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Abstract

Cancers exhibit spatially heterogeneous, unique vascular architectures across individual

samples, cell-lines and patients. This inherently disorganised collection of leaky blood

vessels contribute significantly to suboptimal treatment efficacy. Preclinical tools are

urgently required which incorporate the inherent variability and heterogeneity of tumours

to optimise and engineer anti-cancer therapies. In this study, we present a novel computa-

tional framework which incorporates whole, realistic tumours extracted ex vivo to effi-

ciently simulate vascular blood flow and interstitial fluid transport in silico for validation

against in vivo biomedical imaging. Our model couples Poiseuille and Darcy descriptions

of vascular and interstitial flow, respectively, and incorporates spatially heterogeneous

blood vessel lumen and interstitial permeabilities to generate accurate predictions of

tumour fluid dynamics. Our platform enables highly-controlled experiments to be per-

formed which provide insight into how tumour vascular heterogeneity contributes to

tumour fluid transport. We detail the application of our framework to an orthotopic murine

glioma (GL261) and a human colorectal carcinoma (LS147T), and perform sensitivity

analysis to gain an understanding of the key biological mechanisms which determine

tumour fluid transport. Finally we mimic vascular normalization by modifying parameters,

such as vascular and interstitial permeabilities, and show that incorporating realistic vas-

culatures is key to modelling the contrasting fluid dynamic response between tumour sam-

ples. Contrary to literature, we show that reducing tumour interstitial fluid pressure is not

essential to increase interstitial perfusion and that therapies should seek to develop an

interstitial fluid pressure gradient. We also hypothesise that stabilising vessel diameters

and permeabilities are not key responses following vascular normalization and that ther-

apy may alter interstitial hydraulic conductivity. Consequently, we suggest that normaliz-

ing the interstitial microenvironment may provide a more effective means to increase

interstitial perfusion within tumours.
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Author summary

The structure of tumours varies widely, with dense and chaotically-formed networks of

blood vessels that differ between each individual tumour and even between different

regions of the same tumour. This atypical environment can inhibit the delivery of anti-

cancer therapies. Computational tools are urgently required which facilitate a deeper

understanding of the relationship between blood vessel architectures and therapeutic

response. We have developed a computational framework which integrates the complex

tumour vascular architecture to predict fluid transport across all lengths scales in whole

tumours. We apply our model to two tumour cell-lines and show that differences in their

inherent vascular structures influence flow through cancerous tissue. We also use our plat-

form to predict the fluid dynamic response following vascular normalization therapy in

realistic, static tumour networks and show that the response is dependent on tumour vas-

cular architecture. We hypothesise that therapy may alter the permeability of interstitial

tissue to fluid transport and show that lowering interstitial fluid pressure is not a necessary

therapeutic outcome to increase tumour perfusion.

Introduction

Architectural heterogeneities in cancerous tissue limit the delivery of anti-cancer drugs by

inhibiting their ability to circumnavigate the entire tumour to all cancerous cells [1]. In solid

tumours, drug penetration to the tumour core is hindered by physiological barriers which can

limit the delivery of targeted agents, with penetration exacerbated by the size of the agent [1–

5]. Consequently, preclinical tools which provide a better understanding of therapy interac-

tions within the tumour microenvironment are urgently required in order to increase treat-

ment efficacy. In silico modelling is one such tool which can meet this need by testing novel

therapeutic strategies at a much faster rate and cheaper cost than preclinical experimentation

[6].

For a systemically-administered agent to effectively target diseased tissue, it must travel

from the site of delivery to the site of disease, whilst minimally interacting with normal tissues

and not degrading [7]. This is difficult to achieve in tumours since atypical endothelial prolif-

eration of tumour vasculature leads to spatial variations in vascular density and branching

patterns, distorted and enlarged vessels, and a highly convoluted network topology [8–10].

Further, vascular permeability is heightened and heterogeneous and so these immature blood

vessels are generally leakier than those in normal tissue [3, 11].

The irregular microenivronment is typically characterised by hypoxia, acidosis and elevated

interstitial fluid pressure (IFP) [12–14], which drive both tumour vascular proliferation and

resistance to therapy [15]. Here, drug delivery may be hindered by the atypical nature of the

tumour interstitium. The extracellular matrix (ECM) consists of a cross-linked dense network

of collagen and elastin fibres, far denser than usually seen in normal tissue [16]. A denser

matrix can inhibit oxygen and nutrient delivery, as well as providing significant resistance to

the advection and diffusion of therapeutic particles [1], since key determinants of intratu-

moural fluid and mass delivery include tissue hydraulic conductivity and vascular compliance

[17]. Several therapeutic interventions have sought to limit the effects of these physical barriers

by manipulating the microenvironment to enhance the delivery of macromolecular agents [16,

18]. For example, normalising the tumour vasculature to reduce vessel permeability thereby

increasing drug penetration [12]; and manipulating the connective tissue, and therefore
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interstitial hydraulic conductivity, using a platelet-derived growth factor (PDGF) antagonist to

reduce tumour IFP [19].

Heterogeneities in the underlying morphology of tumours, such as vessel diameters and

lengths, and inter-branch distance, exist across individual tumours and tumour cell-lines [20].

These variations in tumour architecture lead to spatial variability in drug efficacy, which com-

plicate efforts to design effective treatment strategies [7]. Experimental efforts have been made

to understand the effects of tumour heterogeneity on fluid interactions across tumours, for

example, wick-in-needle has been used to measure IFP across tumours [21–23]. However, this

method disturbs the local microenvironment and only provides an IFP measurement at indi-

vidual locations. Non-invasive methods have also been developed to estimate tumour IFP [24,

25]. For example, convection-MRI, which measures low-velocity flow in tumours at a resolu-

tion of� 250 μm in vivo [26]. However, these methods fail to capture full spatial maps of flow

at the micron-scale which are crucial to understanding how the combined intra- and extravas-

cular spatial flow heterogeneities occurring at the scale of blood vessels affects the macro-scale

flow dynamics and consequent delivery of drugs within a solid tumour. Biomedical imaging

complemented by in silico methods provides scope to provide such detail.

Mathematical models have been used to investigate the tumour microenvironment and

have provided detailed insights which may otherwise be unavailable experimentally. Seminal

models have indicated that a leaky tumour vasculature induces elevated IFP, reduced fluid

penetration into the interstitium [14, 27], and a non-uniform distribution of drug delivered to

solid tumours [2, 3, 11]. Further, they have defined conventional IFP profiles in tumours—a

uniform pressure at the core, with a large decreasing gradient towards the periphery. However,

these models generally average spatially over the tumour vasculature and so fail to capture the

micron-scale flow dynamics; and they assign a fixed pressure boundary condition on the

periphery of the tumour which may artificial induce these conventional IFP profiles.

Subsequent studies have sought to incorporate the spatially heterogeneous effects of tumour

vasculature using computer-generated synthetic networks which retain key features of tumour

vascular architecture [28–34], or by integrating spatial variations in vascular permeability

parametrised against in vivo experimentation [35, 36]. More recently, a hybrid image-based

framework has been developed which combines realistic tumour vascular architectures and in
silico modelling to predict tumour vascular blood flow [37] and intravascular tumour oxygen-

ation [38]. However, computational models are urgently required which incorporate these

highly detailed data to enable predictions of fluid and mass transport to the surrounding tissue

[6].

Recent advances in ex vivo optical imaging of cleared tissue specimens have enabled large

samples (up to 2 cm3 with> 105 blood vessels) to be imaged in three-dimensions, at resolu-

tions down to a few microns [39]. We have developed a platform called REANIMATE (REAl-

istic Numerical Image-based Modelling of biologicAL Tissue substratEs) which combines

optical imaging of cleared tissue with mathematical modelling and in vivo imaging, within a

unified framework, to generate quantitative, testable predictions regarding tumour transport

[40]. The platform uses high-resolution imaging data from large, intact, optically-cleared tissue

samples to make in silico predictions of blood flow, vascular exchange and interstitial trans-

port. REANIMATE enables new hypotheses to be generated and tested in a manner that

would be challenging or impossible in a conventional experimental setting. We have previ-

ously used REANIMATE to explore the impact of vascular network topology on fluid trans-

port and vascular disrupting therapy (Oxi4503) to two colorectal cell-lines (LS147T and

SW1222) [40].

We develop here a computational model to efficiently simulate both intra- and extravascu-

lar fluid transport across large, discrete microvascular networks [40]. Our model simulates
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Poiseuille flow through the vasculature using the optimisation scheme of Fry et al. [41], para-

metrised and validated against in vivo ASL-MRI data [40]. Following a similar Green’s func-

tion method for oxygen transport [42], the vascular component is coupled, via a discrete set

of point sources of flux, to a Darcy model which simulates the effective fluid transport in the

porous interstitium. A linear system is formed whereby only the source strengths need to be

resolved, making it more computationally efficient compared to finite difference or element

methods which require a spatial, numerically-discretised mesh [42].

In this study, we detail the generalised model which allows for spatially heterogeneous

hydraulic conductances and conductivities. A comprehensive description is provided of its

application to whole tumour vascular networks. We then apply our model to an orthotopic

murine glioma (GL261) and a human colorectal carcinoma xenograft (LS147T) and reproduce

physiological conditions observed in literature. We perform sensitivity analysis to the model

parameters associated with transvascular fluid delivery, such as vascular hydraulic conduc-

tance and interstitial hydraulic conductivity, to explore the impact on the tumour IFP and

interstitial fluid velocity (IFV) profiles.

Finally, we use our computational framework to explore the biomechanics underpinning

vascular normalization. Vascular normalization is a method that applies anti-angiogenic ther-

apy to restore tumour vascular structure and function to physiological levels [9, 43–45]. By

modifying vascular architecture, therapy aims to normalize tumour perfusion and oxygen-

ation, thereby increasing the efficacy of chemo, radio and immunotherapy [44, 46–48].

Preclinical and clinical evidence indicates that anti-VEGF (vascular endothelial growth fac-

tor) therapy creates a transient window of vessel normalization which improves tumour oxy-

genation and the delivery of therapeutic agents [15, 49]. However, the extent and window of

normalization, and the duration and dosage of an anti-cancer drug varies with tumour type

[18]. Further, the gold standard for detecting normalization of tumour blood vessels (such as

perfusion, microvessel density, morphology and permeability) in the clinic is via histological

staining [50].

Here, we recruit our in silico model in combination with realistic, static vasculatures to rep-

licate fluid dynamics changes observed experimentally during vascular normalization [51–53]

by modifying parameters such as blood vessel diameters, and vascular and interstitial perme-

abilities. In doing so we hypothesise which of these biomechanics are responsible for experi-

mental observations following therapy, in addition to how tumour type, and the inherent

differences in vascular networks structures, affects tumour IFP and perfusion following nor-

malization therapy.

Materials and methods

Acquisition and processing of real-world tumour datasets

Orthotopic murine gliomas and human colorectal carcinoma xenograft from the GL261 and

LS147T cell-lines (n = 6 for each), respectively, were grown subcutaneously in 8–10 week old,

female mice. Following 10 to 14 days of growth, in vivo arterial spin-labelling MRI (ASL-MRI)

was performed on a subset of GL261 and LS147T tumours, from which a mean tumour perfu-

sion of 130 ± 50 and 19 ± 8 ml/min/100g was measured [40], respectively. Following perfuse-

fixation, tumours were harvested, optically cleared and imaged using optical projection tomog-

raphy (OPT, Bioptonics, MRC Technologies, Edinburgh). All experiments were performed

in accordance with the UK Home Office Animals Scientific Procedures Act 1986 and UK

National Cancer Research Institute (NCRI) guidelines [54]. Full details of the experimental

protocol is provided in d’Esposito et al. [40].
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Whole-tumour blood vessel networks were segmented from the OPT data for both tumour

types. A combination of three-dimensional Gaussian and Frangi filters were applied to the

data to enhance vessel-like structures allowing for the segmentation of the blood vessels from

the background (see Fig 1a). Skeletonisation of these thresholded data was performed in

Fig 1. (a) An example of an SW1222 tumour vascular network enhanced using Frangi filters and extracted from the tumour image stack generated

by OPT. (b) The skeletonised vasculature is then segmented into a series of interconnected nodes and vessel segments with known diameters, di and

lengths, li, for i = 1, 2, 3 shown here. (c) A schematic of sensitivity analysis performed on the source parameters: 1) updating intravascular pressure

pi,b for k iterations where p0,b is the initial network pressure distribution approximated by the flow estimation algorithm; 2) the spacing δ between

sources distribution across a branching vessel; and 3) the size of the source radius, r0. (d) A flow diagram of the computational framework. In vivo
imaging is performed on vascularised tissue to obtain perfusion data (and literature values of vascular pressures when available) which are used to

parameterise and validate the framework. Ex vivo imaging is performed on equivalent tissue samples to obtain data on the vascular architecture,

including coordinates, vessel diameters and lengths, which are then used to parameterise the vascular flow model. Boundary conditions are assigned

(see Fig 2a and 2b) and network intravascular blood pressure is solved. Sources of fluid flux are distributed across the vasculature and assigned a

radius equal to their corresponding vessel radius. Interstitial flow parameters are assigned and the model is coupled to the vascular flow

compartment via Starling’s Law. Solved source strengths are used to update Starling’s law (i 2 Ns). This iterative scheme is terminated once

predefined tolerances are reached.

https://doi.org/10.1371/journal.pcbi.1006751.g001
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Amira (Thermo Fisher Scientific, Hillsboro, OR), which also converted the data into graph

format (interconnected network of nodes and segments with associated radii, see Fig 1b). To

ensure that vessel structures were accurately represented, three-dimensional networks were

visually inspected against two-dimensional imaging slices for an accurate representation of

vessel location and thickness. Full details of the validation can be found in the Supplementary

Material of d’Esposito et al. [40].

In this study a GL261 and a LS147T tumour network were chosen from the d’Esposito et al.

[40] datasets for in silico development and testing. Vessel diameters ranged from 17.9 ± 9.3

and 8.9 ± 2.8 μm, with branching lengths of 68.7 ± 48.3 and 88.8 ± 49.4 μm, respectively (see

Table 1). Vessel branching angles, inter-vessel distance, radii and tortuosity measures were

consistent with data from previous studies that extracted vascular architectures using different

methods [20, 40].

Computational model

Our computational framework is compartmentalised into two models. The first predicts blood

flow through the tumour vasculature and the second predicts interstitial fluid flow throughout

the cancerous tissue through use of non-singular Green’s functions. Our method enables

application to whole, large vascular networks (> 2 cm3 with> 105 blood vessels), thereby per-

mitting predictions of whole tumour fluid dynamics which incorporate the inherent architec-

tural heterogeneities occurring at the micron-scale.

The intravascular component incorporates the model of Pries et al. [55] to simulate vascular

blood flow, where the structural properties of the segmented tumour networks and haemody-

namic parameters are used as inputs. Flow or pressure boundary conditions at all terminal

nodes in the vascular network are required to predict blood flow throughout the network.

These boundary data are very challenging to measure in vivo, so we deploy the flow estimation

algorithm of Fry et al. [41] to estimate boundary data based on the assumption that the micro-

circulation is regulated in response to haemodynamics stimuli relating to flow and shear

stresses [56]. The scheme estimates unknown boundary conditions by minimising the squared

deviation from specified target network wall shear stresses and pressures derived from inde-

pendent information about typical network haemodynamic properties. In essence, the algo-

rithm removes the need to define conditions at all boundary nodes, to one where simulation

sensitivity is weighted towards the definition of these two target parameters. This enables

physiologically realistic blood pressure and flow distributions to be estimated across an entire

vascular network and has been applied to breast tumour [37], colorectal tumours [40], cortex

[57], glioma [40] and skeletal muscle [58].

Table 1. Tumour vascular network statistics.

GL261 LS147T Units

No. of Segments 121,212 76,378 -

No. of Nodes 110,062 60,177 -

No. of Boundary Nodes 8,660 15,783 -

Mean Vessel Diameter 17.9 ± 9.3 8.9 ± 2.8 μm

Mean Branching Vessel Length 68.7 ± 48.3 88.8 ± 49.4 μm

Tissue Dimensions 4.3 × 4.1 × 4.6 6.9 × 5.2 × 8.2 mm3

Vascular Density 5.07 0.37 %

Segmented network data on the segmented murine orthotopic glioma, GL261, and the human colorectal xenograft, LS147T, vasculature. See Fig 3 for visualisations of

both networks.

https://doi.org/10.1371/journal.pcbi.1006751.t001
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The second component to our computational model describes fluid transport through the

porous interstitium using a Darcy model. Here, the vascular flow solution is coupled to Darcy

flow via Starling’s law which describes fluid transport across the endothelium. The vasculature

is represented by a discrete set of points sources of flux where the source strengths are defined

by the vascular blood flow solution. A similar approach has been applied to simulate O2 trans-

port across various tissues [42, 57, 59] and to predict capillary flow in the absence of these

network structures [60]. Our generalised approach enables us to explore the affect of vascular

architecture heterogeneity on fluid transport within the interstitium for large-scale vascular

networks with spatially heterogeneous tissue and vessel wall permeabilities.

The following sections present the mathematics behind our model, followed by a descrip-

tion detailing its application to large tumour networks.

Vascular blood flow. The segmented tumour networks consist of a series of vessel seg-

ments connected by nodal junctions or, in the case of boundary nodes, one-segment nodes

which form a boundary to the microvascular network (see Fig 1b). We define a positive flow

direction from the start node to end node of each vessel segment. Under the assumption of

Poiseuille flow and conserving flow at blood vessel junctions, the relationship between nodal

pressures, pk and the boundary boundary fluxes Q0i is given by

X

k2N

Kikpk ¼ � Q0i for i 2 I [ B; ð1Þ

where N is the set of all nodes, I is the set of all interior nodes and B is the set of all boundary

nodes with known boundary conditions. For all interior nodes, conservation of flux at vessel

junctions dictates that Q0i = 0, however, if i is a known boundary node, Q0i is the inflow (or

outflow if negative).

Following the notation of Fry et al. [41], the matrix Kik represents network conductance

Kik ¼
X

j2S

LijMjk; ð2Þ

where S is the set of all segments,

Lij ¼

� 1; if i is the start node of segment j;

þ1; if i is the end node of segment j;

0; otherwise;

8
>>><

>>>:

ð3Þ

and

Mjk ¼

þpd4
j =ð128mjljÞ; if k is the start node of segment j;

� pd4
j =ð128mjljÞ; if k is the end node of segment j;

0; otherwise;

8
>>><

>>>:

ð4Þ

is the matrix of vessel conductances where lj, dj and μj denote the length, diameter and effective

blood viscosity of segment j, respectively.

We apply empirical in vivo blood viscosity laws, which prescribe the effective blood viscos-

ity as a function of vessel diameter and haematocrit, to compute μj and consequently incorpo-

rate non-Newtonian effects in each individual microvessel [61]. Network haematocrit

heterogeneity plays an important part in network flow resistance. However, in this study, we

set network haematocrit to 0.45 as we do not have sufficient data to parameterise a haematocrit

Modelling transport in heterogeneous tumours
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model at this scale. With future availability of appropriate data, the model has the flexibility to

incorporate haematocrit heterogeneity [62].

In the absence of measured flow and pressure data at network boundaries, further assump-

tions are required to obtain a unique solution. The method proposed by Fry et al. [41] sought

to solve a constrained optimisation problem, formulated in terms of a Lagrangian objective

function, defined by

L ¼
1

2
kp
X

k2N

wkðpk � p0kÞ
2
þ

1

2
kt
X

j2S

‘jðtj � t0jÞ
2

þ
X

i2I[B

li

X

k2N

Kikpk þ Q0i

 !

:

ð5Þ

Here, p0k is the target pressure at node k, τj is the wall shear stress in segment j, τ0j is the corre-

sponding target shear stress, kp and kτ are weighting factors associated with the pressure and

shear deviations from the target values, λi is the Lagrange multiplier associated with node i and

wk is the vessel length associated with node k. Setting dL/dpi = 0 and combing with (1) yields a

sparse linear system with unknowns pk and λi. Assigning a pressure drop to a proportion of

boundary nodes forms a well-posed system which can be solved using standard methods [41].

The blood flow estimation model by Fry et al. [41] has been thoroughly tested using mesen-

teric networks [63] in which blood flow measurements were taken in individual vessels and

used to inform parameter estimation [41, 55, 61, 64].

Interstitial fluid transport. Darcy’s law has been effectively used to describe the passage

of fluids [3, 14, 30–33, 65] or solutes [42, 57] through tissues. In this study, we use Darcy’s law

to describe the relationship between the IFP, p, and volume-averaged interstitial fluid velocity

(IFV), u, within the porous interstitial domain:

u ¼ � krp; ð6Þ

where κ is the hydraulic conductivity of the interstitial tissue. Here we assume that interstitial

pressure tends towards a constant value, p1, in the far-field region,

p! p1 as jxj ! 1: ð7Þ

Tumours are leaky due to large pores along a vessel’s lumen, and so the vasculature exhibits

a strong fluid and oncotic interaction. Following the approach of Baxter and Jain [3] and sub-

sequent studies [43, 66], we used Starling’s law to describe fluid transport across the endothe-

lium:

Jv ¼ LpSðDp � sDPÞ; ð8Þ

where Jv and Lp are the fluid flux across and the hydraulic conductance of the vessel wall,

respectively, S is the surface area of the vasculature, σ is the oncotic reflection coefficient and,

Δp and ΔP are the fluid and oncotic pressure gradients between the vasculature and surround-

ing tissue.

The tumour vascular architecture is used to spatially parameterise the locations of a discrete

set of sources of flux into the interstitial domain. Assuming these sources both supply or drain

the interstitium, conservation of mass yields

r � u ¼ � kr2p ¼
X

j

�jðxÞdðx � xjÞ; ð9Þ

where xj and ϕj are the spatial coordinates and strength, respectively, of point source j, and
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δ(x − xj) is the delta function. The term ϕj(x)δ(x − xj) represents a point source of fluid flux

from the vasculature to the surrounding interstitial domain.

Applying the substitution �p ¼ p � p1, the Green’s function, G(x, x�), for the adjoint prob-

lem for �p is given by

� kr2G ¼ dðx � x�Þ; ð10aÞ

G! 0 as jxj ! 1: ð10bÞ

For a given source, we distribute the delta function over a sphere of finite radius, r0. We

assume continuity of G andrG at the interface r = r0, which enables the following radially

symmetric Green’s function to be derived:

GðrÞ ¼

1

8pkr0

3 �
r
r0

� �2
" #

; if r � r0;

1

4pkr
; if r > r0:

8
>>><

>>>:

ð11Þ

We distribute a total of Ns sources across the vasculature with a maximum spacing of δ,

and assign a source radii, r0i, equal to the corresponding blood vessel radius (see Fig 1c). Using

Green’s superposition principle for linear operators, the convolution of G provides the corre-

sponding pressure solution for source i 2 Ns and so

pi ¼ p1 þ
XNS

j¼1

Gijq
s
j for i 2 Ns; ð12Þ

where qs
j is the vector of source strengths. Here, Gij is the Green’s function associated with (10)

and defined by

Gij ¼

1

8pkir0i
3 �

rij
r0i

� �2
" #

; if rij � r0i;

1

4pkirij
; if rij > r0i;

8
>>>><

>>>>:

ð13Þ

where rij is the distance between sources, defined as rij = |xi − xj|, and κi is the interstitial

hydraulic conductivity at the location of source i.
From (6), the Green’s function, Gij, can be used to calculate the volume-averaged IFV,

given by

ui ¼ � ki

X

j

rGijq
s
j for i 2 Ns ð14Þ

where

rGij ¼
dGij

dr
¼

�
r

4pkir3
0i
; if r � r0i;

�
1

4pkir2
ij

; if r > r0i:

8
>><

>>:

ð15Þ

Starling’s law, (8), can be rearranged into the form

pv;i ¼ pb;i � KiJv;i � siðPb;i � Pv;iÞ for i 2 Ns; ð16Þ
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where pv,i (calculated by (12)) and Pv,i are the blood and oncotic plasma pressure at the vessel

wall, pb,i (calculated by (5)) and Pb,i are the vascular blood pressure at source i, in the absence

of diffusive interstitial fluid transfer, and oncotic fluid pressure, Jv,i is the rate of fluid flow per

unit volume from blood vessel i to the interstitium σi is the oncotic reflection coefficient for

vessel i. The intravascular resistance to fluid transport across blood vessel i, is defined by

Ki ¼
1

Lp;iSi
; ð17Þ

where Si and Lp,i is the surface area and vascular conductance of vessel i, respectively.

Integrating over the volume of vessel i and assuming flux at the interface is continuous, we

define

Jv;i ¼ � 2pkirv;ili
XNs

j¼1

rGijq
s
j ; ð18Þ

where rv,i is the vessel radius and li is the length of vessel i.
Eqs (12), (16) and (18) are then combined to give a set of Ns equations to be solved for the

source fluxes qs
j ,

XNs

j¼1

Gij �
ki

Lp;i
rGij

 !

qs
j ¼ pb;i � p1 � siðPb;i � Pv;iÞ: ð19Þ

Prescribing parameter values (see Table 2), the resulting solutions for qs
j can be solved and

used to update vascular pressures, pi,b, using Starling’s law, (8), in the absence of an oncotic

pressure gradient (i.e. ΔP = 0), and (18). Here, for iteration k + 1, pi,b is set equal to the IFP at

wall of blood vessel i, pi,v, calculated on iteration k. This iterative system is repeated by updat-

ing qsj values until tolerances are reached (Oð10� 6Þ μl/min), subsequently, tissue IFP and IFV

fields can be computed using (12) and (14), respectively.

In effect, our computational framework enables a detailed, quantitative assessment of blood

and interstitial flow for tissues, both healthy and pathological, where their entire vascular net-

works are characterised, by encapsulating the flow of fluid between the vascular and interstitial

domains. Similar to a Green’s function model for O2 transport [42], our model does not

require the imposition of explicit boundary conditions on the outer surface of the tissue

Table 2. Fluid transport parameters.

Parameter Description Value Units Reference

p1 Far-field interstitial fluid pressure 0 mmHg -

κ Interstitial hydraulic conductivity 1.7 � 10−7 cm2 mmHg−1 s−1 [17]

Lp Vascular hydraulic conductance 2.8 � 10−7 cm mmHg−1 s−1 [11]

σ Oncotic reflection coefficient 0.82 - [72]

Pb Oncotic pressure of blood 20 mmHg [72]

Pv Oncotic pressure at the vessel wall 15 mmHg [11, 74]

S/V Ratio of vascular surface area to tumour volume

GL261 17.3 cm−1 Calculated.

LS147T 15.3 cm−1 Calculated.

Assigned baseline parameters for the interstitial component of the fluid transport model. Note, S was calculated using the architectural data of the vasculature and V
based on computing the convex hull of the tumour.

https://doi.org/10.1371/journal.pcbi.1006751.t002
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domain, with the only unknowns to the system being the strength of the set of fluid sources

and sinks. As such, when compared to finite difference or element methods, our approach

minimises boundary condition artefacts and saves on computational expense as the solutions

to the entire mesh are not required. An outline of the interaction between the biomedical

imaging, and vascular and interstitial flow compartments is given in Fig 1d.

The computational framework was coded using C++ [67] and run on a Apple Mac Pro,

with 2 × 3.06 GHz 6-Core Intel Xeon processor and 64 GB of RAM. The system (19) was used

solved using a biconjugate gradient method [68] and implemented using the Armadillo sparse

linear algebra library [69].

Implementation of computational model on whole tumour microvascular

networks

It remains practically infeasible to measure vascular flows and pressures in individual micro-

vessels in vivo, which necessitates a pragmatic approach to boundary condition assignment.

Under the assumption that vessels along the tumour surface are connected to peritumoural

vessels [37, 70], we developed an optimisation procedure which assigns vascular pressures to

tumour surface vessels, based on a target pressure drop, with iterative adjustments to match in
vivo measurements of mean perfusion from ASL-MRI (see Fig 2a and 2b). These in vivo data

are acquired for the same tumours that were subsequently subjected to OPT analysis. Using

this approach, we are able to ensure good agreement between in silico predictions and mea-

sured perfusion data [40].

Fig 2. (a, b) The optimisation scheme used to assign boundary conditions to the tumour networks. (a) The process to simulate physiological tissue

perfusion. (b) The flowchart for the subroutine “Assign Pressure Conditions” given in (a). (c) Perfusion through a tumour is calculated by generating a

convex hull across the surface of the tumour to accurately extract tumour volume. (d) Discretising the hull into a finer mesh and calculating IFP at

coupled points across, and normal, to the tumour hull. (e) A sphere packing algorithm is then applied to the points on the tumour surface with inflow

averaged across the great circles of each sphere, enabling an approximation of perfusion.

https://doi.org/10.1371/journal.pcbi.1006751.g002
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In this study a vascular pressure of 30 or 20 mmHg for the GL261 and 45 or 15 mmHg for

the LS147T tumour was randomly assigned to 5% of surface boundary nodes, in order to meet

the required tissue perfusion. To ensure randomness, the peritumoural nodes were repre-

sented by a list. The elements in the list were rearranged randomly using a uniform random

number generator where the system clock was used to seed the random number engine. The

nodes located in the top 5% of the list were then randomly assigned a low or high pressure

using an equivalent randomised approach.

During preliminary simulations it was found that if high/low pressures were prescribed in

close local proximity to each other, unphysiological flows were predicted due to the steep local

vascular pressure gradient. In order to prevent this, a subroutine was designed so that values at

opposing ends of the pressure spectrum could not be located within a defined vicinity of each

other. This “exclusion region”, centred on a given boundary node, was defined as an ellipsoid

volume with diameters, along its three principal axes, equal to 5% of the tissue dimensions.

A proportion of boundary nodes are contained within the tumour volume as a consequence

of either angiogenesis which form blind-end vessels, or artefacts of OPT. Previous studies

approximated the fraction of blind-end vessels in sample MCa-IV carcinomas to be 33% [71].

However, blind-end information is not available for either GL261 or LS147T tumours. There-

fore, consistent with previous computational studies [37], blind-ends were randomly applied

to 33% of remaining boundary nodes (using the previous randomised approach), with the

remaining 62% of boundary nodes left as unknown in the flow optimisation scheme of Fry

et al. [41].

Application of our boundary assignment method requires us to accurately compute mean

perfusion across the tumours for a comparison against equivalent experimental data gathered

in vivo using ASL-MRI. This requires an accurate definition of the tumour surface and volume

to give an accurate approximation of a tumour’s mass and fluid flow into the tumour volume.

For example, an overestimation of the tumour mass, assuming a cuboid tissue volume sur-

rounding the tumour, can drastically underestimate tumour perfusion since, in this case, the

tumour shapes are approximately ellipsoidal and perfusion is inversely proportional to the

tumour mass. Similarly, an overestimation of flow into the tissue would overestimate tissue

perfusion. Next we describe: 1) defining the surface of the tumour; 2) computing the IFV vec-

tors across the tumour surface; and 3) approximating the total tissue perfusion.

1) The hull of a tumour is calculated using the Matlab (MathWorks Inc., Natick, MA)

‘boundary’ function applied to all nodes defined during vascular segmentation (see Fig 2c).

The Matlab ‘fast loop mesh subdivision’ triangulation algorithm is then applied to further dis-

cretise the define tumour surface. 2) To approximate tumour perfusion requires us to define a

set of normal vectors to the tumour surface to compute pressure gradients. We identify the

centre of the tumour and duplicate the hull, which is then expanded to form a 10 μm gap

between the two surfaces (see Fig 2d). IFP is then calculated across all nodal points on each

surface, each paired by a vector normal to the opposing surface. A pressure gradient is then

computed along each normal vector and the corresponding velocities are calculated. 3) A

sphere packing algorithm is applied to the nodes on the original tumour hull, whereby no

sphere overlaps neighbouring spheres (see Fig 2e). Any inflowing node (defined by the corre-

sponding pressure gradient) is averaged across the great circle of its corresponding sphere and

its contribution is summed together to calculate the interstitial component of tissue perfusion.

Total tissue perfusion is calculated by summing over the peritumoural vascular inlets and

interstitial perfusion values.

Finally, we prescribe baseline parameter values (see Table 2). We assume that the tumours

were isolated in subcutaneous tissue in the absence of lymphatics, therefore the far-field pres-

sure, p1, was set to 0 mmHg. Due to a lack of experimental data, the vascular conductance
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and interstitial conductivity, Lp and κ, respectively, were given uniform values based on litera-

ture (2.8 × 10−7 cm mmHg−1 s−1 and 1.7 × 10−7 cm2 mmHg−1s−1, respectively [31, 75]). As the

transport of blood plasma proteins is not modelled explicitly in our model, we assume a con-

stant oncotic pressure gradient of 5 mmHg between the vasculature and interstitium, and set

the oncotic reflection coefficient to a uniform value of 0.82 [72].

Results

In the following section we apply our computational framework to a GL261 orthotopic murine

glioma and a LS147T human colorectal carcinoma xenograft to form baseline flow solutions

(see Figs 3 and 4). Next, we explore sensitivity to source parameters, which include source dis-

tribution, source radii and bilateral communication between the vascular and interstitial com-

partments. We then perform sensitivity analysis to the interstitial parameters (for example,

vascular hydraulic conductance and interstitial hydraulic conductivity) on IFP and IFV pro-

files in the LS147T tumour. This is followed by in silico experiments to establish the tumour

parameters, such as vascular and interstitial permeability, which change tumour IFP and per-

fusion following vascular normalization therapy, and show how vascular architectural hetero-

geneities affect treatment response.

Simulating interstitial fluid pressure in real-world cancerous tissue

Our vascular flow simulations are in good agreement with those in computational [37, 76] and

experimental literature (see Table 3 and Fig 3). To test the variability induced by our stochastic

boundary condition implementation, the optimisation procedure (detailed in Fig 2a and 2b)

was repeated for a total of n = 12 for each tumour. Interstitial fluid flow was then simulated for

each separate vascular flow solution, providing us with a baseline set of interstitial flow solu-

tions. Blood flow across all simulations exhibited similar spatial distributions, with perfused

Fig 3. Simulated vascular blood flow in (a) GL261 and (b) LS147T tumours. Distributions are shown for vessel radii, blood pressure, flow and vessel

wall shear stress, respectively.

https://doi.org/10.1371/journal.pcbi.1006751.g003
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vessels mainly restricted to the outer rim of the tumours [77]. The mean standard deviation of

vascular blood pressures across all simulations was low with values of 0.82 and 1.53 mmHg

(with maxima of 4.78 and 13.2 mmHg) for GL261 and LS147T, respectively (see Fig 5a and

5e). The elevated standard deviations in vascular pressure were located at the periphery of the

tumours, which is to be expected as the high and low vascular pressures were stochastically

assigned here. Furthermore, our mean blood velocity and vessel wall shear stresses agree with

Fig 4. Simulated fluid transport through the interstitium in GL261 and LS147T tumours. (a, b) (Left) Predicted interstitial fluid pressure (IFP) fields

for {X,Y}-planes through the tumours, emulating the traditionally high pressure in the tumour core but with predicted spatial heterogeneities. (Middle)

Simulated interstitial perfusion maps discretised into� 140 μm2 pixels. Results replicate the traditionally elevated perfusion existing at the periphery of

the tumours. (Right) Interstitial fluid velocity (IFV, overlaid onto greyscale image of interstitial perfusion) predictions depicting spatial interstitial flow

heterogeneities across the entire tumours. Note, perfusion and interstitial fluid velocity maps are shown for the central slice in the interstitial fluid

pressure graphics. (c, d) Fitted curves with error bars indicating standard deviation for (left) IFP and (right) IFV in (c) GL261 and (d) LS147T, plotted

against normalised radius, corresponding to the simulations shown in (a, b).

https://doi.org/10.1371/journal.pcbi.1006751.g004
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similar numerical modelling of vascular blood flow in the MDA-MB-231 breast cancer cell

line [37].

Tissue perfusion (calculated as 83.7 ± 22.3 and 5.4 ± 0.3 ml/min/100g for the GL261 and

LS147T tumours, respectively) was further validated by in vivo ASL-MRI measurements of

110 ± 70 and 19 ± 8 ml/min/100g for GL261 and LS147T, respectively. This implies that

imposing physiologically realistic pressure boundary conditions generates physiologically real-

istic perfusion, and consequently accurate drug delivery solutions [40].

No literature IFP values were available for GL261 cell lines, however, our IFP was slightly

elevated compared to that previously measured in LS147T in vivo (13.5 ± 11.3 mmHg [74]).

Considering the range of IFP both here and in vivo [74] and the good accordance with in vivo
perfusion, our results provided us with the confidence that our simulations can produce physi-

ological IFP predictions (see Fig 4).

Table 3. Simulated fluid transport statistics.

Parameter GL261 LS147T Literature Units

Blood Pressure 25.0 ± 0.9 30.6 ± 2.0 10 − 80 [76] mmHg

Blood Flow 5.1 ± 43.4 1.1 ± 4.7 0 − 180 [76] nl min−1

Blood Velocity 0.2 ± 1.0 0.2 ± 0.6 1.62 ± 0.14 [37] mm s−1

Vessel Wall Shear Stress 5.7 ± 23.2 11.8 ± 32.6 23.9 ± 0.7 [37] dyn cm−1

Tissue Perfusion 83.7 ± 22.3 5.4 ± 0.3 110 ± 70†, 19 ± 8‡ [40] ml min−1 100 g−1

Interstitial Fluid Pressure (IFP) 20.4 ± 2.1 25.3 ± 1.6 13.5 ± 11.3 [74]‡ mmHg

Interstitial Fluid Velocity (IFV) 4.8 ± 0.5 0.19 ± 0.09 2.3 [25], 0 − 200‡ [26] μm s−1

Intra- and extravascular baseline fluid transport statistics for the GL261 and LS147T tumours (mean ± standard deviation) across all simulations and compared against

literature values.
†: Data gathered from GL261 tumours.
‡: Data gathered from LS147T tumours.

https://doi.org/10.1371/journal.pcbi.1006751.t003

Fig 5. Sensitivity of the computational framework. (a, e) Cross-sectional slice from the core of the (top) GL261 and (bottom) LS147T tumours,

showing standard deviation of intravascular pressures (mmHg) across all 12 simulations. (b, f) the mean segment pressure error between consecutive

iterations for the (top) GL261 (top) and (bottom) LS147T networks. (c, g) IFP distribution from the centre of the tumour to its periphery for a

maximum spacing of (blue) 10 and 25 μm and (orange) 50 and 100 μm for GL261 and LS147T, respectively. (d, h) IFP distributions for the source radii

set to the minimum vessel radius multiplied by a factor of (blue) 10−1, (red) 100 and (yellow) 101. Note, error bars correspond to standard deviation.

https://doi.org/10.1371/journal.pcbi.1006751.g005
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Examining the tumour radial IFP profiles, the LS147T network exhibited similar configura-

tions as observed both experimentally in LS147T [17], in other cell lines [3, 24, 25], and in

computational studies [31, 32, 36, 75], with elevated IFP at the tumour core (see Fig 4b and

4d). In addition, the LS147T network displayed a typical IFV profile radially, with an

increasing IFV range towards the tumour surface due to the steeper pressure gradients at the

periphery of the tumour. This indicated that bulk fluid filtration occurs at the high flowing vas-

culature located at the tumour extremity in this network (ρ = 0.41, p< 0.001, where ρ and p
are the Pearson’s correlation coefficient and its corresponding p–value between tumour radius

and vascular flow, respectively).

In comparison, the GL261 network also exhibited a traditional, yet steeper, IFP profile with

a wider variance throughout the tumour (see Fig 4c). The IFV profile exhibited a typical profile

increasing from the centre of the tumour to the periphery. However, its IFV peak was reached

at� 80% of the tumour radius, with a substantial decline in the latter 20% (see Fig 4c).

High IFP has been associated with low vascular density in A-07-GFP tumours [78]. Simi-

larly here, we observed that GL261 and LS147T have distinct differences in their vascular

architecture (see Fig 3 and Table 1) and that, in the case of LS147T, low variability in vascular

density was associated with higher IFP (ρ = −0.584, p< 0.001—including in silico predictions

from [40]). This may indicate that the inherent vascular architectural heterogeneity across

tumour cell lines [20] directly impacts the IFP and IFV distributions, creating an unorthodox

interstitial flow profile.

Sensitivity of tumour interstitial fluid transport to model parameters

Here, we perform sensitivity analysis to understand the impact of parameter variance on pre-

dictions of tumour fluid dynamics. In doing so, not only do we understand the sensitivity to

the model, but gain insight into the biological mechanisms at play.

For convenience we have split these parameters into two groups. The first we define as

source parameters, which include the vascular blood pressure, pb,i and the source radius, r0,i for

segment i, and the maximal spacing between each source along a given vessel, δ (see Fig 1c).

The second group we call the interstitial parameters, which describe the biomechanical mecha-

nisms which affect tissue transport. These include the oncotic reflection coefficient, σ, the

hydraulic conductance of a vessel wall, Lp, the interstitial hydraulic conductivity, κ and the far-

field IFP, p1. In the following, if sensitivity analysis to an interstitial parameter was not being

performed, it was set to the corresponding value in Table 2.

Source parameters. Blood pressure distributions across a vascular network depend not

only on the vascular pressure at the network boundaries and network geometry, but also trans-

vascular fluid transport from the tumour vasculature and into the surrounding interstitium,

and vice versa. To incorporate flow communication between these two domains, we couple

the vascular and interstitial models using an iterative scheme in which vascular blood pressure

distributions, pb,i for i 2 Ns, were updated on each iteration by incorporating the loss of fluid

within a vessel due to fluid flux across the vessel wall into the interstitium (see Fig 1d). We

found that due to the small volume of fluid leaving the vessels (relative to the volume of fluid

flowing through the vessels), vascular pressures did not vary significantly between iterations

(see Fig 5b and 5f). In the case of the GL261 network, the algorithm had converged after two

iterations (see Fig 5b). In comparison, the LS147T network had not converged after six itera-

tions but the mean nodal pressure error was Oð10� 8ÞmmHg (see Fig 5f). This may indicate

that a tumours inherent vascular heterogeneity and corresponding interstitial parameters alter

the scale of these flow errors.
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Next we varied the maximum distance, Δmax, between sources distributed along the vascu-

lature. Values of 10 and 25 μm, and 50 and 100 μm were chosen for the GL261 and LS147T

networks, respectively, due to differences in mean branching vessel lengths observed in each

tumour (see Table 1). The GL261 network exhibited minimal sensitivity in IFP between the

two maximal source lengths (see Fig 5c). Comparatively, the LS147T experienced greater vari-

ability (of less than 1 mmHg) in mean IFP, between the two values of Δ, at the core and periph-

ery of the tumour (see Fig 5g). We hypothesise that sensitivity to Δ is related to the vascular

density of each tumour type. The GL261 network is an order of magnitude greater in vascular

density compared to the LS147T tumour (see Table 1). An elevated vascular density results in

an increased density of fluid sources, and so any reduction in sources may have a minimal

effect to IFP due to flow being maintained by local neighbouring sources.

We finally sought to understand how the source radii, r0,i for i 2 Ns, affect flow in the inter-

stitial domain. We initially set the source radii to a constant value equal to the minimum vessel

radius in a given tumour network. Three cases were then explored where r0,i was multiplied

by a factor of 10−1, 100 or 101. Our results show that decreasing the value of the source radii

decreases mean IFP, with greater sensitivity exhibited again by the LS147T network (see Fig 5d

and 5h), again indicating that vascular architectural heterogeneities can illicit different

responses in IFP between tumours. This indicates that greater care is needed compared to the

assignment of other source parameters, to ensure the physiological accuracy of the results.

Here, we set the value of r0,i equal to the radius of its corresponding vessel in order to provide

a heterogeneous distribution of radii in which vessels with a larger radius are able to influence

the IFP to a greater capacity than compared to relatively smaller vessels.

Interstitial parameters. Sensitivity to the interstitial parameters p1, σ, Lp, and κ were

explored using the LS147T network. This network was chosen due to the scale of simulations

to be performed and due to the greater sensitivity exhibited by modifying the source parame-

ters. First of all, we investigated the deviation in the far-field interstitial pressure, p1. Ideally,

the far-field pressure is set to the mean IFP of the adjoining healthy tissue, however these data

are frequently unavailable. We varied the far-field IFP from 3 to 18 mmHg in increments of 3

mmHg. Alteration of p1 did not significantly modify tumour IFP, with the majority of varia-

tion occurring at the periphery of the tumour (see Fig 6a). As a consequence, mean IFV across

the tumour decreased with increasing p1 (see Fig 6e).

Next we investigated the oncotic reflection coefficient, σ. Physiologically, the coefficient σ
varies between 0 and 1, indicating the likelihood that a molecule approaching a pore in the ves-

sel lumen will be reflected back and thereby retained in the vascular compartment. As such, we

ranged σ uniformly from 0 to 1 with increments of 0.25. Modification of σ resulted in a net-

work-wide shift in tumour IFP magnitude, thereby preserving the IFP gradient (see Fig 6b).

This is an intuitive result since we held the oncotic pressure gradient constant across the entire

vasculature, therefore any increase in σ resulted in systematic reduction in both IFP and IFV

(see Fig 6b and 6f).

Vascular hydraulic conductance, Lp, defines the leakiness of the lumen to the transport of

blood plasma. Our sensitivity analysis varied Lp uniformly across the tumour, from 1.33 × 10−8

to 3.41 × 10−6 cm/mmHg s, encompassing values provided in literature for normal and tumour

tissue [11]. Similarly to σ, a reduction in Lp resulted in decreasing IFP across the tumour but

with contrasting regional gradients (see Fig 6c). Our analysis showed that with decreasing Lp,
IFP tended towards the assigned far-field pressure due to decreasing fluid filtration from the

vasculature, and so in its limit, the IFP would uniformly be equal to p1. This is due to decreas-

ing fluid filtration, indicating that the model produces a physiologically viable response. In

comparison, a reduction in Lp induced minimal changes to IFV in the core of the tumour but

resulted in decreases towards the periphery (see Fig 6g).
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Interstitial hydraulic conductivity, κ, encapsulates the structure of the ECM, such as stiff-

ness and density, and determines the permeability of the interstitium to fluid transport. Here,

we ranged κ from 1.33 × 10−11 to 1.04 × 10−6 cm2/mmHg s uniformly through the tumour.

In this case, we established that sensitivity to this parameter are non-trivial to elucidate. An

inflexion point was observed for values 1.67 × 10−9� κ� 8.33 × 10−9 cm2 / mmHg s in which

the spatial IFP distribution switched from one configuration to another (see Fig 6d). For κ�
1.67 × 10−9 cm2 / mmHg s, IFP predictions displayed near identical configurations (mean IFP

of 25.8 ± 2.4 mmHg for all four cases) in which IFP displayed an increased gradient compared

to greater values of κ along with decreasing IFV (see Fig 6h). In comparison, κ� 8.33 × 10−9

cm2 / mmHg s displayed similar IFP profiles with mean IFP decreasing with increasing κ
(26.2 ± 1.5 to 22.5 ± 1.6 mmHg).

In the next section we apply our computational model to predict changes in tumour fluid

dynamics following vascular normalization therapy.

Normalizing blood vessel lumen minimally reduces IFP

Vascular normalization is a therapeutic strategy used to restore tumour vasculature to a struc-

tural and functional state exhibited by healthy blood vessels [13, 15, 18, 49, 51, 79]. The impact

of vascular normalization agents include a reduction in microvessel diameter, pruning of

immature vessels, increased vascular maturity and pericyte coverage, and reduced vessel tortu-

osity [7, 51, 80]. As a result, normalization has been shown experimentally to lower tumour IFP

[51, 52], enhance tumour vascular perfusion [52, 53] and improve drug delivery [48, 49, 81,

82]. However, the mechanistic links are missing which necessitates use of in silico modelling.

We next use our computational framework to investigate the effectiveness of vascular nor-

malization in both GL261 and LS147T tumours where normalization therapy is administered

intraperitoneally [48, 82]. We assume an ideal case in which vascular normalization has

Fig 6. Data-fitted curves of IFP (top) and IFV (bottom) for modulation of interstitial model parameters: (a, e) p1 (mmHg), (b, f) σ, (c, g) Lp(cm /

mmHg s) and (d, h) κ (cm2 / mmHg s). Arrows indicate increasing parameter values, with exception of (d) in which a range of κ (cm2 / mmHg s) is

indicated. IFP profile gradients across LS2 sensitivity analysis of (a) far-field pressure, p1, (b) oncotic reflection coefficient, σ, (c) vascular hydraulic

conductivity, Lp, and (d) interstitial hydraulic conductivity, κ (cm2 / mmHg s). Arrows indicate increasing values of the given parameter and colours in

each column indicate the equivalent simulation.

https://doi.org/10.1371/journal.pcbi.1006751.g006
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occurred in an axisymmetric manner whereby the effectiveness of the treatment increases from

the tumour core to its periphery. To achieve this, the extent of stabilisation of vessel diameters

and normalization of lumen permeability (through a combination of changes in Lp and σ), as a

result of increase pericyte coverage, ranges linearly from typical tumour values in the core to

physiological levels at the periphery. Here, vessel diameters were decreased by a factor of 1.99

[79], and set Lp and σ to 0.44 × 10−7 cm mmHg−1 s−1 and 0.91 [83], respectively.

Similarly to experimental [51, 52] and computational [81, 84] studies, vascular normaliza-

tion reduced vascular perfusion (see Fig 7) and mean IFP (see S1 Fig) across both the GL261

and LS147T tumours. However, our predictions showed that IFP remained elevated at the

core and that the overall reduction was induced by an increase in the pressure gradient across

the tumours. This resulted in a small increase in IFV at the core of both tumours (see S1 Fig),

yet changes in interstitial perfusion were minimal.

Our therapeutic predictions of vascular normalization are inconsistent with the magnitude

of observed effects, such as reduction in IFP, compared to experimentation [52, 53]. This sug-

gests that normalizing the permeability of the vessel lumen and stabilising vessel diameters are

not significant therapeutic affects following vascular normalization. We advocate that vascular

normalization reduces tumour IFP and increases perfusion via other factors, such as changes

in interstitial permeability or a reduction in vascular network tortuosity.

Vascular normalization locally alters interstitial hydraulic conductivity

Vascular normalization fortifies blood vessels through an increase coverage of mural cells and

basement membrane [85]. Considering this and our sensitivity analysis for κ (see Fig 6d and

6h), we hypothesise that normalization locally alters the interstitial hydraulic conductivity of a

treated blood vessel. We therefore sought to normalize interstitial hydraulic conductivity, in

parallel and in the same manner as with vessel diameters, Lp and σ, to a value of 8.53 × 10−9

cm2 mmHg−1 s−1 [86] at the tumour periphery.

Normalizing interstitial hydraulic conductivity had substantial and contrasting conse-

quences to fluid transport in the interstitium of both GL261 and LS147T tumours. In the case

of GL261, IFP was elevated compared to baseline simulations throughout the tumour (see Figs

8a and 9a), with a mean increase of 70%. This, in conjunction with a small increase in the IFP

gradient, led to elevated IFV in 80% of the tumour (see Figs 8a and 9a) and consistent patterns

in tumour perfusion compared to baseline (see Figs 4a and 9b).

Treating LS147T significantly modified the IFP profile (see Fig 9d), elevating IFP by� 9

mmHg at its core and developing a steeper gradient towards the periphery, in addition to a

Fig 7. Predicting changes in vascular perfusion in response to vascular normalization therapy. Simulated vascular perfusion (left) pre- and (right)

post-normalization in (a) GL261 and (b) LS147T tumours. Perfusion maps are discretised into isotropic pixels of width� 140 μm.

https://doi.org/10.1371/journal.pcbi.1006751.g007
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narrowing of IFP standard deviation (see Fig 8b). As a result, IFV increased throughout the

tumour core (see Fig 9d), with an increase of 50% at its centre, and a predicted decreased com-

pared to baseline in the outer 50% of the tumour (see Fig 8b).

To understand the response to treatment we analysed the source density, the ratio between

sources and sinks of fluid flux, across each tumour type pre- and post-normalization. Fig 9c

shows that GL261 is dominated by sources of flux pre-treatment, with the number of sources

elevating at its core post-treatment. In comparison, a parity is observed between sources and

sinks in the core of LS147T pre-treatment. Following normalization, the balance between

sources and sinks drastically altered with no sinks existing between 0 to 0.3 of the LS147T

radius, this is followed by a decline in the ratio to levels lower that baseline at the periphery,

indicating an increase of sinks here.

Our results suggest that observed fluid dynamic changes following vascular normalization

in literature [51, 52, 52, 53] may be as a result of local modification of the interstitial hydraulic

conductivity (see S2 Fig). Further, that changes in perfusion may be a result of an steepening

of the IFP gradient across a tumour and not necessarily a uniform reduction in IFP across the

tumour. This suggests the importance of incorporating inherent spatial heterogeneities in vas-

cular networks observed across tumour cell-lines [20] (see Table 1 and S3 Fig) into in silico
studies of vascular normalization.

Discussion

Elevated interstitial fluid pressure is frequently associated with solid tumours, where a conven-

tional profile exhibits a uniformly high IFP in the core of a tumour decreases rapidly towards

the levels of physiological tissue at the periphery [3, 14, 65]. This atypical characteristic forms a

barrier to transvascular fluid and drug delivery, thereby diminishing therapeutic efficacy of

anti-cancer treatments.

The passage of fluid through the interstitium is influenced by both hydrostatic and oncotic

pressures in blood vessels and therefore by the heterogeneous architecture of tumour micro-

vessels. However, the procurement of detailed fluid flow data in vivo across whole tumour net-

works is currently infeasible using conventional imaging and experimental techniques.

However, recent advances in ex vivo high-resolution optical imaging techniques [39] allow

whole three-dimensional tissue architectures to be extracted and reconstructed to act as inputs

for detailed in silico modelling of fluid transport.

No study has explicitly modelled vascular and interstitial fluid flow using discrete, three-

dimensional structural data from images of whole-tumour, real-world vasculature [6]. How-

ever, in a recent study, we presented our novel REANIMATE platform which extracts three-

Fig 8. Simulated normlization of Lp, σ, vessel diameters and κ in (a) GL261 and (b) LS147T tumours. Plots show (left) IFP and (right) IFV for (blue)

pre- and (red) post-normalization. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pcbi.1006751.g008
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dimensional, whole tumour vasculature ex vivo from optically cleared tissue, which is then

used to parameterise an in silico model of fluid transport guided by in vivo imaging data [40].

This has enabled us to perform quantitative, realistic predictions of fluid and drug delivery to

tumours which has led to novel insights into a tumour’s inherent physical resistance to anti-

cancer therapies [40].

We present a generalised framework to model vascular and interstitial fluid dynamics

based on whole, explicit tumour vasculature, in a computationally tractable way. We detail

its derivation and application to whole tumour vascular datasets and show how our model

allows highly-detailed predictions of fluid flow within the tumour microenvironment by incor-

porating explicit tumour vasculature and spatially heterogeneous parameters, such as vascular

and interstitial permeability. Our model allows flow heterogeneities to be quantified in a

Fig 9. Normalization of vascular hydraulic conductance, oncotic reflection coefficient and interstitial hydraulic conductivity, and stabilisation of

vessel diameters to physiological values in (a, b) GL261 and (d, e) LS147T tumours. (a, d) Planar contour plots of IFP and interstitial fluid speed

(IFS) for the baseline (top) and normalised (bottom) predictions. (b, e) Predictions of normalised interstitial fluid spatial maps (left) and IFV (right—

with greyscale perfusion underlaid) where the isotropic pixels are� 140 μm wide. For comparison, equivalent {X,Y}-planes for baseline simulations can

be viewed in Fig 4a and 4b, respectively. (c) A comparison of change in the source density, the ratio between sources and sinks (= [n −m]/[n + m]

where n and m are the sum of sources and sinks, respectively, in the tumour region), across GL261 and LS147T (blue) pre- and (orange) post-

normalization.

https://doi.org/10.1371/journal.pcbi.1006751.g009
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computationally efficient manner, when compared to finite-difference and element methods

[42], and consequently can be applied to any vascular tissue.

We initially apply our framework to an orthotopic murine glioma and a human colorectal

carcinoma xenograft from the GL261 and LS147T cell-lines, respectively, to present realistic,

baseline simulations of the tumour microenvironment. We then perform sensitivity analysis to

the underlying model parameters. The first are the source parameters, which are specific to

our model, and include point source distribution and size. Secondly, the interstitial parame-

ters, such as vascular conductance and interstitial conductivity, which are frequently repre-

sented in literature due to the prominent use of Starling’s law. In the second case, we perform

analysis of how variation of these parameters modifies the IFP and IFV in an LS147T dataset.

We finally mimic vascular normalization therapy, via varying model parameters, to generate

hypotheses relating to fluid dynamic response observed in literature.

Our computational framework is based upon a Poiseuille model for vascular blood flow

[41] which is coupled to a steady-state Green’s function solution to interstitial fluid flow. Here,

tumour vasculature segmented ex vivo is represented by a discrete set of sources of fluid flux

for bi-directional transport between the interstitium. Previous models either assume a homo-

geneous vascular network [3, 11, 14, 65], incorporate a computer-generated synthetic tumour

network [28–34], or incorporate boundary conditions and spatial variations in tissue perme-

ability to artificially represent vascular heterogeneity [35, 36]. However, vascular averaging

methods do not fully encapsulate the intrinsic, local interactions between neighbouring blood

vessels which contribute to global interstitial flow and synthetic networks are difficult to vali-

date against real tumour architecture. Here we use vascular architecture from real, whole

tumour networks, and through use of Green’s function methods, our model significantly

reduces the computational size of the computational problem, allowing vessel-vessel interac-

tions to be modelled at the micron-scale. Thus, we provide the means to perform in silico stud-

ies to hypothesis test the impact of vascular heterogeneity on the tumour microenvironment

with relative ease.

Our simulations were performed on ex vivo structural imaging data from a GL261 and a

LS147T tumour. As no in vivo flow or pressure data were available for the numerous boundary

vessels, we developed a procedure whereby simulated data is optimised based on in vivo tissue

perfusion data gathered using ASL-MRI [40]. This approach has produced solutions which are

highly consistent with experimental measurements in the same tumours [40]. In this study,

baseline vascular flow solutions across all tumour simulations are in good agreement with

the perfusion data, alongside mean flows [76], velocities and vessel wall shear stresses [37],

and fluid pressure in the interstitium [3, 17, 24, 25]. This provided validation that our model

produces physiologically realistic results, providing a platform to investigate the tumour

microenvironment.

We performed sensitivity analysis to the source parameters, such as updating the vascular

flow solution, source distribution and source radii, to understand their influence on the flow

communication between the vascular and interstitial domains. Our results exhibited a minimal

sensitivity to IFP distributions by varying these parameters, with the exception of the assign-

ment of source radii. Here, we hypothesise that greater care is required for spatially sparse

tumours with a low vascular density, in order to ensure physiologically accurate simulations.

Investigating the sensitivity to the interstitial parameters in the LS147T tumour, we found that

raising the far-field interstitial pressure did not significantly alter the IFP distribution across

the tumour, with increased IFP occurring at the tumour periphery, compared to baseline. Uni-

form variation in the oncotic pressure contribution, by modifying the oncotic reflection coeffi-

cient, only affected the magnitude of the interstitial pressure, with minor changes to the IFP

and IFV profiles, similar to those reported in previous studies [2]. Increasing Lp and κ, raised
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the gradient of the interstitial pressure profile, thereby increasing fluid transport through the

interstitium. However, our IFP distributions did not reach 0 mmHg at the periphery of the

tumours as in previous studies [3, 14, 84]. This is due to not applying a fixed pressure at the

tumour boundary in our model, which results in a smoother transition of IFP to the surround-

ing tissue, similar to previous computational modelling of tumour vascular heterogeneity

[35, 36].

We next predicted the flow response following vascular normalization therapy mimicked

by varying model parameters. Normalization of tumour vasculature was achieved by modify-

ing vascular hydraulic conductances, oncotic reflection coefficients and stabilising blood vessel

diameters in a linear radially varying fashion in both tumour networks. Our results indicate

that whilst normalisation of lumen permeability and vessel diameters exhibited similar trends

compared to experimentation such as a reduction in vascular perfusion post-treatment [52,

53], the magnitude in IFP reduction was minimal. Similarly, therapy which soley reduces ves-

sel leakiness has been shown not to be effective in silico using synthetic tumour vasculatures

[34].

As vascular normalization has been shown to stabilise the tumour vasculature by increasing

mural cell and basement membrane coverage [85], we hypothesise that these structural

changes alter the interstitial hydraulic conductivity. Subsequent simulations observed signifi-

cant and unique changes in IFP, IFV and perfusion across each tumour cell-line. In GL261, we

predicted an increase in IFP across the entire tumour, whereas in LS1247T, IFP exhibited a

steep pressure gradient and elevated IFP in its core. Consequently, IFV was elevated in both

tumour cores. We noted that this significantly altered the interstitial perfusion map in LS147T,

with elevated perfusion at the tumour core, which dissipated towards its periphery.

We have shown that incorporating realistic tumour vasculature is key to accurately predict-

ing the spatial flow heterogeneities induced by blood vessels. Our results suggest that reducing

tumour IFP is not necessary to increase tumour interstitial perfusion and that developing a

IFP gradient across the tumour is the key response. Further, we hypothesise that vascular nor-

malization alters interstitial hydraulic conductivity within tumours. However, as our tumour

vascular networks are static, we cannot discern the relative impact caused by a reduction in

vascular tortuosity observed experimentally following therapy [51, 80]. Notwithstanding, we

show that normalizing the tumour interstitial environment may provide an effective means to

increase tumour perfusion.

Our results and proposed computational framework offer significant scope for future

expansion. For example, recent in vivo methods provide a step forward in approximating con-

ditions by measuring interstitial fluid velocity at the macro-scale [26]. These data could lead to

greater accuracy when assigning boundary conditions specific to a tumour. Further, parameter

values such as the vascular conductance and interstitial hydraulic conductivity were assigned

using previous literature values since these tissue-specific measurements can be challenging to

procure through experimentation. For example, interstitial conductivity values across healthy

tissue have been reported to span four orders of magnitude [17]. New methods need to be

developed to accurately quantify these values.

There are also opportunities to expand the computational model to incorporate more com-

plex biological phenomena. For example, incorporating tumour compression of vessels due to

increasing shear stresses within the tumour [29, 87], volumetric tissue growth and tumour

angiogenesis which would allow us to develop vascular normalization treatment strategies

which determine when to administer therapy during the normalization window [12].

We expect to find a wide utility for REANIMATE in a range of disease areas, particularly

given the current interest in optical clearing methods and their widespread use in biomedical

research. Our in silico framework is novel and timely and will find extensive use for hypothesis

Modelling transport in heterogeneous tumours

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006751 June 21, 2019 23 / 28

https://doi.org/10.1371/journal.pcbi.1006751


testing, to enable tumour biology and drug delivery to be better understood, which in turn

may enable the next generation of cancer therapies.

Supporting information

S1 Fig. Simulated normlization of Lp, σ and vessel diameters in (a) GL261 and (b) LS147T

tumours. Plots show (left) IFP and (right) IFV for (blue) pre- and (red) post-normalization.

Error bars represent standard deviation.

(TIF)

S2 Fig. Simulating normalization of interstitial hydraulic conductivity, κ, in (a) GL261 and

(b) LS147T tumours. Plots show (left) IFP and (right) IFV for normalization of (blue) Lp, σ,

vessel diameters and κ, and (red) κ. Error bars represent standard deviation.

(TIF)

S3 Fig. Vascular density across (a) GL261 and (b) LS147T tumours. Error bars represent

standard deviation.

(TIF)
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