
February 2017 | Volume 5 | Article 61

PersPective
published: 06 February 2017

doi: 10.3389/fpubh.2017.00006

Frontiers in Public Health | www.frontiersin.org

Edited by: 
Matthew Bellgard,  

Murdoch University, Australia

Reviewed by: 
Arnold Bosman,  

Transmissible, Netherlands  
Gregory Dore,  

University of New South Wales, 
Australia

*Correspondence:
Timothy J. J. Inglis  

tim.inglis@uwa.edu.au

Specialty section: 
This article was submitted  

to Public Health Policy,  
a section of the journal  

Frontiers in Public Health

Received: 14 November 2016
Accepted: 17 January 2017

Published: 06 February 2017

Citation: 
Inglis TJJ and Urosevic N (2017) 
Where Sepsis and Antimicrobial 

Resistance Countermeasures 
Converge.  

Front. Public Health 5:6.  
doi: 10.3389/fpubh.2017.00006

Where sepsis and Antimicrobial 
resistance countermeasures 
converge
Timothy J. J. Inglis1,2* and Nadia Urosevic1,2

1 The Marshall Centre for Infectious Diseases Training and Research, School of Biomedical Sciences, University of Western 
Australia, Perth, WA, Australia, 2 Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical 
Centre, Nedlands, WA, Australia

The United Nations General Assembly debate on antimicrobial resistance (AMR) rec-
ognizes the global significance of AMR. Much work needs to be done on technology 
capability and capacity to convert the strategic intent of the debate into operational plans 
and tangible outcomes. Enhancement of the biomedical science–clinician interface 
requires better exploitation of systems biology tools for in-laboratory and point of care 
methods that detect sepsis and characterize AMR. These need to link sepsis and AMR 
data with responsive, real-time surveillance. We propose an AMR sepsis register, similar 
in concept to a cancer registry, to aid coordination of AMR countermeasures.

Keywords: antimicrobial resistance, sepsis, integrated systems biology, biocomplexity, microbial forensics, 
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iNtrODUctiON

The United Nations high-level meeting on antimicrobial resistance (AMR) was calculated to 
thrust the issue of AMR into public view (1) and represents the latest milestone in a global 
awareness-raising campaign by public health authorities. At first glance, this appears to be the 
antithesis of precision public health, which places an emphasis on targeted multidisciplinary 
application of emerging biotechnology to the specific health needs of individuals (2). However, 
this onslaught against a leading global health challenge is built on a foundation of laboratory 
AMR surveillance and powered by similar multidisciplinary application of emerging high-
throughput biotechnologies (3). The big data outputs obtained in such a way are attractive to 
public health precisely because they are amenable to mathematical modeling of the ecological 
and evolutionary processes that lead to AMR (4). These dynamic aspects of infection are complex 
and have led to a widening comprehension gap. Consequently, the growing public recognition 
of AMR has yet to acquire a more sophisticated understanding of its personal implications (5, 
6). Health professionals who share our concern about escalating AMR support the translation 
of global policy into action at local, national, and international levels (7). A global campaign 
to contain and control AMR needs translation from strategic policy into day-to-day health-care 
practice. Strategy; the practice of the art of war by the strategos or general, includes the broader 
considerations of game theory, complexity, business, and management strategy (8). Biocomplexity 
provides an attractive framework for placing the cell and molecular biology or biomedical end 
of the AMR scale in a broader context that includes the clinical pathology of tissues and organs, 
and ultimately population health including all professional, social, and government regulation 
(9). So, to understand the mechanistic workings of an emerging public health phenomenon 
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such as the rise in AMR infections, it is necessary to descend 
the  scale of biological organization from population health 
to the molecular and cellular mechanisms of multiple-drug 
resistance in different bacterial species (10). A robust assess-
ment of the broad consequences of AMR requires the converse; 
an ascent from a specific AMR phenotype to multinational 
surveillance review (11, 12). An unavoidable feature of AMR 
is its capacity for unpredictable double transmission: the ability 
to not only enhance case-clusters of transmissible disease, but 
also for transmission between resistant and previously sensitive 
bacteria contributing to novel disease case-clusters, as seen in 
the dissemination and proliferation of multiple mechanisms 
of carbapenem resistance (13). Both specific mechanisms and 
means of AMR transmission need consideration, since both the 
AMR mechanism and its transmission will impact on the ecol-
ogy and epidemiology of AMR infection and have implications 
for the measures needed to control AMR (14). New analytical 
systems biology tools provide scope for evidence-based design 
of AMR surveillance and control (15). The complex picture that 
emerges can be used to develop an AMR narrative that covers 
the wide range of AMR molecular signatures, multiple bacterial 
species, and AMR mechanism combinations across the broad 
scale of biological organization (3). However, other emerging 
systems biology methods such as proteomics, metabolomics, 
and bacterial cytomics have yet to be integrated in a holistic 
AMR analysis that forms a more compelling argument for 
a specific causal effect (16). Practical use of this approach 
to attribution of causality has been explored in the field of 
microbial forensics and has wider application in linking the 
different tiers of analysis up to a strategic level (17). The O’Neill 
Review identified critical vulnerabilities that could be exploited 
in control of the global AMR problem and made a series of 
recommendations (18):

 1. A massive global public awareness campaign,
 2. Improve hygiene and prevent the spread of infection,
 3. Reduce unnecessary use of antimicrobials in agriculture and 

their dissemination into the environment,
 4. Improve global surveillance of drug resistance and antimicro-

bial consumption in humans and animals,
 5. Promote new, rapid diagnostics to cut unnecessary use of 

antibiotics,
 6. Promote development and use of vaccines and alternatives,
 7. Improve the numbers, pay and recognition of people working 

in infectious disease,
 8. Establish a Global Innovation Fund for early-stage and non-

commercial research,
 9. Better incentives to promote investment for new drugs and 

improving existing ones.

tHe criticAL DecisiON cONtiNUUM

The O’Neill Review recognizes that no single measure will solve 
the problem of AMR and only seeks to lay out a broad agenda. The 
review’s introduction emphasizes the inability of current diag-
nostic procedures to provide rapid and comprehensive answers, 
noting that it is

…incredible that doctors must still prescribe antibiotics 
based only on their immediate assessment of a patient’s 
symptoms, just like they used to when antibiotics first 
entered common use in the 1950s.

Antibiotic prescribers face three major obstacles: (a) AMR is 
an abstract concept for all but its victims and their physicians; 
(b) detection of specific forms of AMR does not conclusively 
determine the best choice of anti-infective therapy; and (c) in 
severe infections, the wait for laboratory evidence on which to 
base a choice of antibiotic can have fatal consequences. This 
last consideration remains a key promoter of emerging AMR 
and could be described as poorly targeted personal medicine; 
the antithesis of precision public health. Half a millennium ago, 
Machiavelli observed that the increase in diagnostic certainty 
with the passage of time leads to reduced treatment success 
(19). This makes the physician reluctant to wait for the defini-
tive culture results and subsequent antimicrobial susceptibility 
before commencing treatment. The clinical laboratory still 
relies on culture-based methods (20), despite continued interest 
in sepsis biomarker and other culture-independent technolo-
gies. The definition of sepsis has been a point of debate, since it 
rests on a range of non-specific clinical features and laboratory 
indicators. The most recent consensus statement on sepsis rec-
ognizes only two clinical categories (sepsis and septic shock) 
and recommends preliminary patient assessment with an easily 
applied clinical scoring method (qSOFA) (21). The three criti-
cal decision steps in the early stages of clinical management of 
sepsis occur before-, at-, and immediately after hospital admis-
sion, which approximate to determination of illness severity, 
its etiology and the choice of definitive therapy (Figure  1). 
From a precision public health perspective, these correspond 
to pre-hospital point of care tests that distinguish viral from 
bacterial infection, rapid hospital biomarker tests for sepsis, or 
culture-independent tests for severe viral infection and bacte-
remia and rapid determination of antimicrobial susceptibility. 
The greatest benefit is most likely to be a pre-hospital, rule-out 
test that distinguishes possible bacterial from viral infection 
(22). Improved speed and accuracy of bacterial detection and 
antimicrobial susceptibility testing has thus become a priority 
in managing the subsequent stages of sepsis and demands a 
culture-independent approach (23).

ANtiMicrOBiAL sUscePtiBiLitY tests

The mechanisms of AMR are numerous, increasing in variety, 
prevalence, and geographic distribution (24), but the ecological 
inevitability of AMR should not have caught us by surprise. 
Many antimicrobial agents are derivatives of naturally occur-
ring compounds, whose corresponding AMR has its origins in 
the environment in which the antimicrobial compound evolved 
(25). However, the global success of a small number of mul-
tiresistant species such as Klebsiella pneumoniae (26) happened 
faster than predicted. The invisible, abstract nature of this public 
health threat is one of the more difficult aspects of the challenge 
we now face. It is unfortunate that the clinical laboratory mark-
ers of AMR do not translate into specific infectious diseases like 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


FiGUre 1 | the sepsis management continuum, showing alignment of time-critical clinical decision points with clinical microbiology laboratory data 
generation.

3

Inglis and Urosevic Antimicrobial Resistance Countermeasures

Frontiers in Public Health | www.frontiersin.org February 2017 | Volume 5 | Article 6

septicemia, pneumonia, or meningitis. The bacterial species 
names that appear on public health notification lists are not 
by themselves notifiable diseases. Despite its limitations, the 
international standard method of antimicrobial susceptibility 
testing; broth microdilution minimum inhibitory concentra-
tion (MIC), converts the susceptibility of a particular bacterial 
isolate into a comprehensible measurement (27). The widely 
performed disc diffusion susceptibility test converts antimicro-
bial susceptibility into a visible and qualitative approximation to 
clinical outcome; sensitive or resistant. Disc diffusion and MIC 
tests, therefore, generate measurable and clinically valuable 
indicators of the antimicrobial effect against named bacteria, 
whereas resistance mechanism detection by nucleic acid ampli-
fication, gene sequencing, or other molecular means is not a 
reliable quantitative measure of antimicrobial sensitivity. The 
guidance these susceptibility tests give the prescriber in their 
choice of antimicrobial agent relies on a second growth step, 
which adds a further delay to the clinical laboratory process. 
Many prescribers are not interested in the specific identity of 
AMR mechanisms, particularly if the overall AMR phenotype 
is a combination of multiple molecular mechanisms, with var-
ied in vivo expression and an unpredictable impact on clinical 
outcome. A carbapenem-resistant K. pneumoniae septicemia 
cannot be treated with a carbapenem, whether the mechanism 
of resistance is NDM-1, OXA-48, VIM, or IMP. The antimi-
crobial susceptibility phenotype is, therefore, a critical decider 
in the sepsis management continuum, even if the laboratory 
result comes 24–48  h after the initial choice of presumptive 
antimicrobial therapy. The susceptibility phenotype currently 
determines definitive therapy and ultimately informs the 
wider public health community. At present, surveillance data 
on antimicrobial susceptibility vary with laboratory capability, 
capacity, and locally determined public health priorities. These 
are all under-resourced, particularly in remote regional settings 
and in low-income countries (28). Nevertheless, multinational 

networks such as EARSS and CAESAR collect regional AMR 
data and interest is growing in standardizing the susceptibility 
tests on which surveillance relies (29–31). The monitoring task 
is easier when centers that combine a longstanding interest in 
sepsis and AMR collect prospective data from invasive infec-
tions (32).

eMerGiNG LABOrAtOrY APPrOAcHes 
tO AMr

Rapid, culture-independent phenotypic tests are needed 
that improve precision in antimicrobial prescribing (17, 18). 
In particular, tests are needed that measure antimicrobial 
susceptibility, indicate effective treatment choices and deliver 
their results closer to the point of care. The wide diversity of 
molecular mechanisms of AMR limits the value of nucleic acid 
amplification (PCR assays) as a guide to antibiotic selection in 
acute clinical settings, particularly for carbapenem-resistant 
Gram-negative bacteria, which require supplementary tests to 
improve test sensitivity and overall coverage (33). Much effort 
has been devoted to detection of AMR mechanisms by rapid 
whole bacterial genome sequencing (3). Though this approach 
is not yet feasible as a routine service in the clinical laboratory, 
bacterial genome sequencing has clear application to public 
health investigations of AMR infection (3, 11, 26, 34), where 
decision triggers and task selection procedures can be applied 
to avoid overloading reference laboratory capacity. Clinical 
microbiologists who have to cope with the practical scientific 
challenge of detecting AMR while patients are still under 
treatment concentrate their effort on standardizing accurate 
measurement of the AMR phenotype (29). Faster methods of 
antimicrobial susceptibility testing are now a high priority, as 
noted in one of the O’Neill Review’s technical reports (35). 
It is here that systems biology applications are beginning to 
bear fruit (36). However, careful validation is necessary before 
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emerging technologies can be used in the clinical laboratory. 
This requires test verification and harmonization to maximize 
analytical value and avoid poorly coordinated proliferation (29, 
30). Systematic validation of new antimicrobial susceptibility 
test methods against agreed reference standards is a necessary 
step to delivering sufficient confidence in emerging laboratory 
methods before they can be used for surveillance and control 
purposes. High profile incentives such as the UK Longitude 
Prize are being used to attract new candidate tests for this 
lengthy development process (37).

A BLeND OF cOUNterMeAsUres

Countermeasures need purpose, intent, direction, and evidence 
for their efficacy. An understanding of the complex intersection 
of laboratory, clinical, and public health insights will improve 
their beneficial effect (16). AMR-specific countermeasures, 
therefore, operate at three levels (Figure 2) beginning with faster 
and more accurate phenotypic laboratory assays that use agreed 
international standards (29, 30, 36). The O’Neill Review expects 
new laboratory technology to enable recognition of sepsis, its 
etiology and antimicrobial susceptibility faster than current 
culture-dependent methods (35). At the clinical level, prescrib-
ing physicians need incentives such as faster confirmation of the 
etiology of infection and its antimicrobial susceptibility to use the 
evidence-based antimicrobial therapy advocated in the O’Neill 
Review (18). In addition to the recommended clinical sepsis score 
(21), prescribing physicians need a bacterial infection rule-out 
test to support their initial sepsis triage (22) and innovative 
methods of rapid antimicrobial susceptibility testing to support 
their decision-making at the point of care. However, a clearer 
picture of the global burden of AMR and the measures to control 
it will not emerge until variations in regional AMR notification 
have been harmonized through introduction of a sepsis/AMR 
registry (Figure 2). Other fields of medicine, such as oncology, 
use case registries to develop and refine their disease-specific 
countermeasures (38, 39). A sepsis registry could be used in 
similar manner as a precision public health tool to stratify sepsis 

by syndrome, etiology, AMR phenotype, and resistance mecha-
nism, and, therefore, to coordinate AMR countermeasures. The 
recent consensus definition of sepsis is a helpful starting point 
for discussion of a sepsis registry (21), but requires a stronger 
laboratory-based emphasis on bacterial etiology and AMR. 
Precision is measurable, particularly when supported by archival 
material in bacterial culture collections and registered clinical 
biobanks. Claims for the increased accuracy of new methods 
should thus be verifiable and linked with the clinical laboratory, 
where the precision of antimicrobial susceptibility tests is already 
monitored against reference standards and verified by regulatory 
agencies (29, 30).

cONcLUsiON

Antimicrobial resistance has become a global tragedy of the 
commons, driven by a complex bacterial survival trade-off at 
a cellular level (40). Now that AMR is recognized as a global 
priority, it is time to learn to use additional systems biology tools 
to improve the speed and accuracy of antimicrobial prescribing 
at an individual patient level and simultaneously increase the 
precision of AMR sepsis surveillance. Improved confidence 
in the recognition of early sepsis, faster determination of its 
etiology, and antimicrobial susceptibility phenotype, and real 
time surveillance through an AMR sepsis registry will lead to 
more effective coordination of clinical, laboratory and public 
health AMR countermeasures. Given the speed with which 
antimicrobial agents have been compromised by AMR, there 
is no time to lose introducing these laboratory and surveillance 
tools into wider use.
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