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Abstract: The current COVID-19 pandemic has triggered an accelerated pace in all research do-
mains, including reliable diagnostics methodology. Molecular diagnostics of the virus and its
presence in biological samples relies on the RT-PCR method, the most used and validated worldwide.
Nonconventional tests with improved parameters that are in the development stages will be presented,
such as droplet digital PCR or CRISPR-based assays. These molecular tests were followed by rapid
antigen testing along with the development of antibody tests, whether based on ELISA platform or
on a chemiluminescent microparticle immunoassay. Less-conventional methods of testing antibodies
(e.g., lateral flow immunoassay) are presented as well. Left somewhere in the backstage of COVID-19
research, immune cells and, furthermore, immune memory cells, are gaining the spotlight, more so
in the vaccination context. Recently, methodologies using flow-cytometry evaluate circulating im-
mune cells in infected/recovered patients. The appearance of new virus variants has triggered
a surge for tests improvement. As the pandemic has entered an ongoing or postvaccination era,
all methodologies that are used to monitor public health focus on diagnostic strategies and this
review points out where gaps should be filled in both clinical and research settings.
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1. Introduction

As the outbreak of the coronavirus disease 2019 (COVID-19) has gathered, over one year,
valuable information in both research and clinical areas, we need to use this informational
asset to further control this infection and move toward its annihilation. In this epic battle,
human versus virus, epidemiological data reside and depend on the accessibility and
“spreadability” of molecular testing. Within the area of molecular diagnosis, there are sev-
eral issues that testing should overcome. First, SARS-CoV-2 has an identity with SARS-CoV
and MERS-CoV because SARS-CoV-2 is the result of mutations leading to a new strain.
Furthermore, the strain has its own genetic evolution and, as we have already witnessed
since the beginning of 2020, this evolutionary process is ongoing. In this light, molecular
diagnosis should be thoroughly investigating this genetic evolution.

In the diagnosis domain of this infectious disease, the immune response characteristics
evaluation is a seminal issue [1]. A physiological immune response raised to an infec-
tion leads to pathogen elimination via innate and adaptive immune response. A proper
immune response would repair the damaged tissue and would further induce the gen-
eration of memory-specific immune cells. The later cells would be reactivated upon a
second encounter with the same pathogen. There are still issues that must be clarified
using various investigation methods, in both infected patients as well as in vaccinated
subjects. Therefore, we are still gathering knowledge regarding antibody persistence,

Int. J. Environ. Res. Public Health 2021, 18, 13173. https://doi.org/10.3390/ijerph182413173 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-9339-2805
https://orcid.org/0000-0002-2870-5497
https://doi.org/10.3390/ijerph182413173
https://doi.org/10.3390/ijerph182413173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182413173
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182413173?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 13173 2 of 16

their protective effect, and whether there is cross-reactivity with antibodies raised against
other Coronaviridae. Inflammatory response triggered by a hyperactivation of immune
components, mainly in severe infection cases, still lacks information and this issue is impor-
tant in the search of criteria to stratify patients that are difficult to treat. Last, but not least
within the immune response, immunological memory type, its persistence, and efficacy in
both infected as well as vaccinated subjects are still a matter of intense research [2].

Finally, all these equally important issues in the current pandemics rely on standardized,
reliable methods that the current review is outlining [1].

2. Technologies to Assess Specific Antigens

Laboratory diagnosis in COVID-19 is influential in combating the spreading of SARS-
CoV-2 infection. Moreover, laboratory tests dictate the clinical decisions regarding the
infected patient. These tests comprise the ones that detect the viral genome and testes that
detect the viral proteome. Upon molecular and antigen tests, patients were classified as pos-
itive or negative for the presence of SARS-CoV-2. Nevertheless, all tests have two seminal
characteristics/parameters, namely, percent positive agreement (PPA), describing the ac-
tual sensitivity of the test, and percent negative agreement (PNA), describing the specificity
of the test [3].

In diagnosing SARS-CoV-2 infection, the most widely used test is the molecular testing.
Real-time reverse transcription polymerase chain reaction (RT-PCR) is the most well-known
and extensively used molecular analysis. The test relies on nucleic acid amplification and
detects unique sequences of SARS-CoV-2 [4]. The other type of test, the antigen tests,
can detect the presence of SARS-CoV-2 without amplifying viral components, but these
tests are less sensitive than the molecular ones. Commonly, any negative antigen test is
confirmed with a molecular test so that the patient can be declared negative for COVID-19.
Both molecular and antigen tests would detect patients in the acute phase of infection [5,6].

Molecular tests can be performed on various samples such as nasopharyngeal swab,
lower respiratory system samples, sputum, tracheal aspirate, capillary blood, serum,
and plasma. The use of a variety of samples leads to various performances of the tests.

False positivity in RT-PCR tests was reported and it has several explanations. A recently
found explanation of false-positivity can be due to a newly reported mechanism in which
SARS-CoV-2 RNAs can be reverse-transcribed and hence integrated in the human genome.
Therefore, this transcription of the integrated sequences can give PCR-positive results.
The authors found chimeric transcripts made of virus fused to cellular sequences in pri-
mary cells of patients [7].

2.1. Quantitative Real-Time Reverse Transcriptase-PCR

RT-PCR is a technology used on a large scale for diagnosing different viral infections,
such as Ebola and Zika infection. Therefore, when this new coronavirus infection hit the
world, the already used technology expanded for this virus.

Viral RNA is detected using RT-PCR, and the test reports the abundance of viral
genetic material, with results being reported as “qualitative”. In this test, the abun-
dance detected above an established threshold gives the already famous “positive” results.
Establishing the appropriate threshold is probably the most argued issue in this pandemic.
The main purpose of the imposed threshold is not to miss false negative results while
minimizing false positives [8].

In a nutshell, the technology consists of two clear stages: viral RNA is reverse
transcribed into DNA, that is amplified due to polymerase chain reaction (PCR) [9].
FDA and the Centre for Disease Control and Prevention (CDC) recommended, for this
test, several regions to be detected: viral nucleocapsid N1, N2, and human RNase P
gene [9]. The World Health Organization (WHO) has recommended detecting CoV-2
RNA-dependent RNA polymerase (RdRP) and envelope (E) genes [10].

An infectious virus particle has intact nucleic acid covered by a capsid. Starting from
this assertion, there are several points that need more attention. Hence, RT-PCR detects viral
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RNA, but this genetic material is not mandatorily appended to a replicating virus [11,12].
There are studies that show the relation between a cultivable virus and the viral RNA that
is shed. Moreover, recovering patients, although not infectious anymore, are still shedding
viral RNA [13]. When sampling a nasopharyngeal swab, proteins and debris are eliminated
and the extricated RNA is tested, but this RNA contains both individual and viral RNA.
Hence the entire extracted RNA is reverse transcribed into DNA and amplified by PCR.
For major viral RNA loads, the reverse-transcribed DNA will have mainly viral genetic
information, but samples with borderline viral load will not have such clear results [13,14].

RT–PCR is an end-point technology; it will not give information on past infection,
information needed for registering epidemiological events. The only test that can directly
indicate if the infectious viral particles are still present is the viral cultivation in particular
cells, such as African green monkey kidney Vero C1008 clone E6 cells [15].

Viral load in an individual is associated with the severity of the infection, but this issue
has also things that should be clarified [16]. Studies regarding the relation between viral
load and clinical evolution are still very few, the retrospective nature of the investigation
is limited, and sample sizes and selection bias are still not relevant. Another issue that
is raised in this field is the PCR type used to measure the viral infection. Sample type,
patient’s age and gender, comorbidities, and probably many more factors influence the
viral load, parameters that are still to be established [17] along with the viability and
infectiousness of the virus [18]. All these parameters should be related to the results that
RT-PCR test would provide.

2.2. Nonconventional Tests—Droplet-Digital PCR

As current diagnostic tests are based on the RT-qPCR method, several limitations in
terms of sensitivity and quantification have emerged. To improve its performance, new,
improved tests are developed. Thus, in a study, published in March 2021, qPCR and
droplet digital PCR (ddPCR) were tested for their capability to detect low amounts of
viral RNA. ddPCR is a highly sensitive technology that uses a water–oil emulsion droplet
system so that nucleic acid samples are partitioned in 20,000 nanoliter-sized droplets
serving as independent test tubes [19]. Each sample would have thousands of individual
partitions, with or without template DNA [20]. A PCR reaction develops in each tube and is
examined for amplified target DNA by fluorescence [21]. The limit of detection of ddPCR is
about 0.005%, much lower when compared to that of RT-PCR (1%), pyrosequencing (5%),
melting curve analysis (10%), and Sanger sequencing (20%) [22]. This technology can
overpass RT-PCR because it brings absolute quantification of DNA copies without using
external calibration curves. The test bypasses known PCR inhibitors and hence provides
higher accuracy, reproducibility, and increased sensitivity, especially for low concentrations
of the searched molecules or degraded samples [20,23].

When directly comparing ddPCR with RT-PCR, the cycle threshold (CT) of the viral
RNA identified by RT-PCR significantly varied related to the sequences of the primer
and probe sets, while the copy number of the viral RNA depicted by ddPCR was ef-
fectively quantified with in vitro transcript RNA, cultured viral RNA, and RNA from
clinical samples. Authors conclude that ddPCR could be used as an extremely sensitive
and compatible diagnostic method for viral RNA detection [24]. Another group has de-
veloped a multiplex ddPCR for sensitive quantification of specific RNA with respect to
human-derived RNA in screening and monitoring COVID-19 patients. This multiplex
ddPCR detects, simultaneously, SARS-CoV-2 E, RdRp, and N viral RNA, and human
Rpp30 DNA and GUSB mRNA (internal nucleic acid extraction and control). De Kock et al.
proved that RT-ddPCR assay sensitivity was not affected by the total nucleic acids back-
ground. This is not the case for classical standard RT-PCR because total nucleic acids affect
sensitivity [25]. Another multiplex ddPCR analysis was tested by Deiana et al. Comparing
swabs with or without RNA extraction, the group has shown that the direct approach
generated equal RNA copies in comparison to the extracted ones. Therefore, using ddPCR
direct quantitation of virus SARS-CoV-2 in nasopharyngeal swab yielded an efficient quan-
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titation [26]. Molecular analysis performed in patients’ plasma using ddPCR in comparison
to classical PCR has shown also encouraging results. In plasma harvested from COVID-19
patients diagnosed in mild, moderate, and critical disease, virus was detected in 91% of
patients when using ddPCR and in 87% when using RT-PCR. Both methods could detect
RNAemia with ICU patients having the highest prevalence [27].

However, despite its high sensitivity, high specificity, and its potential clinical util-
ity, the ddPCR approach implies high financial resources and highly trained personnel,
making this powerful method still unaffordable for low-income countries.

2.3. Antigen Detection Tests

Another SARS-Cov-2 test method for diagnosing an active case is the antigen test,
useful in early stages of the infection. The tests can detect viral antigen in the nasal,
oral, and respiratory tract, sites in which the virus is actively shed, and hence has the
highest infectivity.

These tests can detect viral presence up to 2 days before the onset of symptoms and
are easy to perform. As specific antibodies are detectable at the earliest within the first
week from the symptom onset, antigen tests can detect early infection. The test results
depend on the duration of viral shedding and on several clinical parameters, such as
disease severity, duration of the illness, and patient’s immune response. Viral shedding
becomes undetectable around one month after symptoms onset or much earlier when the
symptoms disappear.

Antigen tests can identify nucleocapsid (N) or spike (S) proteins [9]. In antigen testing,
N is a good target because it is a conserved and abundant antigen. The antigen tests can
have enzyme-linked immunosorbent assay (ELISA) format or a lateral flow rapid-test
format. The ELISA format relies on the existence of a pair of specific antibodies that would
recognize the target antigen, the tests having high sensitivity and specificity.

The ELISA format gives accurate results but needs above-average equipment
and staff to handle the methodology, these issues being somewhat limiting in
less-developed laboratories.

The lateral flow format or antigen rapid test can be used in a general screening of a
population and can be handled even by nonmedical laboratories. It resembles HIV rapid
test using serum, plasma, or fingertip blood. The rapid test gives visually interpretable
results in around 20 min, being a point-of-care (POC) setting.

Supplementary tests that aid the clinical management of the infected patients are cur-
rently used in several units; these comprise coagulation tests, indicators of cytokine storm
(e.g., interleukin-6), ferritin, granulocyte colony-stimulating factor (G-CSF), macrophage
inflammatory protein–1α (MIP-1α), and tumor necrosis factor–α (TNF-α) [28].

A summary table of genome and proteome testing in viral infection [3] is presented in
Table 1, and a schematic outline of the tests is shown in Figure 1.

Table 1. Main characteristics of molecular and antigen tests in SARS-CoV-2.

Test Type Advantages Disadvantages Test
Sensitivity %

Test
Specificity %

Test for viral genome
Accurate tests, identifies

mutations in the virus, it tracks
disease spread.

Does not detect viral load, does
not detect dynamics of infection
or the history of prior infection.

86.1% 95.8%

Test for viral antigen

Detects proteins on the viral
particle surface.

Less sensitive than molecular
tests and often a molecular test

need to confirm the positive
result.

61.7% 98.2%
Faster than molecular tests, less
expensive, applicable to large

number of samples.
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3. Technologies to Assess Specific Antibodies
3.1. Antibody Dynamics in Infection

In SARS-CoV-2 infection, the first antibody that appears is IgM and it can be depicted
from the fourth day of infection. IgM will increase until the 20th day when a peak is
established and would diminish gradually while IgG appears. IgG will start to appear
from the seventh day, peaks on the twenty-fifth day, and maintains its level one month
after infection [29]. Seroconversion (specific IgG or IgM antibodies detection) occurs almost
simultaneously or sequentially. Their values after 6 days of detection (after seroconversion)
would reach a plateau concentration and will no longer vary [30]. Vaccination has the same
dynamics in antibodies as the infection [31,32].

Patients with mild and severe forms display, over time, a strange increase in IgM
titers [33]. It was shown in the severe group, compared to the nonsevere group, that IgG
and IgM titers are high, probably as a consequence of the polyclonal stimulation caused by
the infection. Patients with severe disease have a high IgG response but mild cases will
develop a faster peak IgM response [34,35].

In asymptomatic patients, or better named oligosymptomatic patients, antibodies
are depicted but their titers are not as high as the ones detected in symptomatic patients.
We have also found, in accordance with other groups, that oligosymptomatic patients can
display a fading of the IgG, in quite a high proportion [36] (40.0%, compared to almost 13%
in symptomatic patients) [30].

In a recently published study, it was shown that another Ig is entering the spot line.
IgA represents the most abundant antibody class produced in humans that is critical in the
first line of antimicrobial/antiviral defense; it is a special antibody that patrols the mucosal
boundaries [36]. Hence, we have shown that IgA in infected subjects has high levels and
follows the IgG dynamics, levels that are detectable even after 8 months postinfection [37].
Because it neutralizes pathogens, IgA should also enter the panel of tested antibodies in
COVID-19 [37].

Some points regarding antibodies as a general term and the neutralizing capacity
should be detailed. Neutralizing antibodies (NAbs) display a clear protection capability
in various viral/bacterial infections and can be generated through two main pathways:
upon the actual infection and/or upon artificially induced immunization. An NAb would
physically stop the pathogen from entering the target cells and hence would hinder the
subsequent spreading of the infection [38]. Furthermore, NAbs would sterically change
the normal conformational properties of the virus, and therefore impede, once more,
its entrance to the target cell. In passive immunization, when NAbs from convalescent
plasma are used, the main property of NAbs (neutralizing capacity) will clinically help
patients still fighting the infection. Although it has a transient effect, it will help the patient
to recover until its own NAbs are produced in sufficient quantities [39]. Another type of
neutralizing antibodies that do not address the viral particle are the ones that hinder the
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receptors on the target cells and block the virus entry. Even though it is a neutralizing mech-
anism, it is termed as an infection-blocking mechanism. Several monoclonal antibodies
against the SPIKE protein of SARS-CoV-2 have been either isolated from convalescent plas-
mas or designed and expressed de novo in the laboratories. This last type of therapy was
attempted to artificially develop neutralizing antibodies that would inhibit virus infection;
nevertheless, the results are not proven satisfactory yet. For example, Shi et al. identified
two mAbs (CA1 and CB6) from COVID-19 patients, able to block the SARS-CoV-2 RBD
binding to their target receptor ACE-2 [40].

Figure 2 shows a scheme representing NAbs and their action mechanism. Moreover,
low-affinity Abs that can lead to antibody-dependent enhancement (ADE) in viral infec-
tion are important players in the immune response and deserve further investigation.
Knowledge gathered during SARS and MERS-CoV infection has shown that pre-existing,
nonneutralizing, or poorly neutralizing antibodies that are generated during natural or arti-
ficial immunization can lead to ADE. As immunotherapy and vaccine are clinically applied,
ADE is to be taken into consideration. ADE reduction should be taken into consideration
in COVID-19 as a full-length, protein-based approach can lead to ADE phenomenon as
previously reported in MERS-CoV [41].
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Figure 2. Generated antibody types during viral infections. (A) Neutralizing antibodies can link to
the viral particle, hindering its entrance in the target cell. (B) Antibodies that can link to the specific
receptor that is used by the viral particle, hindering its entrance in the target cell. (C) Low-affinity
antibodies linked to the viral particle that can activate Fc-receptor on the target cell and thus favor
viral entry into the cell generating ADE-related mechanisms. Created with BioRender.com. (access
on 15 September 2021).

3.2. Technologies to Assess Antibodies

Along with SARS-CoV-2, six other coronaviruses (OC43, 229E, SARS-CoV, NL63,
HKU1, and MERS-CoV) were found as infectious agents in humans [42–46], and this is im-
portant when assessing test’s specificity. Among all these coronaviruses, the highest chance
that antibodies generated in the current pandemic to cross-react is with SARS-CoV because
of their close phylogenetic affiliation, high genome, and protein sequence’s identity [47].
This cross-reactivity within antibodies pattern is important in regions/countries affected by
both epidemics [48]. Antibodies raised against major structural proteins of SARS-CoV2 are
those against N and S proteins [46]. In a recent study using several testing platforms, it was
shown that receptor-binding domain (RBD) protein ensures the best specificity, while N
protein is endowed with high cross-reactivity between SARS-CoV and SARS-CoV-2 [49].
Capture ELISA has proven the best technical performance, and N-specific antibodies tested
in SARS-CoV former patients disappeared faster than RBD-specific antibodies [50].

Serological (immunoassays) are developed for qualitative or quantitative investiga-
tion of SARS-CoV-2 antigens and/or anti-SARS-CoV-2 antibodies. In general, there are
ELISA-based assays in various versions, indirect immunofluorescence assays, lateral flow



Int. J. Environ. Res. Public Health 2021, 18, 13173 7 of 16

immunoassays, and neutralization tests. Immunoassays are continuously developing in
this new coronavirus infection [51].

Rapid tests with a sensitivity of 88.66% and specificity of 90.63% for both IgG-IgM
specific for SARS-CoV-2 can give results in 15 min [52]. Tests such as these performed
in extralaboratory environments have several disadvantages. Sampling and handling
performed by nonlaboratory personnel could seriously affect the results. Moreover, if the
infected person is within the first week of contact, antibodies could have not been produced
yet [53]. Thus, the false negativity of the result would clear a probable infection-spreading
person. The low sensitivity would yet again give false negative results, as it cannot detect
intrinsic immunological differences and immune responses between individuals. There is
an overabundance of antibody tests for SARS-CoV-2 having sensitivities from 45 to 100%,
and specificities from 96 to 100%, as presented by the Foundation for Innovative New
Diagnostics [51].

There are several technologies that are implemented in laboratory use and choosing
one or the other or several ones is dictated by their speed of results, affordability, accuracy,
standardization, wide implementation, and so forth.

Luciferase immunoprecipitation test (LIPS) is a very rapid serology test developed
generally ten years ago [54,55]; the test has good sensitivity, but low specificity. The low
specificity is due to the fact that antibodies generated in SARS-Cov2 infection and prior
SARS epidemy are cross-reactive. This cross-reactivity is not unexpected, as N proteins
from both viruses are highly related. Recently, LIPS was used to detect human infection by
bat orthoreovirus [56]. Therefore, LIPS can be further developed as a rapid detection tool in
COVID-19. Indirect ELISA is a medium time serology assay. When assessing indirect ELISA
for antibodies raised against SARS-CoV-2, several conclusions were drawn. The published
data show that IgG binding is specific and sensitive, but the same characteristic cannot be
displayed for IgM antibodies. Finding that was proved, whether the sera was depleted
for IgG or not [50]. Multiplex Luminex tests are usually used in the biomarkers screening
stage. In this infection, the test had very good performance for six recombinant proteins.
The downfall of the test is that not all the current laboratories have this technology and
have the specific know-how implemented. The obtained results for IgG have similar
performance to indirect ELISA [50]. Capture ELISA is also a medium time serology assay.
Recently, it was shown that when using a horseradish-conjugated RBD protein (HRP-RBD),
a significant improvement of IgM detection was obtained. The improvement outperforms
indirect ELISA’s performance, achieving a perfect 100% specificity and sensitivity of 96%
for all PCR-positive patients [50].

Rapid diagnostic tests (RDTs) aim to combine antigen and antibody tests for the
rapid diagnostics of the infection. In a recent study, this diagnosis strategy performance
was assessed, combining antigen testing with IgM or IgG RDTs. It was reported that the
combination of Ag and IgM/IgG RDTs detected up to 84.0% of COVID-19 confirmed cases
at admission. As antigen and antibodies’ RDTs showed low performances when used
individually, their combination greatly improves their potency to identify most COVID-19
patients [57].

4. Technologies to Assess Specific Immune Cells
4.1. Immune Cell Response upon Infection

There is a complex cellular machinery that is triggered upon infection. SARS-CoV-2
would attack epithelial cells in the nasal cavity through binding to ACE2 receptors [58].
Once the virus has entered the cells, activation of transcription factors, IRF3/7, and NF-κB
are triggered, and type I interferons (IFNs) and inflammatory cytokines are produced [59].
Generated IFNs would activate adaptive immune cells and would prevent viral spread
by stimulating other immune cells that start to produce various inflammatory cytokines,
chemokines, and antiviral enzymes [60,61]. Similar to SARS-CoV and MERS-CoV [62],
SARS-CoV-2 can evade type I IFNs and can suppress IFN induction and intracellular
signaling [63–65]. Alveolar macrophages would be the first immune cells that respond to
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the viral attack. Through their complex array of inflammatory-related secreted molecules
and receptors (TLR2, 4, 6, IL-1R, IFNγ-R, TNFR, TREM2, IL-10R, TGFBR), these cells enter
the immune network, controlling immune response [66]. Specific dendritic cells (DCs),
residents in the attacked tissues, having a CD103+ phenotype permeate through the ep-
ithelial layer and capture and present specific antigens [67]. Viral antigens are processed
by DCs and presented in MHC I and MHC II restriction to CD8+ T and CD4+ T cells,
respectively [68]. Helper CD4+ T cells stimulate B cells and CD8+ T cells, and help the
induction of memory cell populations [69]. In the meantime, DCs migrate to the lymph
nodes to educate naïve T cells [70]. In viral infections, Th1-type immune response is domi-
nant in the generated adaptive immune response [71]. Th1 CD4+ T cells, when activated,
secrete GM-CSF, further activating inflammatory monocytes CD14+ CD16+ that generate
IL-6, an inflammatory cytokine [72]. Another Th subpopulation, Th17, produces IL-17,
hence recruiting additional monocytes, macrophages, and neutrophils that generate mainly
IL-1β, IL-6, and IL-1, highly potent proinflammatory cytokines [73]. An outline of the main
cellular network generated in the SARS-CoV-2 infection is presented in Figure 3.

Int. J. Environ. Res. Public Health 2021, 18, x  9 of 16 
 

 

were found to be increased in patients compared with the controls and in deceased pa-
tients compared with the healed ones. Using flow cytometry, it was shown that increased 
Th17 cells and decreased Treg cells in COVID-19 patients strongly correlates with hyper-
inflammation, lung damage, disease pathogenesis, and even death [76]. Moreover, innate 
immunity cells can be evaluated with flow cytometry. Flow cytometric analysis of periph-
eral blood samples identified significant morphologic and functional differences, pro-
nounced in ARDS patients requiring ICU admission. COVID-19 patients have larger mon-
ocytes (as identified on forward scatter—FSC, side scatter—SSC) with a CD14+ CD16+ 
phenotype and mixed M1/M2 macrophage polarization expressing high CD80+ and 
CD206+. Serial monitoring using flow cytometry of inflammatory monocytes can guide 
prognostication and treatment of patients [77]. 

 
Figure 3. Cellular immune response upon infection detected using flow cytometry. Activated DCs present antigen and co-
stimulatory molecules to specific naïve T cells, which become activated and further differentiate into effector cells (T CD8+ 
cytotoxic cells), T helper cells (CD4+). Activated DCs can directly activate specific B cells and induce B cell differentiation. 
T follicular helper (TFH) cells help B cells to differentiate into plasma cells that secrete specific antibodies and further 
generate B memory cells. Generated antibodies physically hinder the entrance of new viral particles into cells. Memory T 
cells are generated to sustain the long-time cellular immune memory, and CD4+ T cells memory cells secrete cytokines 
that induce the cytotoxic activity of T cells CD8+ that attack infected cells, stopping the further viral reproduction. T and 
B memory cells sustain long-lasting memory of the infection, and upon a second encounter with the same virus, quickly 
trigger all the necessary immune pathways. Created with BioRender.com.(access on 15 September 2021) 

Cellular machinery activated to overcome the viral infection is complex, and the first 
autopsy of a COVID-19 patient showed accumulation of monocytes and inflammatory T 
cells in the lungs with low percentages of SARS-CoV-2 activated T cells [78]. 

An immune cellular picture of the gathered information on SARS-CoV-2 shows that 
CD4+ T cells, CD8+ T cells, have specific functions/kinetics; these cells interrelate with 
innate immunity to accomplish the efficient antiviral immune responses [79]. 

4.2. SARS-CoV-2 Immune Memory 
Although we have entered the second year of the COVID-19 pandemic, the immuno-

logical memory to this infection is still a matter of data acquirement. The most facile data 
are coming from antibody persistence; they maintain their titer for 3–6 months [80–82]. 
However, measuring antibody titers as memory persistence is not a clear-cut indication, 
as antibodies would naturally decline as the organism is not in the acute phase of viral 

Figure 3. Cellular immune response upon infection detected using flow cytometry. Activated DCs present antigen and
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cytotoxic cells), T helper cells (CD4+). Activated DCs can directly activate specific B cells and induce B cell differentiation.
T follicular helper (TFH) cells help B cells to differentiate into plasma cells that secrete specific antibodies and further
generate B memory cells. Generated antibodies physically hinder the entrance of new viral particles into cells. Memory T
cells are generated to sustain the long-time cellular immune memory, and CD4+ T cells memory cells secrete cytokines
that induce the cytotoxic activity of T cells CD8+ that attack infected cells, stopping the further viral reproduction. T and
B memory cells sustain long-lasting memory of the infection, and upon a second encounter with the same virus, quickly
trigger all the necessary immune pathways. Created with BioRender.com. (access on 15 September 2021).

In terms of technologies that can evaluate the proportion of circulating or resident
lymphocytes, flow cytometry, with all its versions, is, for now, the best method. Therefore,
using multiparametric flow cytometry whole peripheral blood samples harvested from
COVID-19 convalescent patients showed clear immune cells differences compared to con-
trols. Even after 3 months postinfection, patients had activated cytotoxic CD8+ T cells with
high HLA-DR and CD38 expression. Patients had CD3+ CD4+ and CD3+ CD8+ effector
memory higher than normal, while CD25+ Foxp3+ T regulatory cells were lower. Tran-
sitional B cell and plasmablast levels were significantly elevated, while innate immunity
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cells, such as neutrophils, were low [74]. Similarly, flow cytometry was used to evaluate the
immune response of patients with acute respiratory distress syndrome (ARDS) associated
with COVID-19. Immature neutrophils were found in both blood and bronchoalveolar
lavage, accompanied by CD4+ and CD8+ T-cell lymphopenia. Tregs cells and Th17 cells
were found in higher proportions in the bronchoalveolar lavage. CD4+, CD8+ T cells,
and macrophages from the bronchoalveolar lavage displayed high upregulation of activa-
tion markers compared to the cells circulating in blood. Flow cytometry analysis pinpointed
that COVID-19 ARDS displays a distinct cellular immunological profile in a hyperinflam-
matory milieu [75]. Moreover, the ratio of Th17/Treg cells and RORγt/FoxP3 were found
to be increased in patients compared with the controls and in deceased patients compared
with the healed ones. Using flow cytometry, it was shown that increased Th17 cells and
decreased Treg cells in COVID-19 patients strongly correlates with hyperinflammation,
lung damage, disease pathogenesis, and even death [76]. Moreover, innate immunity cells
can be evaluated with flow cytometry. Flow cytometric analysis of peripheral blood sam-
ples identified significant morphologic and functional differences, pronounced in ARDS
patients requiring ICU admission. COVID-19 patients have larger monocytes (as identified
on forward scatter—FSC, side scatter—SSC) with a CD14+ CD16+ phenotype and mixed
M1/M2 macrophage polarization expressing high CD80+ and CD206+. Serial monitoring
using flow cytometry of inflammatory monocytes can guide prognostication and treatment
of patients [77].

Cellular machinery activated to overcome the viral infection is complex, and the first
autopsy of a COVID-19 patient showed accumulation of monocytes and inflammatory T
cells in the lungs with low percentages of SARS-CoV-2 activated T cells [78].

An immune cellular picture of the gathered information on SARS-CoV-2 shows that
CD4+ T cells, CD8+ T cells, have specific functions/kinetics; these cells interrelate with
innate immunity to accomplish the efficient antiviral immune responses [79].

4.2. SARS-CoV-2 Immune Memory

Although we have entered the second year of the COVID-19 pandemic, the immuno-
logical memory to this infection is still a matter of data acquirement. The most facile data
are coming from antibody persistence; they maintain their titer for 3–6 months [80–82].
However, measuring antibody titers as memory persistence is not a clear-cut indication,
as antibodies would naturally decline as the organism is not in the acute phase of viral
infection. As previously stated, flow cytometry is the technology that analyzes immune
cells, including memory cells. Spike memory B cells could be detected 3 months postin-
fection [83–85], but we still lack information regarding up to 12–24 months’ memory cells
in this infection. After 6 months postinfection, 90% positive for memory CD4+ T cells
and 70% positive for memory CD8+ T cells were reported. Memory T helper cells are
more abundant than cytotoxic T cells [86,87]. When asymptomatic patients were studied,
it was shown that the patients have generated detectable T cell memory only slightly
lower than symptomatic cases [86]. The estimated durability of CD4+ and CD8+ T cell
memory of 3–5 months matches that obtained for the yellow fever virus vaccine [88],
a vaccine that has very long-lasting protective immunity. Moreover, it was reported that
SARS-CoV memory T cells are still active after 17 years postinfection [89]. Memory B
cells specific for S, RBD, and N can be detected by flow cytometry 6 months post-COVID-
19 [87,90]. Spike memory B clones were in the majority secreting IgG and only 5% IgA [87].
At 6 months postinfection, RBD memory B cells increase and synthetize higher potency,
neutralizing antibodies [90,91].

When studying viral infection memory, complex measurements should be carried
out, namely RBD, S antibodies, RBD-specific memory B cells, and SARS-CoV-2-specific
CD4+ and CD8+ T cells. Immediately postinfection, all patients display positivity in
all these immune elements, but after 6 months, variation is seen in the cellular immune
compartments [92–95].
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5. New Variants Emergence Require Tests Upgrading?

Not even one year has passed from the start of the COVID-19 pandemic when variants
of concern (VOC) emerged [96]. SARS-CoV-2 is evolving, and the RBD of the S protein
and the region of N protein associated with nuclear localization signals suffer positively
selected amino acid replacements. Therefore, tests should be able to quickly and efficiently
detect escape variants. In the initial phase, this can be achieved by sequencing, and once
a variant is “of concern” (VOC), a PCR-based assay should be quickly developed and
validated for worldwide tracking of the spread of the new variant. This is important
not only for the infection tracking, but also for the large-scale vaccination efficacy [97].
Percipience should be exercised in the vaccine immunity escape, phenomena that can
be triggered by new variants. It is known that many RNA viruses, although displaying
potential variability, did not escape vaccine-induced immune response, similar to the
viruses that induce measles, rubella, and many other viruses [98]. Other viruses evolve in
their immunogenic regions so that they can effectively evade the host’s immune response
(e.g., influenza A virus) [99]. Consequently, although SARS-CoV-2 generates a variant that
escapes vaccine immunity, we do not know if this variant replicates as vigorously as the
initial viral variant from which it was generated, or if it will escape vaccine immunity.
However, genomic surveillance of the new variants is vital in the current pandemics [100].
The current VOCs include B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), and P.1
(Gamma) with increased transmissibility, clinical outcome, and limitation of the diagnostic
tests [101]. As this manuscript was submitted, new variants appeared, and the variant
named Omicron entered the scene. This variant contains some immune-evading mutations.
From 1 December 2021, Omicron was identified in 25 countries worldwide, and the list of
countries detecting Omicron grows with each day [102]. Virologists expect SARS-CoV-2
to evolve predictably and add to the other respiratory viruses, but, then again, when this
will occur is still not clear [103]. Until this happens, if it happens, we must cope with the
existing tests and with their constant improvement.

The current standard for tracking new variants is still viral whole-genome sequencing,
but the technology is costly and needs high expertise. Therefore, snapback primer-based,
high-resolution melting was proposed as a less-expensive test for new variants. Published
in September 2021, a newer version and less-costly test type was developed. The test can
detect multiple variant lineages with over 20 important SARS-CoV-2 S mutations [104].
A nested RT-PCR assay that can detect multiple nucleotide alteration in the sequence encod-
ing for S protein was developed for VOC identification. With this technique, in April 2021,
the presence of key mutations of 20I/501Y.V1 and 20 J/501Y.V3 in the new SARS-CoV-2
variant were detected [105]. Several types of multiplex RT-qPCR targeting single nucleotide
polymorphisms [106–110], TaqMan SARS-CoV-2 mutation panel molecular assay [111,112],
combinations of novel PCR assays and genome sequencing [113], or CRISPR-Cas12-based
multiplex allele-specific assay [114], just to mention a few, were able to identify VOCs, and,
moreover, these tests can adapt to emerging viruses’ lineages.

Rapid antigen tests were also tested for their potency to detect VOCs such as B.1.1.7
and B.1.351; the tests were able to detect variants comparable to non-VOC strains [115].
Rapid antigen testing was compared with RT-PCR results, and, recently, it was shown that
variants undetected by rapid antigen test (Panbio COVID-19, Abbott Laboratories, Jena,
Germany) may be due to the T135I mutation that appeared in the N protein, therefore
false-negative results should be corrected with confirmatory RT-PCR [116]. Evaluating five
antigen tests, it was shown that VOCs that display up to four amino acid mutations in N
were detected by the tested antigen kits [117]. In terms of rapid antigen tests performance,
it is obvious that a continuous evaluation should be performed, especially concerning
the evolving mutations [118]. Several POC tests were developed rapidly, with low cost,
to detect infection. For example, the POC-developed test (miSHERLOCK), which is a
CRISPR-based platform, was proven to be sensitive for mutations within variants B.1.1.7,
B.1.351, and P.1. [119].
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Another type of tests, the serological type, that assess the immune response against the
infection, were evaluated in the VOCs area. When evaluating commercial anti-SARS-CoV-2
RBD antibody tests and chemiluminescent reduction neutralizing tests, it was shown that
the tested sera from B.1.1.7 and B.1.351 variants-infected patients discriminated between
them and healthy donors [120]. An improved, cell-based fluorescent serology assay [121]
or N IgG ELISA protocol [122] were reported to have the possibility to be adapted to new
spike mutated variants.

Some take-home notes regarding this huge and continuously upgrading subject focus
on the fact that VOC can induce failures in standard diagnostic tests [123]. Cautious and
up-to-date selection of the targets that are to be used in mutation-specific PCR is mandatory
for successful detection of emerging VOCs [124].

6. Conclusions

In the current pandemic, a major healthcare topic is the accurate detection of a spread-
ing infection. This detection needs to both cover the active infection and further the recovery
of patients. The technologies that underlie all these complex testing methods involve two
players. One is the array of standard technologies that were quickly put into use at the
beginning of the current crisis, e.g., RT-PCR and ELISA, and the others are cellular tests,
such as flow cytometry. From the time viewpoint, and due to the accelerated pace of this
pandemic, the technological “spotlight” was taken by RT-PCR for detecting the virus and by
the immune assays for detecting the generated antibodies. Left somewhere in the backstage
of COVID-19 research, immune cells and, furthermore, immune memory cells, were out
of this spotlight, but as we are stepping into the third year of the pandemic, and more
so in the worldwide vaccination context, immune memory detection gains increasing
importance. Cytometry needs, in this context, to establish the heterogeneity of COVID-19
immune memory. Specific antibodies, e.g., memory B and T cell, should be investigated as
these parameters change in time during infection and postinfection. As antibody titers do
not accurately indicate the appearance of memory immune cells, new data should rapidly
gather on this topic. New variants can drive the panel of tests used in this pandemic to their
limits. Emerging mutations can hinder diagnostic sensitivity, and postvaccine reinfections
with emerging variants induce a significant economical, clinical, and public health impact.
Therefore, research should further focus on improvements of diagnostic tests to accurately
detect any variants of concern.
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