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ABSTRACT Here, we report an essentially complete genome assembly for the Ty1-
less Saccharomyces paradoxus strain DG1768 (derivative of strain 337) based on
PacBio and Illumina shotgun sequence data. We also document the genetic altera-
tions that make this yeast strain a key resource for Ty1 mobility studies.

S accharomyces yeasts have played essential roles in elucidating the biology of eukary-
otic retrotransposons (1–4). Here, we report a genome assembly for Saccharomyces

paradoxus strain DG1768, a representative of a “Ty1-less” lineage frequently used to
study Ty1 retrotransposition (5–11). DG1768 [MATa ura3-100 Ty1-155-Dura3(Scer)-101
his3-D200hisG] is derived from a wild Saccharomyces strain collected in California
(UCDFST 51-186) that was obtained from the Ron Davis laboratory (renamed 155).
Michael Ciriacy mated strain 155 with Saccharomyces cerevisiae GRF18 and then repeat-
edly backcrossed to strain 155 to create a nearly isogenic strain (called 276) carrying ho
(Scer), one full-length Ty1 element (called Ty1-155), and a ura3 mutation at the endoge-
nous URA3 locus. Homologous recombination was used to replace Ty1-155 in strain 276
with S. cerevisiae URA3 plus ;600 bp of vector sequence, followed by selection of a ura3
mutation in the new heterologous URA3 locus to create the r2 strain 337. Finally, HIS3
was deleted (replaced with Salmonella HisG), and functional S. cerevisiae mitochondria
were introduced via cytoduction to create strain DG1768 (6). Subsequently, DG1768 was
shown to be S. paradoxus (8).

To prepare DNA for sequencing, single colonies of strain DG1768 were inoculated in
7 mL of yeast extract-peptone-dextrose (YPD) liquid broth and cultured for ;24 h at
30°C. Table 1 provides details on how PacBio and Illumina data sets were generated. For
assembly, unfiltered PacBio reads were input to HGAP 4 (smrtlink-release_5.1.0.26412)
(12), which performed read quality control, error correction, and adapter trimming. The
PacBio-only assembly was polished five times with Pilon (v1.24) (13) using unfiltered
paired-end 150-bp Illumina reads as input. Polished contigs were scaffolded with RagTag
(v2.0.1) (14) using S. paradoxus YPS138 as the reference (15). Assembly statistics were cal-
culated using QUAST (v5.0.2) (16) and BUSCO (v5.0.0, saccharomycetes_odb10 database)
(17). Ty elements were annotated using a RepeatMasker-based pipeline (11). Telomere-
associated sequences were annotated with LRSDAY (18). Default software parameters
were used except where otherwise noted.

Our DG1768 assembly is 11,932,051 bp in length (scaffold N50 value of 917,222 bp),
with an overall GC content of 38.43%. The assembly has 18 contigs in 17 scaffolds; 15
chromosomes and the mitochondrial DNA (mtDNA) are completely assembled in 1
contig each, and chromosome XII is assembled in 1 scaffold with 2 contigs, with a gap
at the ribosomal DNA (rDNA) locus. A total of 97.5% of Saccharomycetes benchmarking
universal single-copy orthologs (BUSCOs) are present and single copy. Core X elements
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or Y9 elements were annotated in 29 of 32 scaffold ends, indicating the near complete-
ness of all chromosomes. We confirmed that no full-length copies of Ty1 are present in
the DG1768 genome. The scar of the Ty1-155 knockout was localized to chromosome
VI from nucleotide position 292,634 to 294,347. The scar of the HIS3 knockout was
localized to chromosome XV from nucleotide position 686961 to 688113. We also iden-
tified a segment of S. cerevisiae DNA, spanning chromosome IV from nucleotide posi-
tion 1 to 135828, caused by introduction of the ho allele, and we confirmed that
DG1768 mtDNA is from S. cerevisiae. The provenance and essentially complete genome
assembly for DG1768 presented here should provide a useful resource for studies on
Ty1 retrotransposon biology.

Data availability. PacBio data used to generate the assembly and Illumina data used
to polish the assembly are available under BioProject accession number PRJNA748953.
The assembly was deposited at NCBI under GenBank accession numbers CP081969 to
CP081986.
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