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Introduction
Thinking machines have long occupied and fascinated the 
human mind, captivating us with their potential to radically 
alter society. As the digitization of society has progressed and 
massive amounts of data have accrued, a new vocabulary has 
emerged. The scale of data collection has given rise to big data, 
and the field of data science has sprung from the marriage of 
statistics and computer science necessary to exploit this new 
resource. Statistical modeling became machine learning, and as 
new, sophisticated machine learning approaches achieved 
unprecedented performance, artificial intelligence (AI) perme-
ated our lexicon. Whereas truly thinking machines remain 
beyond our reach, there is no doubt that we have entered a new 
era with these technologies transforming every facet of our lives.

Health care is no exception, and the prospect of transform-
ing care delivery by way of these technologies is a vibrant and 
rapidly growing area of research.1–5 Dissatisfied with besting 
humans at jeopardy, IBM’s Watson has set its sights on health 
and disease (and learned so far that these are very difficult 
domains, indeed).6 DeepMind, having wowed the world with a 
reinforcement learning agent that achieved superhuman per-
formance at Go, now has a health care division.7 Geoffrey 
Hinton,8 the inventor of backpropagation, the fundamental 
mechanism by which deep neural networks are trained, has 
now been published in the Journal of the American Medical 
Association. However, as many have commented, the challenges 
of bringing these technologies to bear in the care of human 
beings are myriad.1,9

The potential success of these new technologies rests largely 
on 2 key drivers: affordable, accessible high-performance 

computer hardware and an explosion of data. The latter is often 
taken for granted. The medical literature has been quick to 
embrace big data, but out-of-date privacy laws, competitions 
based on the profit motive, a culture wary of innovation and 
collaboration, and disparate data representations continue to 
hinder efforts to truly benefit from the fruits of a big data revo-
lution. However, there has been and continues to be much 
work directed at overcoming these challenges.

Critical care medicine concerns itself with the care of unsta-
ble, high-acuity patients, particularly those with multi-organ 
failure; continuous physiologic monitoring is consequently the 
hallmark of the intensive care unit (ICU). With the near-total 
digitization of health care, the ICU represents an incredibly 
fertile ground for the proliferation of big data technologies. 
Advancements that take advantage of this wealth of data prom-
ise to fortify our currently relatively fragile evidence base by 
providing large cohorts for knowledge discovery and causal 
inference, and will provide the substrate for the next generation 
of clinical decision support tools.10 Reliable clinical data, 
whether digital or not, have always been the basis for caring for 
our patients, but digitization provides the opportunity to lever-
age the troves of data generated in the ICU to advance the field 
into a new era of medicine. In this perspective review, we exam-
ine the fundamental role of data as we present the current pro-
gress that has been made toward a data-driven precision critical 
care medicine.

Critical Care Databases
Knowledge discovery, decision support model development, 
and the education of the next generation of clinician 
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data scientists all require health data to be available and easily 
accessible. In fact, we envision a future in which all clinicians 
will be data scientists to a certain degree. Prior commercial 
databases developed primarily for the development of bench-
mark models and national registries lack the resolution and 
volume required to support the breakthroughs of this new 
era.11 However, over the last 2 decades, we have witnessed the 
emergence of large-scale, highly granular, critical care data-
bases for use in observational research and predictive model 
development.

The Multiparameter Intelligent Monitoring in Intensive 
Care (MIMIC) database was the first resource of this kind.12 
Developed and maintained over the past 2 decades by the MIT 
Laboratory for Computational Physiology (LCP), the database 
is now its third iteration as the Medical Information Mart for 
Intensive Care (MIMIC-III) database.13 The MIMIC-III 
database contains high-resolution and multi-modal de-identi-
fied data from the electronic health record (EHR) associated 
with 53 342 distinct hospital admissions to the Beth Israel 
Deaconess Medical Center (BIDMC) in Boston, 
Massachusetts. The data include, but are not limited to, vital 
sign recordings and waveforms, laboratory data, clinical notes, 
diagnostic reports, and administered interventions, including 
medications. Some of the data are quantitative or structured, 
but much requires extraction from text format.

In addition to MIMIC-III, the LCP partnered with Philips 
to release de-identified data from the Philips eICU Research 
Institute. The eICU Collaborative Research Database (eICU-
CRD), now at version 2.0, is a multi-center critical care data-
base containing data from more than 200 000 ICU admissions 
from across the United States that were archived from Philips’ 
ICU telehealth platform.14 This resource allows for the devel-
opment of models with populations more representative of the 
entire United States, ascertaining the generalizability of find-
ings and models.

Long believing that open access to data spurs innovation 
and accelerates progress, the LCP makes MIMIC-III and 
eICU-CRD publicly available to any individual who completes 
a standard course on human subject research and signs a data 
use agreement. In doing so, these data have allowed for count-
less projects in academia and industry, and the availability of 
MIMIC-III has made the BIDMC ICU population the most 
intensely studied critically ill cohort to date. In addition, the 
data use agreement for MIMIC-III requires that the code for 
projects developed with MIMIC-III be publicly shared. This 
has led to the rapid development of reusable concepts and their 
respective codes and queries, with the LCP maintaining a large, 
publicly available code repository.15 The availability of this 
code accelerates research and promotes reproducibility by 
ensuring that common concepts are implemented consistently 
across studies.

By way of international collaborations that will be discussed 
further below, MIMIC-III has inspired the development of 

similar critical care databases in Spain, Brazil, China, Australia, 
and Switzerland. The existence of these databases drives simi-
lar progress in those respective countries and should lead to an 
international system of data sharing capable of supporting the 
development of large international observational cohorts and 
generalizable predictive models. Unfortunately, there remain 
major barriers to data sharing endeavors.

From a technical perspective, international data sharing rep-
resents a complex challenge. There is currently no widely 
accepted database structure for critical care databases. Should 
such a structure be developed, disparate concepts between cent-
ers would require harmonization, and we currently lack a com-
mon standard for representing various sources of clinically 
relevant information.16 As medical centers have substantial dif-
ferences in the way care is delivered, with variable access to 
medical technologies, and cultural differences in the way care is 
documented, the development of a system for cross talk between 
critical care databases would be a major engineering feat.

Varying perspectives on privacy and data sharing represent 
an even greater barrier, and the prospect is increasingly limited 
by complex legal frameworks.17 For example, the European 
Union (EU) General Data Protection Regulation (GDPR) 
applies to all data controllers and processors of personal data 
for subjects in the EU regardless of whether the processing 
occurs in the EU or not, and thus databases based outside of 
the EU must comply with GDPR if residents from the EU are 
included in the data. Therefore, the linking of MIMIC-III 
which contains subjects not requiring explicit consent, to a 
database from the EU for a larger, more broadly applicable 
analysis would require explicit consent be obtained by the 
researchers if anonymization is deemed inadequate. There are 
also numerous opponents to public data sharing on the grounds 
of missed financial opportunities to monetize these intrinsi-
cally valuable data.18 Together, these barriers hinder progress 
toward the development of a global network for health data 
exchange, and legal and ethical frameworks must evolve for us 
to make progress toward this ultimate goal.

Collaborative Data Science
Deriving insight from large EHR databases is a non-trivial 
task requiring skills and expertise that span multiple disciplines 
from clinical intensive care to sophisticated statistical methods. 
The methods by which data are explored, processed, harmo-
nized, transformed, and modeled fall well beyond the purview 
of traditional medical training and can lead to misunderstand-
ings of what can and cannot be accomplished with these tools. 
As implementation of these methods often requires acumen 
with programming languages like SQL, Python, and R, clini-
cians may find themselves overwhelmed, even when they have 
a relatively sound understanding of complicated biostatistical 
approaches.

Similarly, data scientists rarely have the clinical insights to 
know what questions are relevant to medical care and how the 
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data themselves were generated in practice and how they 
should be interpreted. Consider also that patterns of missing 
data in the EHR are rarely uninformative: a serum lactate level 
is ordered when physicians are concerned about the adequacy 
of organ perfusion, and thus the very presence of this labora-
tory test in a patient’s data tells us something about the clinical 
context. This small insight is obvious to physicians, but the 
apparent “missingness” of lactate values might perplex an unin-
formed data scientist and lead to an incorrect modeling deci-
sion. Similarly, a key step in model building processes is feature 
engineering and selection. Considering the breadth of data 
available in an electronic medical record, when should, for 
example, a serum phosphate level be included in a predictive 
model? Certainly, it will be more useful when modeling a pop-
ulation of patients with kidney disease, but likely less useful in 
a population of patients with acute trauma.

There has been no dearth of literature arguing for changes 
in medical education such that the next generation of clinicians 
can understand and work with complex statistical methods, 
and grasp the computational approaches that will undoubtedly 
be incorporated into their practices.19–21 That said, whereas the 
clinician data scientist will surely emerge (in a manner akin to 
the translational scientist) to bridge the computational and 
clinical science realms, the future of medical research and 
health care delivery will progressively rely on collaboration 
between clinicians and data scientists. The term datathon has 
thus been introduced as a powerful tool in linking these dispa-
rate worlds.22–24 Pioneered by MIT Critical Data, a consortium 
founded by members of the LCP and the Computer Science 
and Artificial Intelligence Laboratory (CSAIL), datathons pair 
clinicians and data scientists to challenge them to work together 
to solve a clinical problem.22,23,25–27 Clinicians learn the nuances 
of data extraction and model development, and data scientists 
are provided invaluable insights into clinical data capture and 
decision making.28

The success of the datathon model has relied heavily on the 
availability of data. The MIMIC-III and the eICU-CRD 
databases serve as the substrates on which clinicians can learn 
to ask questions amenable to secondary analysis, and data sci-
entists can begin wrangling real health care data. The events 
often begin with physicians from local hospitals pitching their 
research questions to the audience. Teams are formed and 
immediately get to work to parse the question into a study 
design, extract the cohort, and build models with the support 
and guidance of clinical data scientists from MIT Critical 
Data. With the publicly available code repository containing 
many of the common concepts required for critical care 
research, projects can be rapidly performed in the span of a 
weekend.15,28 Mentors provide feedback throughout the entire 
process and ultimately evaluate the clinical relevance, technical 
implementation, and reproducibility of the final projects.

MIT Critical Data has hosted more than 20 datathon events 
in 10 countries across 5 continents jumpstarting numerous 

international collaborations. Many of the projects pitched and 
initiated at datathon events are eventually published in the sci-
entific literature.29–32 In addition, as mentioned in the previous 
section, these international collaborations have demonstrated 
the value of secondary EHR analysis to countless decision mak-
ers at health care institutions across the world and have led to 
the development of similar critical care databases. Despite the 
aforementioned barriers, this trend is laying the groundwork for 
a network of EHR data sharing that will ultimately allow for 
multi-national and multi-institution analyses.

This collaborative format, in which clinicians propose 
research questions and work with teams of data scientists to 
address them, has also given rise to a course at the Harvard-
MIT Division of Health Science, and Technology (HST). The 
course “Collaborative Data Science for Medicine” introduces 
students to MIMIC-III and the eICU-CRD, and features lec-
tures on database querying, statistics and epidemiology, data 
exploration and visualization, machine learning, and causal 
inference. The course, now in its third year, produces numerous 
abstracts, presentations, and publications and will serve as a 
model for other courses around the world.33–37 To promote 
such efforts, MIT Critical Data has published a textbook for 
the course, Secondary Analysis of Electronic Health Record Data, 
and made it freely available as an eBook online.38

All of these efforts seek to build a bridge between clinician 
and data scientist that works to improve understanding of 
health and disease, and ultimately impact patient outcomes. 
Working side by side, clinicians and data scientists provide a 
skill set far greater than the sum of their parts. This partnership 
is the only way medicine can hope to navigate the big data age 
successfully, with the education and training of clinicians at 
every level interfaced with data scientists.

Machine Learning and Decision Support
Clinical decision making is rife with uncertainty: we seek to 
leverage the evidence derived from clinical trials and observa-
tional studies, but often the specific study we require does not 
exist, and when it does, it is usually insufficient in one or more 
respects. Furthermore, as the ground truth is constantly shift-
ing in medicine, even a perfectly performed and applicable 
study from a few years prior may no longer apply as new tests 
and treatments are incorporated into practice and patient 
demographics change. Information gaps are one of the drivers 
of variation in care as physicians rely on their prior experiences 
and training as well as institutional culture to guide decisions. 
A process of continually using routinely collected clinical data 
to update knowledge and guide practice, intimately linking 
knowledge generation and care delivery, represents a new para-
digm that promises to bring us closer to a true evidence-based 
care.39 This concept has often been referred to as the Learning 
Healthcare System.40

The emergence of sophisticated machine learning methods 
has inched us closer to this vision, and we have recently seen a 



4 Biomedical Engineering and Computational Biology 

variety of exciting implementations of machine learning appli-
cations in critical care medicine.1,3 It should be noted that this 
is not a completely novel concept in critical care as approaches 
like multivariate logistic regression, a form of machine learn-
ing, have long been applied in this specialty. For example, ill-
ness severity scores such as the APACHE (Acute Physiology 
and Chronic Health Evaluation) system represent an early 
form of machine learning in health care, although APACHE 
and similar models have generally not been used to guide clini-
cal decision making.11,41,42 More recent applications of machine 
learning with EHR data have included gradient boosted deci-
sion trees that can forecast acute kidney injury and predict 
readmission; convolutional neural networks that can diagnose 
diabetic retinopathy; recurrent neural networks that can prog-
nosticate directly from clinical time series data; and a rein-
forcement learning agent that can make treatment decisions in 
sepsis.43–49 This last example encapsulates the essence of a vast 
collective experience: the agent was trained on the manage-
ment decisions of clinicians caring for more than 100 000 sep-
sis patients and learned to tailor treatment to each individual 
patient with the goal of reducing 90-day mortality.46

Many of these more complex methods befuddle clinicians. 
Rooted in intricate mathematical concepts and proofs, their 
correct application to clinical problems is not trivial. However, 
formatting data for model training and fitting a model cor-
rectly to minimize the generalization error represent the easiest 
steps in the creation and deployment of clinical decision sup-
port tools. As has been stressed above, the first requirement in 
this process is the data. Data preparation for machine learn-
ing—which includes aggregation, integration, and harmoniza-
tion—requires substantial effort and buy-in from health care 
administrators, hospital information technologists, data engi-
neers, and data scientists. The challenge of navigating these 
barriers dwarfs that of model development. Should these 2 
steps be successfully traversed, bringing the model to the bed-
side presents an equally monumental challenge. Model safety 
with attention to identification of algorithm bias must be con-
sidered and clinical validation is crucial; usability and informa-
tion overload must also be considered.50,51 We will focus the 
remainder of this section on specific challenges to developing 
models that can be effectively incorporated into routine care.

George EP Box famously stated, “all models are wrong, but 
some are useful.”52 The question then is how do we determine 
which are useful. Classification models are frequently described 
by their ability to discriminate. Discrimination is most often 
measured by the area under the receiver operating characteris-
tic curve (AUROC).53 However, the AUROC is a less appro-
priate measure of performance when a model’s task is detection 
of rare events, as is common in the critical care context, because, 
for rare events, specificity disproportionately drives accuracy.54 
The area under the precision-recall curve (AUPRC) should be 
used in these instances, as it provides a more accurate measure 
in the face of rare events.

Neither of these metrics captures a model’s performance 
regarding the quantification of absolute risk, which is often of 
greater clinical value than discrimination of event from non-
event.53 A classification model’s ability to adequately quantify 
absolute risk probabilities is termed calibration. Calibration 
may be examined visually with reliability curves and may be 
quantified by way of observed-to-predicted ratios; null hypoth-
esis tests such as the Hosmer-Lemeshow goodness-of-fit test 
are not recommended.53 However, calibration has been less 
emphasized in the literature and has recently been described as 
the “Achilles Heel” of clinical predictive model development.55 
Model calibration is sensitive to shifts in measured and 
unmeasured covariates, and thus if a patient is not drawn from 
a population similar to the cohort the model was trained on, 
the model may provide an incorrect risk estimate.56 We have 
broached this problem in illness severity score development, 
but ultimately deployed models will need to have calibration 
continuously evaluated, requiring regular re-calibration, as well 
as users who have the ability to tell when a model does not 
apply to the patient in front of them.57

Although correct metric selection should drive the devel-
opment of a well-performing model, there remains an impor-
tant, and as of yet addressed, caveat: causation.58 Machine 
learning approaches have demonstrated incredible perfor-
mance in fitting the associations inherent in the underlying 
data generating process while avoiding overfitting the random 
noise that threatens generalization. Nevertheless, these models 
do not grasp causal structure. As such, they optimize for met-
rics which ensure prediction based on the associations within 
the data, but sometimes these associations are spurious and 
the model relies on an association from a “backdoor path” pro-
vided by an unmeasured variable or variables. For example, 
Caruana et  al59 found that asthma was protective of death 
from pneumonia when building predictive models for pneu-
monia outcomes. In fact, in the institution where the data were 
obtained for the model, an asthma attack triggers a higher 
level of care. A similar issue has been noted in the application 
of illness severity scores to morbidly obese patients who are 
critically ill: their physiology is altered at baseline so that they 
appear sicker than they truly are based on cut-off values estab-
lished in a cohort with few morbidly obese patients.33 This 
blindness to causality has recently been discussed more broadly 
within the context of training models on data wrought with 
human biases. Racial and sex underrepresentation within 
datasets as a result of structural biases may lead to models that 
misclassify underrepresented groups, causing misallocations in 
care that ultimately amplify health care disparities.60 Model 
developers must therefore take care because current machine 
learning approaches are blind to causal structure. Schulam and 
Saria61 have approached this with some success by attempting 
to model not only the factual Gaussian processes present in 
data, as current approaches do, but also the counterfactual 
Gaussian processes. However, there is much work to be done 
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toward the development of models that can identify causal 
structure.

The problem of causality speaks to the greater problem of 
model interpretation. As models grow more sophisticated, they 
also tend to become less interpretable. Deep learning models 
boast a remarkable ability to examine complex non-linear 
interactions between inputs, exploiting patterns within the data 
beyond what the human mind could identify alone, but these 
models are difficult to interpret and currently represent predic-
tive black boxes.8,62 A lack of interpretability is a non-starter 
for physicians in practice and a significant barrier to incorpora-
tion of such models into clinical decision making.

Shortliffe and Sepulveda63 highlighted this issue and 
emphasized the need to consider how these tools will actually 
be deployed in practice. In a recent publication, they provide a 
series of criteria for the development of clinical decision sup-
port tools. Their insightful considerations reflect the real-life 
barriers to uptake including clinician workload and application 
usability. As most models end up in a graveyard of citations 
that are never deployed, future efforts should focus on usability, 
interpretability, and, most importantly, impact on relevant pop-
ulation or health system outcomes.

Toward a Precision Critical Care
Precision medicine seeks to tailor care to the individual, and 
precision critical care has become an active research area.64 
Whereas clinicians have always individualized care based on 
their interpretation of clinical data, the term “precision” has 
come to mean the use of genomics, expression analyses includ-
ing proteomics, metabolomics, and other data sources to target 
the mechanisms which define specific disease phenotypes as 
well as therapeutic responsiveness. This philosophy has flour-
ished in oncology, where driver mutations and pathway-spe-
cific therapies have emerged. However, the critically ill are 
defined by multi-organ failure occurring via a complex inter-
play of exposure, host response, and genomic substrate and 
expression along with innumerable other dimensions of varia-
tion that challenge the successful application of such 
approaches.65 These -omics data are inherently big data, and 
when this domain is eventually merged with the clinical data, 
the aforementioned methods, as well as approaches not yet 
invented, will be essential in detecting true signal from back-
ground noise.66

The availability of large EHR databases and sophisticated 
modeling approaches bring us closer to the promise of a preci-
sion critical care. The granularity afforded by access to all of the 
data a patient generates presents an opportunity to examine 
nuances of care previously inaccessible to the unaided individ-
ual clinician. This ability to capture and analyze all the availa-
ble data will allow clinicians to continuously trend signals to 
support the iterative formulation of assessments and plans.67 
These data at the population level should also assist in the 
future creation of more precise therapeutic interventions than 

currently available in critical care. For example, individualized 
differences in the nature or timing of the immune response to 
sepsis or trauma would inform the selection of treatment A 
rather than treatment B for a particular constellation of insult, 
host state of instability, and immunologic response.68 Artificial 
intelligence will grow to fill in the gaps in this process out of 
necessity as the volume and dynamics of the data inputs exceed 
even the abilities of a clinician dedicated to the bedside care of 
a single patient.

One example of a potential use for clinical data analytics is 
in the area of laboratory test interpretation. The idea that a 
normal range based on healthy individuals for most physiologic 
and laboratory data applies acceptably well to all critically ill 
patients is increasingly questioned.69 In practice, clinicians fre-
quently encounter large, but apparently clinically insignificant, 
deviations from these so-called normal ranges. A recent explor-
atory analysis performed in MIMIC-III examined this very 
concept, finding that whereas the distribution of laboratory 
values differed but also overlapped between those who had 
good outcomes and those who had poor outcomes, accepted 
reference ranges seemed irrelevant to differentiating these 2 
cohorts.69 Although only a proof-of-concept, this work marks 
a first step toward patient-individualized, context, and out-
come-based reference ranges. The work represents a diagnostic 
example, but precision medicine involves combined use of 
diagnostic and therapeutic precision. The latter may be repre-
sented by potential treatments for sepsis that are based more 
specifically on etiological, organ dysfunction, and immunologic 
factors.64,68

More abstractly, for any given patient in the ICU, there exist 
a set of recorded variables; the values of these variables, as well 
as the presence or absence of such data, and even the time of 
the data collection collectively define an interaction between 
the patient and the caregivers. Furthermore, each of these col-
lections of patient variables is an element of a data mart which 
defines the interaction between the ICU’s population, the sys-
tem within which the ICU exists, and the ICU’s caregivers. 
Formalizing these as the ingredients that define the substrate 
for understanding collective experience, we envision the next 
generation of EHR to support “dynamic clinical data mining” 
(DCDM).70 Specifically, DCDM would enable examination of 
any single ICU encounter within the context of similar encoun-
ters, where similarity is defined by some metric for grouping. 
This could be done as simply as applying certain exclusion and 
inclusion criteria from one ICU course to ascertain others, or 
by sophisticated unsupervised machine learning approaches 
that can identify clusters in large multidimensional data.

As critical care does not yet possess gene-based therapies, 
precision medicine in this area rests on a data-driven capacity 
to make more individualized decisions in a greater variety of 
clinical contexts. To begin to approach this task, we must start 
to store all pertinent data on individual patients, as we are 
doing, and develop open, de-identified population databases as 
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we are only beginning to do. Appropriate software, including a 
variety of machine learning applications, will be required to 
harness, analyze, and apply the data necessary to ensure that 
precision medicine can be practiced in this especially complex 
domain.

Conclusions
In the short term, with the emergence of powerful machine 
learning approaches, and data volumes that allow patients to be 
mapped across an expanding dimension of physiologic varia-
tions, we stand at the precipice of a new era of critical care that 
will be individualized in a data-driven manner. The barriers are 
myriad, but if clinicians, data scientists, and policy-makers can 
work together, the vision of a learning health care system may 
be realized. To achieve this vision of personalized care, physi-
cian collaboration with relevant experts such as data scientists 
is crucial. The training of physicians will require some very 
fundamental overhauls that may be poorly understood by and 
even in conflict with the educational hierarchy already in place 
in medicine. And most importantly, having the most complete, 
reliable, and interoperable data to work with represents a nec-
essary if insufficient goal for the infrastructure of a digital, 
learning health system for acutely ill patients.
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