) approach to achieve their results.

Among the supervised methods, Zhang et al. [18] proposed a retinal vessel binarization model that utilizes filtering techniques and 
wavelet transform. Specialized transformations are employed to optimize feature extraction with maximum orientation responses at 
various scales for vessels of different calibers. Finally, the vessels are segmented using a Random Forest classifier. Soares et al. [28] 
proposed characteristic vectors formed from pixel intensities, with scaled responses from the bidimensional Gabor wavelet applied to 
each set of pixels. They used a Bayesian Classifier with Gaussian Mixtures to classify the characteristic vector responses into vessel and 
non-vessel pixels.

Aslan et al. [29] obtained retinal vessels from original retinal images, using key features as input for an Extreme Learning Machine 
(ELM). During the feature extraction phase, they employed adaptive thresholding, Gabor, and Top-Hat transforms to enhance the 
vascular network. Boudegga et al. [30] proposed a U-shaped deep learning architecture based on simple convolutional blocks with the 
goal of maintaining high segmentation performance while minimizing computational load, after performing several preprocessing 
steps. Extensive reviews of supervised retinal image segmentation techniques using neural networks or their variants are provided in 
Refs. [20,22,25,46].

Supervised approaches, especially those based on deep learning, generally achieve superior segmentation accuracy compared to 
unsupervised methods. However, they are not always straightforward to implement due to the need for a large training dataset and 
significant processing load. To leverage the strengths of both approaches, several authors have combined them for an efficient dual- 
segmentation process [9,32]. Hashemzadeh et al. [9] implemented a range of relevant image features and a combination of training 
models for their hybrid segmentation approach. In the unsupervised phase, clear and thick blood vessels were initially identified, 
followed by a second supervised phase to detect thin vessels. The main features used for segmentation included the Top Hat transform, 
Shade Correction, Bit Plane Slicing, and Fuzzy C-Means clustering, among others. To obtain the final result, they performed a 
post-processing step that involved reducing the radius of the field of view (FOV) mask by a few pixels. In their proposed hybrid model, 
Fang et al. [32] first applied a supervised step based on a Generalized Linear Model (GLM) integrating the Gabor wavelet transform. 
The subsequent unsupervised step involved controlling lighting variations and adjusting detail magnification using the CLAHE 
technique.

As mentioned above, the major issues with several proposed methods are the complexity of implementation and the need to 
enhance the overall segmentation performance of the algorithm. Considering the advantages and limitations of supervised and/or 
unsupervised techniques, it is prudent to develop a hybrid model that leverages the strengths of both approaches while mitigating their 
drawbacks. This involves combining reliable segmentation with ease of system adaptation by further developing features that have 
demonstrated simplicity in implementation.
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3. Materials and methods

Fig. 1 presents a synoptic of the proposed model. The overall process is divided into several stages: pre-processing, retinal blood 
vessels extraction, post-processing, and performance evaluation. Experiments with the developed algorithms were conducted using the 
MATLAB 2017b environment on a CPU Core i5 2.67 GHz processor with 8 GB of RAM.

3.1. Databases

The retina images used to validate the proposed algorithm were sourced from the publicly available CHASE_DB1, STARE and 
DRIVE databases.

The CHASE_DB1 dataset consists of 28 color images of the retina background, divided into two subsets of 14 images each. For each 
image in the database, two manual segmentation results were obtained from two independent experts. In this study, we used one of the 
subsets along with the segmentation results corresponding to the manual segmentation performed by the first expert for performance 
evaluation [3,8]. The DRIVE database contains 40 color photographs of retinal images: 33 from healthy retinas and 7 from abnormal 
retinas. The set of 40 photographs was divided into training and testing sets, each containing 20 images. These images are charac
terized by low uniform illumination of the background, less contrasting vessels, and a relatively large arteriole exhibiting a bright band 
widening towards the center. For each image in these datasets, two manual extraction results provided by different observers are 
available. The manual segmentation results from the first expert will be used as ground truth in this paper. The STARE database in
cludes 20 color retinal photographs, half of which are normal and the other half abnormal [24–33]. This database also contains manual 
segmentation results for each image provided by an observer, which will be utilized as ground truth in this article.

3.2. Pre-processing

At the beginning of this stage, the color retinal image is split into red, green, and blue channels. Only the green channel is further 
used due to its superior contrast. Compared to the blue and red channels, the green channel of the color image provides better 
visualization and reveals the most distinct physiological structures, including blood vessels. The blue channel tends to exhibit more 
pronounced noise, while the red channel often fails to produce a clear image due to low saturation and contrast [34–36]. Because the 
green channel offers better contrast and produces images with higher intensity.

3.2.1. Fast discrete curvelet transform
The two-dimensional (2D) wavelet transform, commonly used in signal and image processing, has been extended by the curvelet 

Fig. 1. Synoptic of the proposed model.
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transform, which decomposes signals using a linear and weighted combination of basis functions called curvelets. The core idea is to 
partition an image into a fixed number of sub-bands, dividing the object into various scales and allowing each curvature to be rep
resented by a relatively small number of coefficients [19]. The Fast Discrete Curvelet Transform (FDCT), also known as the second 
generation of the curvelet transform, is a refined variant of the original transform proposed by Candès et al. [40]. FDCT is based on a 
multi-scale and multi-dimensional image decomposition technique and is preferred for its simplicity or low redundancy [26]. There are 
two main digital implementation models for this curvelet: FDCT via the Unequally Spaced Fast Fourier Transform (FDCT-USFFT) and 
FDCT via Wrapping (FDCT-Wrap). In this paper, FDCT via Wrapping will be implemented as it proves to be efficient and faster than 
FDCT-USFFT [19,26,38–41].

The multi-scale decomposition of the original image is represented by the Fourier plane being divided into concentric circles in the 
wrapping method. Within each of these concentric circles, there are several angular divisions. These combinations of scale and angular 
divisions are referred to as parabolic wedges. This implementation relies on various Fourier sampling operations. When the system 
input is a 2D image represented as a Cartesian matrix f [t1, t2] of MxN dimensions with 0 ≤ t1 < M, 0 ≤ t2 < N, the coefficients of 
discrete curvelets CD(j, l,k) corresponding to each corner are given by the following equation [38–41]: 

CD(j, l, k)=
∑

0≤m,n<N
f [t1, t2]φD

j,l,k[t1, t2]. (1) 

where φD
j,l,k is the digital waveform of the discrete curvelets; (j, l, k) designate scale, angle and orientation, respectively. These curvelet 

coefficients C are generated by two coordinate systems: one Polar and the other Cartesian. According to the polar coordinate system, 
we consider radial and an angular windows respectively W(r) and V(t), using for the first, positive real values with r ∈ [1/2; 2], and for 
the second, real values with t ∈ [-1; 1]. Equations (2) and (3) present the admissibility conditions of these window functions [40]: 

∑+∞

j=− ∞
W2( 2jr

)
=1, r ∈

[
3
4
;
3
2

]

. (2) 

∑+∞

l=− ∞

V2(t − l)=1, t ∈
[

−
1
2
;
1
2

]

. (3) 

In the Cartesian coordinate system, the frequencies isolated by the windows Ũj,l around the different corners (ω1,ω2) are given by the 
following parameters [39,40]: 

Ũj,l =Wj(ω)Vj(ω), (4) 

with 
⎧
⎨

⎩

Wj(ω) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

φ2
j+1(ω) − φ2

j (ω)
√

, j ≥ 0

Vj(ω) = V
(
2j/2ω1

/
ω2

) .

The φ function is defined as coming from the 1D low-pass window: 

φj(ω1,ω2)= ∅
(
2− jω1

)
∅
(
2− jω2

)
,0≤ ∅ ≤ 1.

Alternatively, instead of a slanted grid, one can assume an uniform rectangular lattice and determine the “Cartesian” curvelets 
rigorously in the same way as before as illustrated by the following equation [41]: 

c(j, l, k)=
∫

f̃(ω)ũj
(
S− 1

θl ω
)
e〈b,ω〉dω. (5) 

Note that the position b takes the digital values 
(
k1.2− j, k1.2− j/2

)
with θϵ( − π /4, π /4). Considering f [t1, t2] as an input Cartesian 

array and ̃f [n1, n2] as a 2D discrete Fourier transform, FDCT-Wrap technique algorithm used for this study is developed as follows:

i. Obtain Fourier samples ̃f [n1, n2] by applying the 2D fast Fourier transform (FFT) for input Cartesian array f [t1, t2];
ii. Compute the product Ũj,l[n1, n2]*f̃ [n1, n2] for each angle j and scale l, where Ũ is a discrete cartesian windows;

iii. Obtain ̃f j,l[n1, n2] = W
(
Ũj,l f̃

)
(n1, n2) by wrapping the previous product around origin;

iv. Collect the discrete curvelet coefficients CD(j, l, k) by applying 2D inverse FFT to each obtained ̃f j,l.

3.2.2. Image enhancement by CLAHE
The image histogram is a graphical representation of the intensity levels of the various data points in an image. This allows for 

modification to improve image quality. One of the most common techniques for this purpose is histogram equalization, valued for its 
simplicity of implementation [10]. In this stage, we implement a contrast enhancement method based on CLAHE (Contrast Limited 
Adaptive Histogram Equalization). This method is used to further enhance the contrast of the previous image. Since blood vessels are 
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key features in retinal images, the CLAHE method enables clearer visualization of these vessels compared to other methods. This 
enhancement process ensures an even distribution of intensity levels and adjusts the original image’s contrast. The principle of CLAHE 
is based on a distribution function that enhances overall contrast in images where gray levels are overly concentrated in a specific 
range. It helps to minimize the enhancement of artifacts and noise that may result from the initial image acquisition [8,10,12,16,32,
42].

3.3. Segmentation

3.3.1. Gabor wavelet transfom
In this study, blood vessel features are extracted from the previously enhanced retinal images using the Gabor wavelet transform. It 

is important to note that the Gabor wavelet transform is commonly used in the literature to identify multi-scale and multi-directional 
contours in images. This transform can be adjusted across specific frequencies, scales, and directions, making it effective as a back
ground noise suppressor and low-level feature extractor. The filter was originally introduced by Dennis Gabor, and its impulse response 
is determined by the product of a complex sinusoid and a Gaussian kernel as follows [28,29,32,44,45,47,64,70]: 

gλ,θ,φ,σ,γ(x, y)= exp
{

− 0.5
(

xʹ2 + γ2yʹ2

2σ2

)}

exp
{

i
(

2π xʹ

λ
+φ

)}
. (6) 

Real gR and imaginary gI components of this filter are defined as [32]: 

gR
λ,θ,φ,σ,γ(x, y )= exp

(

−
xʹ2 + γ2yʹ2

2σ2

)

cos
(

2π xʹ

λ
+φ

)
. (7) 

gI
λ,θ,φ,σ,γ(x, y )= exp

(

−
xʹ2 + γ2yʹ2

2σ2

)

sin
(

2π xʹ

λ
+φ

)
. (8) 

where x′ = x cosθ + ysinθ; y′ = − x cosθ + ycosθ; λ represents wavelength of sine function, θ denotes the orientation of the Gabor 
function relative to the parallel bands, σφ represents offset’s phase, γ and σ designate spatial aspect ratio and Gaussian function scale 
respectively. Green channel image Ig is convolved with Gabor filter g(x, y) to provide Gabor filter response G(x, y), given by the 
following equation: 

G(x, y)= g(x, y)*Ig(x, y). (9) 

where * designates convolution operator. In this article, we computed maximum Gabor filter answer over the range from 0 to π in 
increments of π/16 radians, for each pixel at distinct scales [2,4,6,8]. Each image’s pixel is computed for each scale using different 
frequencies [0.1,1.0] with maximum response, taken as a feature. Thus, Gabor responses are generated for each image’s pixel and are 
employed for GLM learning method.

3.3.2. Generalized linear models
GLMs are supple variant of linear regression based on various stochastic information generation, allowing them to establish a 

potentially nonlinear link between the response variable and the explanatory variables of linear model. GLMs used for continuous 
responses are essentially ordinary regression models. GLMs are superficial learning approach, which just use few part of images for 
training and test. GLMs primarily have three components: the random component, the systematic component and the parametric link 
function [45,47].

Random component describes the response variable Y0 and specifies its probability distribution p. Let x be the intensity of the pixel, 
∅ the scale or dispersion parameter, and θ the natural parameter. The corresponding logarithm of likelihood is given by Grégory et al. 
[47]: 

log p(Y0|x, θ) :=
Y0(x)θ(x) − g(θ(x))

f(x,∅)
+ k(Y0(x), ∅ ). (10) 

where f is a positive function known as the dispersion function, the function exp(k) is referred to as reference measure and is not reliant 
of the parameters, and g/f is cumulant generating function, also known as the log-partition function of probability density function. We 
modify the GLM by using the logit link function, also known as the logit model. This differs from the GLM model employed by Grégory 

et al. [47], where the natural parameter θ plays a less significant role. In our approach, the natural parameter θ is defined as log
⃒
⃒
⃒ π
1− π

⃒
⃒
⃒. 

The systematic component reflects the accuracy of the model’s explanatory variables and can be represented as a linear function of β by 
the linear predictor η, as follows: 

η(x, β) := MT(x)β. (11) 

where M is known as the design matrix and β represents the parameter vector.
The link function g provides an expected average value of the monotonic and smooth mapping. It describes the non-linear rela

tionship between mean value μ of probability density function of the explanatory variables and linear predictor as g(μ(x,β)) = η(x,β). 
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Using a simple identity link function g(μ) = μ, as inspired by Agresti et al. [45], we obtain a special case of GLM which consider a 
standard distribution for Y0 and directly model its mean.

Let G denote the features extracted from Gabor transform. The learning model h, as defined by Fang et al. [32], is given by: 

hθ(G)=
1

1 + e− θTG
(12) 

First, the Gabor wavelet transform is used to extract the feature G from retinal vessel image. Testing is performed on one half of the 
dataset, while the other half is used for training. Lastly, the learning model h receives the extracted features as input. The manually 
segmented image is used only once for GLM training to learn the feature array for vessel pixel contrast enhancement and background 
pixel removal.

3.4. Post-processing

The final result of segmentation using supervised GLM is achieved by applying an optimal threshold, determined by maximum 
Youden’s index [48]. This threshold corresponds relatively to the best sensitivity and specificity, which is obtained by performing 
several Gabor transformations with variable parameters detailed in the previous subsection. After the blood vessel extraction, the 
segmented image may contain isolated or unwanted pixels, which are removed through a morphological cleaning operation. The 
morphological operation employed is based on the Match Filter (MF) and the First Derivative Order of Gaussian (FDOG) proposed by 
Zhang et al. [6]. Parameters such as scale, constant criterion, neighborhood length on the Y axis, threshold, and the number of 
MF-FDOG orientations were set to values 1, 2.3, 8, 30 and 12 respectively for all images processed during this final operation.

3.5. Result evaluation metrics

Statistical parameters such as sensitivity (Se), specificity (Sp), Dice coefficient, False Discovery Rate (FDR), Positive Predictive 
Value (PPV), Negative Predictive Value (NPV), Jaccard index, Matthew’s Correlation Coefficient (MCC), G-Mean, and Accuracy (Acc) 
are used to assess the performance of this model. For each tested image, its manually segmented equivalent from the corresponding 
database is used as a reference, or ground truth. True positives (TP) are pixels identified as blood vessels in both the ground thruth and 
segmented image; true negatives (TN) are pixels that are identified as non-vessels in both the reference and segmented image; false 
negatives (FN) are pixels that are identified as non-vessels in the segmented image but as vessels in the reference; and false positives 
(FP) are the ones pixels that are marked as vessels in the segmented image but not as a vessel in the references.

The ratio of correctly classified vessel pixels to all vessel pixels in the groundtruth image is given by sensitivity (Se). The ratio of the 
total number of correctly classified non-vessel pixels to the total number of non-vesel pixels is known as specificity (Sp). The harmonic 
mean of Se and Acc is called the Dice coefficient. The percentage of pixels correctly classified as vessel pixels out of actual vessel pixels 
is known as the PPV. The ratio of correctly identified non-vessel pixels to all classified non-vessel pixels is determined by Negative 
Predictive Value (NPV). The False Discovery Rate (FDR) represents the proportion of false positives among all positive classifications. 
Matthew’s Correlation Coefficient (MCC) quantifies the quality of binary classifications. The Jaccard index measures the ratio of the 
intersection of true positives and true negatives to the union of these sets. Finally, the ratio of correctly identified pixels to the total 
number of pixels in the image represents accuracy (Acc). Table 1 provides the mathematical expressions for these parameters [49–60].

We also assessed another metric of our model’s performance using ROC (Receiver Operating Characteristic) curve. As a reminder, 
this curve represents True Positive Rate (TPR) compared to False Positive Rate (FPR) for various obtained thresholds. We then 
computed Area Under the ROC Curves (AUC) to compare performance of image segmentation. Higher the value of the AUC, the better 
the quality of segmentation [51–56].

4. Experimental results and analysis

Fig. 2 shows the results of main processing phases of proposed approach for an image sample using the DRIVE database.
Figs. 3–5 show the vessel segmentation results of the proposed algorithm for a several randomly selected images from the DRIVE, 

Table 1 
Performance measerements for retinal vessel segmentation.

Measures Equation

Se TP/(TP + FN)
Sp TN/(TN + FP)
Dice coefficient 2TP/(2 TP + FP + FN)
PPV TP/(TP + FP)
NPV TN/(TN + FN)
FDR FP/(FP + TN)
Jaccard Index TP/(TP + FP + FN)
MCC (TP x TN – FP x FN)/ 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

G-Mean ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Se x Sp

√

Acc Acc ¼ (TP þ TN)/(TP þ FP þ TN þ FN)
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STARE and CHASE_DB1 databases, respectively. The original images are displayed in the first row, the results of the manual seg
mentation provided by an expert and used as a ground truth are shown in the second row, and the images of the detected vessels using 
the suggested method are shown in the third row.

The results of various performance metrics computed for the DRIVE, STARE and CHASE_DB1 databases are presented in Tables 2–4, 
respectively. The mathematical formulas provided in Table 1 are used to calculate the performance measures for each image from the 
three databases used.

The average performance metrics of the proposed model are as follows: for the DRIVE database, the model achieved an accuracy 
(Acc) of 0.9643, sensitivity (Se) of 0.7998, and specificity (Sp) of 0.9792. For the STARE database, the model’s accuracy was 0.9553, 
sensitivity was 0.7059, and specificity was 0.9776. For the CHASE_DB1 database, the accuracy was 0.9593, sensitivity was 0.7225, and 
specificity was 0.9786. The ROC curves for our method are shown in Figs. 6–8. The AUC values of 0.9767 for DRIVE, 0.9682 for STARE, 
and 0.9722 for CHASE_DB1 are obtained.

Figs. 9–11 display the impact of the FDCT during the preprocessing phase. We observed a significant improvement in average 
accuracies with the inclusion of FDCT in the preprocessing step.

We compared the obtained performances with those of existing methods. The comparison results are presented in Tables 5–7 for 
DRIVE, STARE and CHASE_DB1 databases, respectively. For this purpose, the models proposed by Tavakoli et al. [3], Dash and Bhoi 
[8], Ravichandran et al. [10], Saleh et al. [12], Zhang et al. [18], Soares et al. [28], Guo et al. [31], Fang et al. [32], Geethalakshmi 
et al. [35], Feudjio et al. [38], Jadoon et al. [49], Khomri et al. [50], Saha et al. [51], Hu et al. [52], Yan et al. [53], Zhang et al. [54], 
Azzopardi et al. [55], Kejuan et al. [56], Zhao et al. [57], Fraz et al. [58], Nayab et al. [59], Fraz et al. [60], Vega et al. [61], Aslani et al. 
[62], Mapayi et al. [63], Farokhain et al. [64], Mendonca et al. [65], You et al. [66], Lam et al. [67], Marin et al. [68], Lin et al. [69], 
Alhussein et al. [71], Dash et al. [72], Dash et al. [73], Soomro et al. [74], Dash et al. [75] are used. The results of authors Vega et al. 
[61], Aslani et al. [62], Mapayi et al. [63] and Farokhian et al. [64] are obtained from Dash and Bhoi [8]. Those of the authors 
Mendonca et al. [65], You et al. [66], Lam et al. [67], Marin et al. [68] and Lin et al. [69] are obtained from Saha et al. [51]. The 
remaining values were sourced directly from the original literature. The symbol "/" denotes values that are not provided in the original 
study.

We observe that the average accuracy of 0.9643 achieved by the proposed model on the DRIVE database images exceeds the 
performance of the thirteen supervised methods listed in Table 5. Among the twenty-one unsupervised segmentation techniques in the 
same table, our model ranks among the top five performances. Additionally, the average AUC value of 0.9767 places it as the third-best 
performance among the thirty-four methods reviewed for the DRIVE dataset.

Furthermore, Table 6 shows that the average accuracy of 0.9553 achieved on the STARE database images exceeds that of several 
segmentation methods, including unsupervised approach using morphological operators and curvelets proposed by Feudjio et al. [38], 

Fig. 2. Visual inspection of the processing steps of the proposed system using the DRIVE database: (a) original image, (b) green channel, (c) FDCT 
enhanced, (d) CLAHE enhanced, (e) Output GLM, (f) Post-processing operation, (g) Final image. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. Blood vessel extraction results on DRIVE database. First row: original images. Second row: ground truth images (same order as first row). 
Third row: segmentation results from the proposed method (same order as first row).

Fig. 4. Blood vessel extraction results on STARE database. First row: original images; Second row: ground truth images (same order as first row); 
Third row: segmentation results from the proposed method (same order as first row).
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and the supervised technique combining classical filters with neural networks proposed by Saha et al. [51]. Notably, the average 
accuracy of 0.9593 achieved on the CHASE_DB1 dataset is the second-best performance among the unsupervised methods listed in 
Table 7. This performance also surpasses that of the supervised methods proposed by Saha et al. [51], Fraz et al. [60], and Lin et al. 
[69], as shown in the same table. Additionally, the average AUC of 0.9722 achieved on this dataset is the second-best performance 
among all approaches listed in the table, just after the deep learning-based joint loss segmentation model proposed by Yan et al. [53].

To further assess the effectiveness of our algorithm, the qualitative result of the segmentation of image named 01_test of the DRIVE 
database is compared to that of few literature models. This graphical comparison, which includes results from Tavakoli et al. [3], Dash 
and Bhoi [8], Ravichandran et al. [10], Saleh et al. [12], Zhang et al. [18], Fang et al. [32], Zhao et al. [57], Fraz et al. [58] and Mapayi 

Fig. 5. Blood vessel extraction results on CHASE_DB1 database. First row: original images; Second row: ground truth images (same order as first 
row); Third row: segmentation results from the proposed method (same order as first row).

Table 2 
Performance metrics on DRIVE database.

Image Se Sp Dice Coefficient PPV NPV FDR Jaccard index MCC G-Mean Acc AUC

01_test 0.8497 0.9734 0.7988 0.7536 0.9854 0.0266 0.6649 0.7799 0.9095 0.9626 0.9792
02_test 0.8690 0.9774 0.8392 0.8114 0.9852 0.0226 0.7229 0.8211 0.9216 0.9664 0.9838
03_test 0.7968 0.9796 0.7944 0.7921 0.9801 0.0204 0.6590 0.7743 0.8835 0.9633 0.9775
04_test 0.7910 0.9817 0.7981 0.8054 0.9800 0.0183 0.6641 0.7790 0.8812 0.9649 0.9705
05_test 0.8443 0.9803 0.8171 0.7916 0.9861 0.0197 0.6908 0.8009 0.9098 0.9693 0.9811
06_test 0.7541 0.9790 0.7701 0.7868 0.9749 0.0210 0.6262 0.7473 0.8593 0.9581 0.9665
07_test 0.8013 0.9821 0.7879 0.7750 0.9846 0.0179 0.6500 0.7714 0.8871 0.9691 0.9699
08_test 0.7356 0.9818 0.7393 0.7431 0.9811 0.0182 0.5864 0.7208 0.8498 0.9654 0.9682
09_test 0.7418 0.9792 0.7498 0.7580 0.9774 0.0208 0.5998 0.7282 0.8523 0.9600 0.9628
10_test 0.8215 0.9806 0.7930 0.7664 0.9861 0.0194 0.6570 0.7769 0.8976 0.9692 0.9785
11_test 0.8025 0.9808 0.7969 0.7914 0.9821 0.0192 0.6624 0.7784 0.8872 0.9660 0.9713
12_test 0.8047 0.9787 0.7855 0.7673 0.9829 0.0213 0.6468 0.7666 0.8874 0.9647 0.9784
13_test 0.7766 0.9745 0.7754 0.7741 0.9748 0.0255 0.6331 0.7500 0.8700 0.9545 0.9715
14_test 0.8061 0.9814 0.7918 0.7779 0.9843 0.0186 0.6553 0.7748 0.8895 0.9683 0.9800
15_test 0.7596 0.9833 0.7724 0.7855 0.9807 0.0167 0.6292 0.7545 0.8642 0.9666 0.9710
16_test 0.8341 0.9783 0.8068 0.7813 0.9845 0.0217 0.6762 0.7887 0.9033 0.9660 0.9788
17_test 0.7656 0.9819 0.7686 0.7715 0.9813 0.0181 0.6241 0.7502 0.8670 0.9659 0.9768
18_test 0.8324 0.9782 0.8130 0.7944 0.9830 0.0218 0.6849 0.7938 0.9024 0.9648 0.9759
19_test 0.8317 0.9774 0.8165 0.8018 0.9814 0.0226 0.6899 0.7960 0.9016 0.9629 0.9767
20_test 0.7765 0.9754 0.7696 0.7628 0.9771 0.0246 0.6255 0.7459 0.8703 0.9569 0.9665
Average 0.7998 0.9792 0.7892 0.7796 0.9816 0.0208 0.6524 0.7699 0.8847 0.9643 0.9767
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Table 3 
Performance metrics on STARE database.

Image Se Sp Dice Coefficient PPV NPV FDR Jaccard index MCC G-Mean Acc AUC

im0001 0.5317 0.9591 0.5254 0.5193 0.9621 0.0441 0.3557 0.4835 0.7144 0.9369 0.9536
im0002 0.6987 0.9614 0.4828 0.4678 0.9669 0.0418 0.3177 0.4446 0.6926 0.9325 0.9462
im0003 0.6179 0.9708 0.5869 0.5588 0.9784 0.0324 0.4144 0.5598 0.7748 0.9516 0.9653
im0004 0.6143 0.9873 0.419 0.6301 0.9501 0.0159 0.2648 0.4155 0.5568 0.9393 0.9538
im0005 0.6589 0.973 0.6762 0.6945 0.9691 0.0302 0.5095 0.645 0.8011 0.9466 0.9613
im0044 0.8041 0.97 0.7213 0.6541 0.9879 0.0332 0.5626 0.7023 0.8836 0.9603 0.9749
im0077 0.8365 0.9746 0.7788 0.7287 0.9884 0.0286 0.6359 0.76 0.9034 0.9655 0.9792
im0081 0.7936 0.9764 0.6906 0.6875 0.9781 0.0268 0.526 0.6652 0.8233 0.9572 0.9709
im0082 0.771 0.9808 0.7644 0.7579 0.9833 0.0224 0.6168 0.7439 0.87 0.9662 0.9789
im0139 0.7258 0.9743 0.7116 0.6979 0.9788 0.0289 0.5508 0.6857 0.8414 0.9563 0.9727
im0162 0.8337 0.9816 0.795 0.7598 0.99 0.0216 0.6577 0.7793 0.9051 0.973 0.9857
im0163 0.8649 0.9791 0.81 0.7616 0.9914 0.0241 0.6785 0.7946 0.9207 0.9722 0.9849
im0235 0.7199 0.986 0.7648 0.8158 0.9757 0.0172 0.6174 0.7449 0.8429 0.9642 0.9779
im0236 0.7048 0.9877 0.7633 0.8323 0.9738 0.0155 0.6153 0.7446 0.8347 0.964 0.9757
im0239 0.5913 0.9785 0.6432 0.7052 0.9648 0.0247 0.4729 0.6153 0.7609 0.947 0.9607
im0240 0.6106 0.9799 0.5991 0.725 0.9489 0.0233 0.4267 0.5723 0.7075 0.9338 0.9475
im0255 0.7829 0.9859 0.8053 0.829 0.9816 0.0173 0.6719 0.7869 0.879 0.9697 0.9714
im0291 0.656 0.9831 0.582 0.6106 0.9794 0.0201 0.4096 0.5614 0.7396 0.9634 0.9771
im0319 0.5741 0.981 0.5629 0.5522 0.9837 0.0222 0.3909 0.5428 0.7507 0.9654 0.9781
im0324 0.6359 0.9816 0.4142 0.5408 0.9567 0.0216 0.2609 0.3948 0.574 0.9405 0.9552
Average 0.7059 0.9776 0.6548 0.6764 0.9745 0.0256 0.4978 0.6321 0.7888 0.9553 0.9682

Table 4 
Performance metrics on CHASE_DB1 database.

Image Se Sp Dice Coefficient PPV NPV FDR Jaccard index MCC G-Mean Acc AUC

01L 0.6907 0.9751 0.6751 0.7042 0.9739 0.0275 0.5385 0.6413 0.7864 0.9536 0.9659
02L 0.6994 0.9491 0.6031 0.5988 0.9706 0.0353 0.4663 0.5596 0.7659 0.9477 0.9596
03L 0.6385 0.9913 0.6906 0.7616 0.9716 0.0226 0.5546 0.6534 0.7684 0.9659 0.9783
04L 0.7632 0.9917 0.6242 0.7089 0.9646 0.0225 0.487 0.5728 0.716 0.9595 0.9728
05L 0.7961 1.0059 0.84 0.9816 0.9738 0.0182 0.7221 0.8135 0.8211 0.9721 0.9857
06L 0.6917 0.9674 0.644 0.6572 0.9736 0.0298 0.5067 0.609 0.7793 0.9464 0.9586
07L 0.7784 0.9915 0.73 0.798 0.9747 0.0226 0.5966 0.6997 0.7951 0.9691 0.9826
08L 0.7254 0.9693 0.6295 0.6153 0.9817 0.0292 0.4923 0.6167 0.8029 0.9543 0.9666
09L 0.7241 0.998 0.6824 0.6815 0.9892 0.0206 0.546 0.6903 0.831 0.9768 0.9895
10L 0.6359 0.9801 0.5895 0.5975 0.9773 0.026 0.4532 0.5625 0.7552 0.9598 0.9731
11L 0.7741 0.9791 0.65 0.6185 0.9898 0.0263 0.5128 0.6644 0.843 0.9713 0.9825
12L 0.7154 0.9738 0.6819 0.6994 0.977 0.0279 0.5455 0.6555 0.8011 0.9551 0.9674
13L 0.7455 0.9768 0.6405 0.6385 0.9811 0.027 0.5032 0.6253 0.7978 0.9607 0.9783
14L 0.7363 0.9506 0.5495 0.5068 0.983 0.0348 0.4154 0.5433 0.791 0.9378 0.9498
Average 0.7225 0.9786 0.6593 0.6834 0.9773 0.0265 0.5243 0.6362 0.7896 0.9593 0.9722

Fig. 6. ROC curve on drive dataset.
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et al. [63], is presented in Fig. 12.
We examined key details in a representative image from several state-of-the-art algorithms to assess the reliability of the proposed 

approach, as illustrated in Fig. 13. Fig. 13 (e) and (g) show that our model more effectively removes isolated or unwanted segments 

Fig. 7. ROC curve on stare dataset.

Fig. 8. ROC curve on CHASE_DB1 dataset.

Fig. 9. Average accuracies obtained using or not curvelet transforms during the preprocessing stage on DRIVE database.
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compared to techniques using CLAHE combined with gamma correction, as proposed by Dash and Bhoi [8]. The same improvement is 
observed in Fig. 13 (g) when compared to the segmentation approach based on GLCM energy information proposed by Mapayi et al. 
[63]. Additionally, Fig. 13 (f) highlights the model’s capability to detect segments that were missed by the automatic threshold se
lection method proposed by Saleh et al. [12].

Clinical signs of certain pathologies, such as diabetic retinopathy, include, among others, spots in the area of retinal vessels, 
hemorrhagic points, cotton wool spots, or hard exudates [20]. The ability of our model to detect vessels with continuity and to 
eliminate isolated or undesirable points in regions illustrated by Fig. 13, for example, may help reduce the rate of false positives in the 
diagnosis of these types of ocular conditions.

5. Conclusion

We have presented a new automated and semi-supervised algorithm for extracting blood vessels from retinal images. The approach 
is primarily a hybrid segmentation method that leverages the strengths of both supervised and unsupervised techniques while miti
gating their respective limitations. The initial key step involved optimizing the widely used CLAHE technique by incorporating a 
digital implementation of FDCT during the preprocessing phase of retinal background images. Another distinctive feature of our 
approach is the use of a supervised intermediate step with a GLM learning model, utilizing the identity link function. This model was 
specifically employed for training and testing on a subset of image features extracted using Gabor filters. For the final binarization, the 
optimal threshold was determined automatically by maximizing the Youden index. A morphological cleaning operation, utilizing the 
MF-FDOG operator with fixed parameters, effectively removed isolated or unwanted segments that remained after the unsupervised 
process. The experimental results presented average accuracies of 0.9553, 0.9643 and 0.9593, with corresponding AUC values of 
0.9682, 0.9767 and 0.9722 for the STARE, DRIVE and CHASE_DB1 databases, respectively. Based on comparative studies conducted, 
these results indicate that the proposed model demonstrates statistically acceptable performance compared to other known algorithms 
in the literature. Moreover, the proposed algorithm is based on straightforward processing techniques that are well-regarded for their 
ease of implementation. This approach is highly suitable for automated processing and enhances the optimization of diagnostic tools 
for various retinal disorders.

Fig. 10. Average accuracies obtained using or not curvelet transforms during the preprocessing stage on STARE database.

Fig. 11. Average accuracies obtained using or not curvelet transforms during the preprocessing stage on CHASE_DB1 database.
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Table 5 
Performance of the suggested model compared to other studies based on DRIVE.

Types Methods Se Sp Acc AUC

Supervised 
methods

Zhang et al. [18] 0.7861 0.9712 0.9466 0.9703

​ Soares et al. [28] / / 0.9466 0.9614
​ Guo et al. [31] 0.7729 0.9826 0.9640 /
​ Saha et al. [51] 0.7352 0.9775 0.9480 0.9678
​ Hu et al. [52] 0.7772 0.9793 0.9533 0.9759
​ Yan et al. [53] 0.7653 0.9818 0.9542 0.9752
​ Kejuan et al. [56] 0.8199 0.9762 0.9561 0.9796
​ Fraz et al. [60] 0.7406 0.9807 0.9480 0.9747
​ Vega et al. [61] 0.744 0.960 0.941 /
​ Aslani et al. [62] 0.754 0.980 0.951 /
​ Mendonca et al. [65] 0.7344 0.9764 0.9452 /
​ Lam et al. [67] 0.7067 0.9801 0.9452 /
​ Lin et al. [69] 0.7632 / 0.9536 /
Unsupervised methods Tavakoli et al. [3] / / 0.9688 0.9739
​ Dash and Bhoi [8] 0.7417 0.9861 0.9571 /
​ Ravichandran et al. [10] 0.7259 0.9799 0.9574 /
​ Muzammil et al. [11] 0.7271 0.9798 0.9573 /
​ Saleh et al. [12] 0.8423 / 0.9630 /
​ Fang et al. [32] / / 0.96 /
​ Geethalakshmi et al. [35] 0.755 0.989 0.965 /
​ Feudjio et al. [38] 0.7406 0.9878 0.9667 /
​ Khomri et al. [50] 0.7390 0.9740 0.9450 /
​ Zhang et al. [54] 0.7743 0.9725 0.9476 0.9636
​ Azzopardi et al. [55] 0.7655 0.9704 0.9442 0.9614
​ Zhao et al. [57] 0.7354 0.9789 0.9477 /
​ Fraz et al. [58] 0.7302 0.9742 0.9422 /
​ Nayab et al. [59] 0.7271 0.9798 0.9573 /
​ Mapayi et al. [63] 0.731 0.972 0.951 /
​ Farokhain et al. [64] 0.6933 0.9777 0.9392 0.9530
​ Alhussein et al. [71] 0.7855 0.9734 0.9559 0.8787
​ Dash et al. [72] 0.6907 0.9904 0.964 /
​ Dash et al. [73] 0.7403 0.9905 0.9661 /
​ Soomro et al. [74] 0.812 0.971 0.963 /
​ Dash et al. [75] 0.7043 0.9890 0.9613 /
​ Proposed method 0.7998 0.9792 0.9643 0.9767

Table 6 
Performance of the suggested approach compared to other studies on STARE database.

Types Methods Se Sp Acc AUC

Supervised 
methods

Zhang et al. [18] 0.7882 0.9729 0.9547 0.9740

​ Saha et al. [51] 0.7265 0.9759 0.9548 0.9686
​ Hu et al. [52] 0.7543 0.9814 0.9632 0.9751
​ Yan et al. [53] 0.7581 0.9846 0.9612 0.9801
​ Fraz et al. [60] 0.7548 0.9763 0.9534 0.9768
​ You et al. [66] 0.7260 0.9756 0.9479 /
​ Lam et al. [67] / / 0.9567 /
​ Marin et al. [68] 0.6944 0.9819 0.9526 /
​ Lin et al. [69] 0.7423 / 0.9603 /
Unsupervised 

methods
Tavakoli et al. [3] / / 0.9646 0.9701

​ Ravichandran et al. [10] 0.7693 0.9672 0.9526 /
​ Muzammil et al. [11] 0.7164 0.9760 0.9560 /
​ Feudjio et al. [38] 0.7028 0.9755 0.9507 /
​ Jadoon et al. [49] 0.7201 0.9708 0.9498 /
​ Khomril et al. [50] 0.737 0.962 0.94 /
​ Zhang et al. [54] 0.7791 0.9758 0.9554 0.9748
​ Azzopardi et al. [55] 0.7716 0.9701 0.9497 0.9563
​ Zha et al. [57] 0.7187 0.9767 0.9509 /
​ Fraz et al. [58] 0.7318 0.9660 0.9423 /
​ Nayab et al. [59] 0.7164 0.9760 0.9560 /
​ Mendonca et al. [65] 0.6996 0.9730 0.9440 /
​ Soomro et al. [74] 0.809 0.969 0.958 /
​ Proposed method 0.7059 0.9776 0.9553 0.9682
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Table 7 
Performance of the suggested approach compared to other studies on CHASE_DB1 database.

Types Methods Se Sp Acc AUC

Supervised 
methods

Zhang et al. [18] 0.7644 0.9716 0.9602 0.9706

​ Saha et al. [51] 0.7279 0.9658 0.9452 0.9681
​ Yan et al. [53] 0.7633 0.9809 0.9610 0.9781
​ Fraz et al. [60] 0.7224 0.9711 0.9469 0.9712
​ Lin et al. [69] 0.7815 / 0.9587 /
Unsupervised methods Tavakoli et al. [3] / / 0.9475 0.9712
​ Dash and Bhoi [8] 0.755 0.980 0.952 /
​ Zhang et al. [54] 0.7626 0.9661 0.9452 0.9606
​ Azzopardi et al. [55] 0.7585 0.9587 0.9387 0.9487
​ Alhussein et al. [71] 0.7776 0.9634 0.9505 0.8705
​ Dash et al. [75] 0.7153 0.9816 0.9605 /
​ Proposed method 0.7225 0.9786 0.9593 0.9722

Fig. 12. The obtained results on image named 01_test of DRIVE database: (a) Original image (b) Ground truth, (c) Tavakoli et al. [3], (d) Dash and 
Bhoi [8], (e) Ravichandran et al. [10], (f) Saleh et al. [12], (g) Zhang et al. [18], (h) Fang et al. [32], (i) Zhao et al. [57], (j) Fraz et al. [58], (k) 
Mapayi et al. [63], (l) Proposed model.
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