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Abstract: Type 2 diabetes mellitus (T2DM) represents one of the biggest health problems in Mexico,
and it is extremely important to early detect this disease and its complications. For a noninvasive
detection of T2DM, a machine learning (ML) approach that uses ensemble classification models with
dichotomous output that is also fast and effective for early detection and prediction of T2D can be
used. In this article, an ensemble technique by hard voting is designed and implemented using
generalized linear regression (GLM), support vector machines (SVM) and artificial neural networks
(ANN) for the classification of T2DM patients. In the materials and methods as a first step, the data is
balanced, standardized, imputed and integrated into the three models to classify the patients in a
dichotomous result. For the selection of features, an implementation of LASSO is developed, with a
10-fold cross-validation and for the final validation, the Area Under the Curve (AUC) is used. The
results in LASSO showed 12 features, which are used in the implemented models to obtain the best
possible scenario in the developed ensemble model. The algorithm with the best performance of the
three is SVM, this model obtained an AUC of 92% ± 3%. The ensemble model built with GLM, SVM
and ANN obtained an AUC of 90% ± 3%.

Keywords: ensemble model; machine learning; logistic regression; support vector machine; neural
networks; type 2 diabetes mellitus detection

1. Introduction

According to the World Health Organization (WHO), diabetes is “a chronic metabolic
disease characterized by high levels of glucose in the blood, which leads over time to
serious damage to the heart, blood vessels, eyes, kidneys and nerves” [1], being Type 2
diabetes mellitus (T2DM) the most common type. T2DM develops primarily due to an
inactive lifestyle, lack of exercise, and body weight [2]. According to the International
Diabetes Federation (IDF), in 2021 there were 537 million cases in the world with ages
between 20 and 79 years, 541 million adults are at increased risk of developing T2DM [3].
For more than 60 million people living with T2DM, insulin is essential to reduce the risk of
kidney failure, blindness and limb amputation [4]. The proportion of people affected with
T2DM that is related to medical complications is alarming, either because of the lack of
these drugs or because of their cost. In Mexico, according to the 2020 mortality data given
by the Instituto Nacional de Estadística y Geografía INEGI, in Mexico, 1,086,743 deaths
were reported, of which 14% (151,019) correspond to deaths from diabetes mellitus. Of
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these, 52% (78,922) occurred in men and 48% (72,094) in women. Of the total deaths, 98%
(144,513) were due to non-insulin-dependent diabetes and 2% (3506) to insulin-dependent
diabetes [5].

A vital approach to preventing or treating T2DM is through early diagnosis [6]. One
of the most common ways to get this diagnosis is by having a blood test to check your
glucose levels and then taking action based on the results. These types of tests are generally
invasive, and only carried out after eminent symptoms, take some time and are very
impractical and these types of tests tend to be recurrent, which implies a significant amount
of money in the long term. The use of surveys to obtain clinical data from the population
of a certain region has been shown to be inefficient, expensive, and most of the time, they
cannot be trusted by researchers [7]. As this becomes a problem, hospitals and health
centers have taken it upon themselves to obtain the data directly from people with a known
diagnosis or comorbidity, using the appropriate technique to obtain it, and then recording
these results. With related clinical information, profiles with conclusive diagnosis in cases
of T2DM and observable factors can be taken and be compared with other clinical profiles
of people without diabetes prognosis, but with risk factors (control group). Some risk
factors are: overweight, high Low Density Lipoproteins (LDL), cholesterol or irregular
systolic blood pressure (SBP), among others [8]. These people should be the initial patients
to be compared, as there is a high probability that they are at least prediabetic or may
become part of the T2DM risk group in the near future. As the diagnosis and treatment of
T2DM takes time and is expensive for these institutions, it is necessary to use specific data
to develop low-cost models that help with the prognosis and save time and costs in the
process, reducing the progress and complications of a possible illness.

Machine Learning (ML) techniques have been used in recent years to use this data
and approach to solve or at least predict different diagnostic problems, such as diabetes [7],
COVID-19 [9], heart disease [10], Alzheimer’s [11], among others. An ML model can use cer-
tain data given a specific set of parameters and return a prediction as a result, which can be
later tested or checked against another set of data or untrained data from the same database
to validate the model, using the Area Under the Curve (AUC) among other performance
metrics to identify the variation or importance of a certain feature or group of features in
the detection of T2DM. The ensemble models are very important as they consist in group or
stack different models in order to have more robust results confirming or complementing
the final result of the experiments. The ensemble approach such as the work performed by
Cohen S. et al., (2021) [12], or contributing in the performance with improved models [13]
or treatment of bias [14], provide tools to group and improve models to generate better
or more robust results. The use of ML models to support the treatment or monitoring of
the physical state of a patient with T2DM presents important advantages, one of the most
notable is the reduction of continuous invasive glucose monitoring in insulin dependent
people. In the approximation from Daniel N. Thyde et al., (2021) who proposed detect-
ing adherence to once-daily basal insulin injections by machine learning, this approach
using logistic regression and convolutional neural networks; the results of this product
obtained an average accuracy of 79.7% [15]. This contribution provides a guideline in the
sense that it is necessary to make use of this type of tools in order to reduce the invasive
and repeated check of traditional glucometers and focus on the variations obtained by
continuous glucose monitoring, all this verified in simulated environments (the medtronic
virtual patient software is used). Hasan K. et al., (2020) propose an ensemble by weight
for diabetes prediction with the use of different models of machine learning: k-nearest
Neighbour, Decision Trees, Random Forest, AdaBoost, Naive Bayes, and XGBoost; does
data standardization with Z-Score, Principal Component Analysis-based dimensionality
reduction, 5-fold cross-validation, and Multilayer Perceptron (MLP) were employed. The
weighted ensembling of different ML models is also proposed, to improve the prediction
of diabetes where the weights are estimated from the corresponding Area Under ROC
Curve (AUC) of 0.950 (95%) [16]. This ensemble uses the PIMA Indian dataset [17]. The
proposal of Syed A.H. et al., (2020) is to develop a questionnaire-based cross-sectional
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study using conventional diabetes risk factors to study prevalence and association between
outcomes and exposure. The best performing classifier’s hyper-parameters were further
tuned with a 10-fold cross-validation and F1 score to select the final model. The purpose
of the study is to estimate the prevalence of the disease and calculate the odds ratio to
measure the association between exposure (explanatory variable) and the outcome variable
in the questionnaire based on the research plan. A decision tree model is proposed with a
final AUC of 0.88 (88%) [7]. Another use of ML models in diabetes, is reflected in the study
of Kazuya Fujihara et al., (2021) who propose to develop machine learning models for
decision making on the initiation of insulin treatment in Japanese patients with T2DM, their
purpose is to examine the ability of machine learning models to predict the initiation of
insulin use given by specialists and whether the machine learning approach could support
decision making by general practitioners for insulin initiation in patients with T2DM. The
models used were logistic regression and neural networks and the results were an AUC of
0.89–0.90 (89–90%) for logistic regression and 0.67–0.74 (67–74%) for ANN [18]. The use of
ensemble by stacking and soft voting proposed by Deberneh H. and Kim I. (2021) provides
the use of random forest, support vector machine and XGBoost as ML models to predict if
a patient is non-diabetic, pre-diabetic or diabetic. The features analyzed in this study have
similarities to the experiment presented, some of these features are: plasma glucose (FPG),
Glycated hemoglobin(HbA1c), triglycerides, BMI, age, uric acid, sex. The results obtained
contains 12 features to construct the models and an accuracy of the ensemble in 78% [19].
Kocbek S. et al., (2022) implements the Least Absolute Shrinkage and Selection Operator
(LASSO) for feature selection, with 80–20% split data for training and testing, respectively.
To predict undiagnosed T2DM, a Logistic Regression model is used, incorporating features
such as: glucose level (FPGL), age, gender, BMI and Waist circumference with the AUC of
0.818 (81.8%) as a single model proving that the LASSO-Logistic Regression combination is
a potent prediction tool to help as “interpretable models in healthcare that can contribute to
higher trust in prediction models from healthcare experts” [20]. Shaker E. et al., (2019) [21]
proposes a framework that classifies Diabetes by combining (ensemble) k-nearest neighbors,
naïve Bayes, decision tree, support vector machine, fuzzy decision tree, artificial neural net-
work, and logistic regression and Is evaluated using a real dataset collected from electronic
health records of Mansura University Hospitals (Mansura, Egypt). The results achieved are
90% of accuracy, 90.2% of recall = 90.2%, and 94.9% of precision. Kumari et al., (2021) [22]
proposed ensemble soft voting classifier gives binary classification and uses the ensemble of
three machine learning algorithms viz. random forest, logistic regression, and Naive Bayes
for the classification. Empirical evaluation of the proposed methodology has been con-
ducted with state-of-the-art methodologies and base classifiers such as AdaBoost, Logistic
Regression, Support Vector machine, Random forest, Naïve Bayes, Bagging, GradientBoost,
XGBoost, CatBoost. by taking accuracy, precision, recall, F1-score as the evaluation criteria.
The proposed ensemble approach gives the highest accuracy, precision, recall, and F1-score
value with 79.04%, 73.48%, 71.45% and 80.6% respectively on the PIMA diabetes dataset.
Further, the efficiency of the proposed methodology has also been compared and analysed
with breast cancer dataset. The proposed ensemble soft voting classifier has given 97.02%
accuracy on the breast cancer dataset. Singh N. et al., (2020) [23] develop a stacking-based
evolutionary ensemble learning system “NSGA-II-Stacking” for predicting the onset of
Type-2 diabetes mellitus (T2DM) within five years. For this purpose, publicly accessible
Pima Indian diabetes (PID) dataset is utilized. As a data pre-processing step, the missing
values and outliers are identified and imputed with the median values. For base learner
selection, a multi-objective optimization algorithm is utilized which simultaneously maxi-
mizes the classification accuracy and minimizes the ensemble complexity. As for model
combination, K-nearest neighbor (K-NN) is employed as a meta-classifier that combines
the predictions of the base learners. The comparative results demonstrate that the proposed
NSGA-II-Stacking method significantly outperforms several individual ML approaches and
conventional ensemble approaches. In terms of performance metrics, the proposed system
achieves the highest accuracy of 83.8%, sensitivity of 96.1%, specificity of 79.9%, f-measure



Healthcare 2022, 10, 1362 4 of 18

of 88.5% and area under ROC curve of 85.9%. Liu Y. et al., (2019) [24] proposed the use
of machine learning algorithms to improve the accuracy of type 2 diabetes predictions
using non-invasive risk score systems. The least absolute shrinkage and selection operator
(LASSO), smoothed clipped absolute deviation (SCAD), and minimax concave penalized
likelihood (MCP), which are commonly used on selecting variables for high-dimensional
models, were used to automatically select significant non-invasive risk factors for Type 2
diabetes. A more conservative model selection method for ultrahigh-dimensional model,
the iterative sure independence screening (ISIS) procedure for variable selection in logistic
regression and the traditional stepwise logistic regression were also applied to this dataset.
Support vector machine, tree-based methods (e.g., decision tree and random forest), and
neural network were three commonly used machine learning techniques for diabetes risk
prediction, the results of the ensemble model with a feature selector are AUC of 0.802
(0.780, 0.825), Sensitivity of 0.662 (0.614, 0.709) and Specificity of 0.702 (0.676, 0.728). All the
studies presented as related work, have developed models with a precision based mainly
on Glucose levels (Obtained by fasting plasma glucose (FPG) or oral glucose tolerance
test (OGTT)) or the H1A1c and selecting features as complement by making a comparison
between several others using stacking, ensemble or reflecting the results of each model
individually, it can be asserted that: Dependence on glucose levels or Hb1Ac to diag-
nose T2DM is a common practice but is not conclusive and strengthening the results of
individually validated models with other features is mandatory; for this, the ensemble
of models integrates the results of each model used in a single set, identifying the best
possible scenario with a selection of features defined by a supported technique, and with
the omission of glucose levels and HbA1c as part of the models implemented, there is a
possibility of identifying other features that can be considered individually or grouped, to
have the potential to become biomarkers of T2DM so that they can be tested, replicated
and used in diagnosis by the medical area. The proposal in this study is to implement
an ensemble ML model to classify patients with and without T2DM, based on clinical
data. Using these data as a non-invasive, practical, extremely rapid and accurate approach
similar to FPG, OGTT or HbA1c could be given. This model seeks to have exclusively
features non-related with glucose. With the use of multivariate models, which is, the use
of multiple features (Non-invasive and non-related glucose features in this work) applied
into a model so correlations or patterns can be found, used for the detection of T2DM. The
proposed ML ensemble model focuses on classifying the 1787 patients with an input of the
48 availables in the processed database. The dataset for this study is acquired from “Unidad
de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, IMSS”, with
the information of Mexican patients. The database contains anthropometric data, medical
treatment, complications, lipid profile and blood pressure. It is worth mentioning that there
are no public datasets with this type of patients.

This work is divided into 4 sections, Section 1 is this introductory part, Section 2
describes the data, models and the methodology used to carry out the development of
the ensemble model and how it is validated. Section 3 shows the results obtained and a
detailed analysis is included using the output graphs. Finally, Section 4 shows discussions,
conclusion and future work.

2. Materials and Methods

The methodology in Figure 1 is based on the metodology proposed by Akhtar T. et al.,
(2021) [25] and is explained as follows: the first step is to carry out a preliminary analysis
of the sample data, followed by data processing and imputation, preparing the folds and
data separation in test and training, performing the selection of features, developing the
models and integrating them into the ensemble to finally, validate the models with the test
data and extract the AUC, sensibility and specificity.
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Figure 1. Flowchart of the proposed methodology.

2.1. Sample

The database was provided by the Centro Médico Nacional Siglo XXI located in
Mexico City. All Mexican patients signed an informed consent letter and the protocol
meets the Helsinki criteria which were approved by the Ethics Committee of Instituto
Mexicano del Seguro Social under the number R-2011-785-018. It includes 1787 patients,
898 positive cases of T2DM and 889 control patients, according to gender, this database
includes: 892 men and 895 women. In Figure 2 shows the Starting correlation between
the features.

Figure 2. Feature Correlation Heat Map.
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2.2. Data Treatment

This step of the process includes the treatment of data, beginning with data imputation,
focusing on missing values and features outside the scope of this study; the next step is the
data imputation values included in the database and the final step is the normalization of
the data.

2.3. Data Imputation

This work uses an exclusion criteria of working only with the observations that have
complete data for all variables and discarding all others, removing all out-of-scope or unus-
able features [26], the features that identify patients, and IDs were removed, since they were
only internal identification data of the patient and a consecutive number, respectively. As in
the dataset exists a series of features and patients with missing data, all null or not available
data (NA) were removed, since the features identified with NA were exclusive to the cases
(patients positive for T2DM) and show nonexistent data in the control patients (patients
negative for T2DM) or these data were not collected or recorded, therefore, they were
not taken into consideration. Based on this criteria, all medications and their daily intake
amount were eliminated: Glibenclamide, Glibenclamide dose, Metformin, Metformin dose,
Pioglitazone, Pioglitazone dose, Rosiglitazone, Rosiglitazone dose, Acarbose, Acarbose
dose, Insulin and Insulin dose. Data from 3 patients, these patients (in all 3 cases) had
no data on the feature Hypertension under treatment; the features Glomerular filtration
rate, Age of diagnosis (age at which the positive diagnosis of T2DM is presented, data
exclusively in cases), HbA1c and T2DM complications were also eliminated, since there
are only present data for patients with T2DM. The T2DM complications feature contains
comorbidities associated with T2DM and are also outside the scope of this experiment, as it
contains NA in some of the cases and NA in all control patients.

Since the Glucose feature is a well-known biomarker, it is removed from the scope of
this experiment in order to review the performance of the other features. This feature in
univariate models test had over 90% AUC making it the most important of the features on
the dataset analyzed.

All features eliminated are listed in Table 1 and the features analyzed are listed in Table 2
that corresponds to all features included in LASSO and the models.

Table 1. Features discarded.

Feature Description Possible Values

Age DX Diagnosis age of T2DM Numeric Integer

Glucose Blood glucose levels Numeric

HbA1c Glycated Hemoglobin Numeric

GFR Glomerular Filtration Rate (blood test that
checks how well the kidneys are working) Numeric Integer

Glibenclamide Drug Treatment 0—No
1—Yes

Metformin Drug Treatment 0—No
1—Yes

Pioglitazone Drug Treatment 0—No
1—Yes

Rosiglitazone Drug Treatment 0—No
1—Yes

Acarbose Drug Treatment 0—No
1—Yes

Insuline Drug Treatment 0—No
1—Yes

Complications T2DM Complications associated with T2DM NEUROPATHY—Have neuropathy
RETINOPATHY—Have retinopathy

All features in this table were excluded from the analysis by data imputation.
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Table 2. Features description and possible values.

Feature Description Possible Values p-Value Univariate
Logistic Regression

Education Studies concluded by the patient

1—Elementary School
2—Secondary School
3—Technical level
4—High School
5—Professional
6—Postgraduate

0.00118

Salary Monthly income

1—Less than $2000.00
2—Between $2000.00 and
$5000.00
3—More than $5000.00

2−16

Sex Patients sex 0—Male
1—Female 6.7−16

Age Age of the patient in years Numeric Integer 2−16

WHR Waist Hip Ratio Numeric 2.89−5

BMI Body Mass Index Numeric 9.35−16

Urea Waste product resulting from the
breakdown of protein in the patient body Numeric Integer 2−16

Creatinine Waste product produced by muscles
as part of regular daily activity Numeric 0.000456

Lipids treatment Lipid levels in treatment 1—Lipid levels in treatment
2—Lipid levels without treatment. 0.956

Cholesterol Fat-like substance that is found
in all cells of the patient body Numeric 2−16

HDL High Density Lipoprotein
(corrected for medication) Numeric 3.77−12

LDL Low Density Lipoprotein
(corrected for medication) Numeric 2−16

Triglycerides Type of fat found in the patient body Numeric 2−16

TCHOLU Total Cholesterol (uncorrected) Numeric Integer 0.258

HDLU High Density Lipoprotein (uncorrected) Numeric Integer 2.12−5

LDLU Low Density Lipoprotein (uncorrected) Numeric Integer 0.240

TGU Triglycerides (uncorrected) Numeric Integer 2−16

SBP Systolic Blood Pressure
(corrected by medication) Numeric Integer 2−16

DBP Diastolic Blood Pressure
(corrected by medication) Numeric Integer 2−16

SBPU Systolic Blood Pressure (uncorrected) Numeric Integer 1.28−10

DBPU Diastolic Blood Pressure (uncorrected) Numeric Integer 2−16

HA-TX Hypertension Treatment 0—Not in hypertension treatment
1—In hypertension treatment 0.959

Output Classifier of patients 0—Patient negative for T2DM
1—Patient positive for T2DM -

All features in this table were included in the analysis by data imputation.

2.4. Normalization of Data

Since most features in the dataset analyzed have a different range of values, Z-Score is
implemented so the features can be compared to one another or be taken as part of the final
model more accurately setting them in the same range. The Z-Score consists of: calculating
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the mean of the values in a feature, calculating the standard deviation of the same values
and finally calculating the Z-Score with the following formula [27]:

Z =
x− x̄

σx
, (1)

where x is the raw score, x the mean of all the x and σ the standard deviation of x. This
process results in a value in a standard range, which is applied to different features. A
generic function whose default method centers and/or scales the features of a numeric
matrix has been implemented.

2.5. Feature Selection

LASSO is used in this work as it has the minor P-value of the feature selectors proposed
by Liu Y. et al., (2019) [24], the other selectors are: smoothed clipped absolute deviation
(SCAD), minimax concave penalized likelihood (MCP), stepwise logistic regression and
the iterative sure independence screening (ISIS). The dataset is under 10,000 patients and is
under the inclusion criteria of this work as it has several similarities in data set size and
features contained, including the T2DM classification (if the patient has T2DM or not), body
mass index (BMI),diastolic blood pressure (DBP), age, sex, Waist Circumference (considered
a better indicator than the WHR contained in this work), systolic blood pressure (SBP),
high density lipids (HDL), low density lipids (LDL), cholesterol, and other features related
to glucose. From 22 features presented in Table 2 after the preprocessing and elimination of
non-relevant or non-related to glucose features for the inclusion in the selection process,
LASSO is implemented, as a fast and solid solution as is presented in the study conducted
by Kocbek S. et al., (2022) [20], were sets an adjusted to a generalized linear models and
similar through the penalized maximum likelihood. The developed LASSO implementation
solves the problem:

min
(β0, β) ∈ Rp+1

[
1

2N

N

∑
i=1

(yi − β0 − xT
i β)2 + λPa(β)

]
, (2)

where
Pa(β) = (1− α)

1
2
‖β‖2

`2
+ α‖β‖`1 (3)

=
p

∑
j=1

[
1
2
(1− α)β2

j + α|β j|
]

(4)

is the elastic-net penalty as Zou and Hastie (2005) exposes [28]. Pα is a compromise between
the ridge-regression penalty (α = 0) and the LASSO penalty (α = 1). β0 is the constant
coefficient and β a vector of coefficients. The elastic-net penalty is controlled by α and
bridges the gap between the LASSO regression (α = 1, the default value) and the Ridge
regression (α = 0). The tuning parameter λ controls the overall strength of the penalty.
This implementation used a cross-validation approach, which performed a k-fold cross-
validation for glmnet and returns a value for λ [29].

The ridge penalty is known to reduce the coefficients of correlated predictors as they
get closer to each other, while LASSO tends to choose one correlated coefficient and discard
the others. The elastic-net penalty performed by the glmnet package [29] combines these
two: if the predictors are correlated in groups, α = 0.5 tends to select or leave out the entire
group of features, resulting in a set of usable hyperparameters for the model.

2.6. Development of Ensemble Model Tests

Once the data treatment is complete and the features are selected, the development of
the ensemble model with data partitioning begin, this process is to ensure that the results
of the training and tests are as accurate as possible, avoiding overfitting or mismatching.
In order to obtain the best ensemble model by hard voting, each model is validated with
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AUC starting with the development of the Generalized Linear Regression model (GLM),
then the Support Vector Machine model (SVM), then an Artificial Neural Network with a
single hidden layer is implemented and finally, the comparisons are made to carry out the
majority vote process, for the final integration of the ensemble model.

2.7. Data Partition

For data partitioning, it is considered to divide the database into 75% for training and
25% for tests using cross validation. The goal of this split is to get an index of each row
to separate the data in this proportion and then assign it to a dataset (partition) and for
the configuration of the parameters, a 10-fold is established, as is used by Syed A.H. et al.,
(2020) [7] in biomedical applications. The percentage of 75% and 25% obtained after the
comparisons in the iterations, establishing the best scenario with the models used in the
ensemble implemented, the 10-fold cross-validation is enough to balance the training and
testing results correctly, giving the best possible AUC results for all three models.

2.8. Ensemble Model

To do the ensemble, the Hard voting method is implemented, which gives us a robust
result as the one presented by Deberneh H. and Kim I. (2021) [19] to predict if a patient is
non-diabetic or diabetic, although it does not considerably reduce the classification error
of the predictions when comparing the AUC result between each model, reaffirms the
result repeatedly.

The 3 models implemented for the ensemble are: Generalized Linear Model (GLM),
Support Vector Machines (SVM) and Artificial Neural Networks (ANN) as shown in this
research performed by Kavakiotis I. et al. [6]. These models were selected because they
are well known for making accurate predictions in classification problems and broadly
used in clinical data processing; all of these models used the product features of the LASSO
implementation.

This model by specifications does not require hyperparameters tuning.

2.9. Generalized Linear Model

The generalized model used is a Logistic Regression (LR), a specific model is built, giv-
ing a symbolic description of the linear predictor and a description of the error distribution.
Consider the systematic effects of the linear model with:

S(t) =
1

(1 + e−t)
(5)

the sigmoid function described (S), keeps the value of within the [0, 1] range. It searches a
value for the dichotomic classification of 1 when the probability is larger or closer to 1, and
0 when x is smaller [28].

The hyperparameters obtained in LASSO (shown in Table 3), were integrated in this
model as part of this experiment.

This model by specifications does not require hyperparameters tuning.
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Table 3. LASSO result Features.

Feature Description Possible Values p-Value Multivariate LASSO
Selection Logistic Regression

Salary Monthly income

1—Less than $2000.00
2—Between $2000.00 and
$5000.00
3—More than $5000.00

2.72−16

Sex Patients sex 0—Male
1—Female 0.00538

Age Age of the patient in years Numeric Integer 3.05−13

WHR Waist Hip Ratio Numeric 0.07312

BMI Body Mass Index Numeric 0.00760

Urea Waste product resulting from the
breakdown of protein in the patient body Numeric Integer 7.43−7

Lipids treatment Lipid levels in treatment 1—Lipid levels in treatment
2—Lipid levels without treatment 0.97047

HDL High Density Lipoprotein
(corrected by medication) Numeric 1.19−7

Triglycerides Type of fat found in the patient body Numeric 6.31−5

DBP Diastolic Blood Pressure
(corrected by medication) Numeric Integer 2−16

SBPU Systolic Blood Pressure (uncorrected) Numeric Integer 3.56−5

HA-TX Hypertension Treatment 0—No
1—Yes 0.96440

All features in this table were included in all models as part of the final ensemble.

2.10. Support Vector Machines

The radial kernel used in the support vector machine model in this ensemble works
similarly to KNN (K-Nearest Neighbors) by fitting the closest observations into the new
observation, grouping them based on how much they influence the output of the set.
classifier for multiple hyperplanes.

The radial kernel is represented by:

K(x, x′) = e
−||x−x′ ||2

2σ2 , (6)

where x and x′ are original observations and new observations, respectively [30].
The hyperparameters obtained in LASSO (shown in Table 3), were integrated in this

model as part of this experiment.
The configuration of the hyperparameters in this model is: Cost C = 1, Gamma λ = 0.2

and the Kernel = Radial.

2.11. Artificial Neural Network

For the ANN model it is fitted to a single hidden layer, possibly with skip layer
connections and the problem is solved:

f (net) =
n

∑
j=1

(wjxj), (7)

donde x is a node of the neural network and w represents the weight of each network layer
that connects one node to another [31].

The hyperparameters obtained in LASSO (shown in Table 3), were integrated in this
model as part of this experiment. The configuration of the hyperparameters in this model
is: weights = 1, size = 1 and entrophy = least-squares.
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2.12. Implementation

All models and methodology are implemented in R, a well-known open source soft-
ware validated by the scientific community, as well as the following libraries:

• LASSO is implemented using “glmnet” [29].
• The Generalized Linear Model is implemented with “caret” [32].
• For Support Vector Machines “caret” [32] is used.
• The Artificial Neural Network is implemented in R with “caret” [32].
• The ensemble is implemented in R with nested decisions (use of if).

3. Results

The data analyzed consisted in 1787 patients, 898 positive cases of T2DM and 889 con-
trol patients all of them with the features described in Tables 1 and 2. The data treatment
consisted in data imputation (Section 2.3) and normalization of data (Section 2.4), resulted
in a balanced and normalized data and 10 features discarded (Table 1). The 23 features
processed in LASSO (Section 2.5) with elastic-net penalty obtained a set of 12 features for
the models integrated in the ensemble model, these features are shown in Table 3.

All the results in Tables 6, 8, 10 and 12 were calculated by:

Sensitivity =
Tp

(Tp + Fn)
, (8)

Speci f icity =
Tn

(Fp + Tn)
, (9)

Precision =
Tp

(Tp + Fp)
, (10)

NegativePredictiveValue =
Tn

(Tn + Fn)
, (11)

FalsePositiveRate =
Fp

(Fp + Tn)
, (12)

FalseNegativeRate =
Fn

(Fn + Tp)
, (13)

Accuracy =
(Tp + Tn)

(Tp + Tn + Fp + Fn)
, (14)

F1Score =
2Tp

(2Tp + Fp + Fn)
(15)

where:

Tp = True positive, number of subjects with T2DM correctly classified.
Fp = False positive, number of healthy subjects incorrectly classified.
Tn = True negative, number of healthy subjects correctly classified.
Fn = False negative, number of subjects with T2DM classified as healthy.

These metrics provide which of the models implemented is best for identifying T2DM
patients, in Table 4 shows the description of each metric and in Table 5 shows the structure
used to calculate each element presented in the confusion matrix.



Healthcare 2022, 10, 1362 12 of 18

Table 4. Metrics.

Metric Description

Sensitivity (see Equation (8)) Correct identification of patients with T2DM (True Positive)
Specificity (see Equation (9)) Correct identification of patients without T2DM (True Negative)

Precision (see Equation (10)) Defines what portion of the positive
cases of T2DM are actually positive

Negative Predictive Value (see Equation (11)) Defines what portion of the negative
cases of T2DM are actually negative

False Positive Rate (see Equation (12)) The rate of the predicted false values that are actually true
False Negative Rate (see Equation (13)) The rate of the predicted true values that are actually false

Accuracy (see Equation (14)) The percentage of cases that the model has classified correctly
F1 Score (see Equation (15)) The measure of precision that a test has

All metrics in this table were extracted in models as part of the final ensemble.

Table 5. Confusion Matrix structure.

True Values Predicted (True) Predicted (False)

True Tp Tn
False Fp Fn

The models developed showed good performance in the implementation of the ensem-
ble, the SVM model with a radial kernel had an AUC of 92.8% ± 3% with the 25% test set,
in the confusion matrix of the SVM model, is observed that the sensitivity of 0.8750 (87.5%)
and is lower than the specificity of 0.9238 (92.38%) as presented in Table 6 and the confusion
matrix in Table 7.

Table 6. SVM Confusion Matrix Measure Values.

Measure Value

Sensitivity 0.8750
Specificity 0.9238
Precision 0.9269

Negative Predictive Value 0.8700
False Positive Rate 0.0762

False Negative Rate 0.1250
Accuracy 0.8982
F1 Score 0.9002

Table 7. SVM Confusion Matrix.

True Values Predicted (True) Predicted (False)

True 203 16
False 29 194

The ANN model with a single layer had an AUC of 90.5% ± 3% with the 25%
test set, and the confusion matrix of the ANN model, is observed that the sensitivity
of 0.8559 (85.59%) is lower than the specificity of 0.9175 (91.75%), this second model shows
the lower sensitivity and specificity compared to the SVM model as shown in Table 8 and
the confusion matrix in Table 9.

Table 8. ANN Confusion Matrix Measure Values.

Measure Value

Sensitivity 0.8559
Specificity 0.9175
Precision 0.9224

Negative Predictive Value 0.8475
False Positive Rate 0.0825

False Negative Rate 0.1441
Accuracy 0.8846
F1 Score 0.8879
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Table 9. ANN Confusion Matrix.

True Values Predicted (True) Predicted (False)

True 202 17
False 34 189

The GLM model had an AUC of 90.5% ± 3% with the 25% test set, in the confusion
matrix of the GLM model, is observed that the sensitivity of 0.8487 (84.87%) is lower than
the specificity of 0.9167 (91.67%) as it is shown in Table 10 and the confusion matrix shown
in Table 11. This model presets the lowest sensitivity and specificity of all models including
the ensemble.

Table 10. GLM Confusion Matrix Measure Values.

Measure Value

Sensitivity 0.8487
Specificity 0.9167
Precision 0.9224

Negative Predictive Value 0.8386
False Positive Rate 0.0833

False Negative Rate 0.1513
Accuracy 0.8801
F1 Score 0.8840

Table 11. GLM Confusion Matrix.

True Values Predicted (True) Predicted (False)

True 202 17
False 36 187

The ensemble model with max voting had AUC of 90.5% ± 3%, this AUC shows
consistency with the 3 models integrating a robust solution to the classification problem.
The confusion matrix of the ensemble model, observed that the sensitivity of 0.8788 (87.88%)
is lower than the specificity of 0.9242 (92.42%) shown in Table 12 and the confusion matrix
in Table 13, values above average the sensitivity and specificity of the models implemented.

Table 12. Maxvoting Ensemble Confusion Matrix Measure Values.

Measure Value

Sensitivity 0.8788
Specificity 0.9242
Precision 0.9269

Negative Predictive Value 0.8744
False Positive Rate 0.0758

False Negative Rate 0.1212
Accuracy 0.9005
F1 Score 0.9022

Table 13. Ensemble Model Confusion Matrix.

True Values Predicted (True) Predicted (False)

True 203 16
False 28 195

The ensemble model showed an AUC similar to the ANN and GLM models with the
90.5% as average, with the SVM model being 2.3% better than the other models in this case,
as shown in Figure 3.
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Figure 3. AUC in SVM, ANN, GLM and Ensemble Model.

4. Discussion

The proposed methodology shows potential to solve a dichotomic classification prob-
lem and it can be determined that the features included in the experiments conducted are
directly related for the detection of T2DM, as it is presented in the results. The data partition
of 75% for training 25% for blind testing with a 10-fold cross-validation [33] is sufficient to
provide consistency in the implementation of LASSO as a feature selection method and all
the models implemented, resulted in an AUC in all the implementations proofs consistency
along all data analyzed, with the set of 12 features product as hyperparameters used to
train and test the models, the features produced by this methodology are:

Salary: With the data analyzed, it can be deduced that people with incomes greater
than 5000 Mexican pesos tend to have healthier anthropometric data, lower lipid levels
and better blood pressure, having less risk of suffering from T2DM than people with
incomes less than 5000 Mexican pesos. This relates statistically in Latin America (low-
and middle-income countries specifically) as the low and middle income class is more
likely to be in risk of T2DM [34]. From the data of the feature Sex, it is implied that male
patients classified as positive are more than female, achieving a direct relationship with the
statistics shown in the introduction and the sample, yet this consistency does not present
significant interaction with the other features as presents Gou W. et al. in the construction
of a microbiome with similar features comparing it with the sex feature [35]. The feature
Age values with the highest risk of developing T2DM according to the analyzed data, is
between 44 and 58 years old. WHR and BMI derived from the data show that these features
are directly related to obesity [36], if the values are in between the risk factor of obesity
classes as it shows in the classification of obesity given by Center for Disease Control and
Prevention (CDC) [37], these cases will increase the risk to develop the disease of T2DM as
the age and the BMI increases [38]. The Urea levels are directly associated with an increased
risk of T2DM, another feature with potential use for screening, and presented as key factor
in detection of diabetes by Dinh A. et al. [39]. Lipids in treatment are somehow related to
T2DM, as it’s variability can be used in diabetes monitoring as supports Lee S. et al. [40],
but this feature can be discarded in this experiment as untreated lipid levels and type
of medication for treatment are not shown in the data, making it impossible to make
comparisons and identify differences or variances, it only shows whether or not medication
was used to correct the levels. The HDL feature is a significant predictor for T2DM as it
confirms Lai H. et al. [41] showing direct correlation with Triglycerides, SBP and BMI. The
Hypertension under treatment, DBP or Diastolic Blood Pressure and uncorrected SBP or
medication uncorrected Systolic Blood Pressure are highly correlated with T2DM. In the
case of this experiment the different factor is the correction of levels through medication
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in the hypertension, this correlation was reviewed and compared with no significant
difference with the study of Zheng H. et al. [42] where the blood pressure and hypertension
weren’t controlled or corrected by medication. Diastolic Blood Pressure is the most relevant
feature in the 3 models implemented in this experiment and is a potential biomarker for
the detection of T2DM worthy of future studies.

As main findings it can be established that a model without glucose related features
have similar performance as the models with glucose related features as it is shown in the
Table 14:

Table 14. Related work comparison.

Autor ML Model Dataset Metrics

Shaker E. et al., (2019) [21]

Ensemble of: k-nearest neighbors,
naïve Bayes, decision tree,

support vector machine, fuzzy
decision tree, artificial neural

network, and logistic regression

Electronic health records
of Mansura University

Hospitals (Mansura, Egypt)

90% of accuracy, 90.2% of
recall, and 94.9% of precision

Kumari et al., (2021) [22]
Ensemble of: random
forest, logistic regres-
sion, and Naive Bayes

PIMA diabetes dataset
79.04% of accuracy, 73.48%

of precision, 71.45% of
recall, and 80.6% of F1_score

Singh N. et al., (2020) [23]
stacking-based evolution-

ary ensemble learning
system “NSGA-II-Stacking”

PIMA diabetes dataset

accuracy of 83.8%, sensitivity
of 96.1%, specificity of 79.9%,
f-measure of 88.5% and area
under ROC curve of 85.9%

Liu Y. et al., (2019) [24]
Majority voting Ensemble: Sup-
port vector machine, tree-based
methods and neural networks

REACTION study (Risk
Evaluation of Cancers in

Chinese Diabetic Individuals:
A Longitudinal Study)

Majority voting with model
selection results: AUC
of 0.802 (80.2%), Sensi-
tivity of 0.662 (66.2%),

Specificity of 0.702 (70.2%)

This Work Authors

Hard voting Ensemble of:
generalized liner regression,

support vector machines and
artificial neural networks

Centro Médico Na-
cional Siglo XXI dataset

Sensitivity of 0.8788 (87.88%)
Specificity of 0.9242 (92.42%)

Precision of 0.9269 (92.69%) Area
under the ROC curve 90.5%

The false positive and false negative rates of the ensemble proposed, clearly presents
excellent results, as shown in the Table 12, this low rates explain that the model is solid and
usable to support accurate diagnostics in real world situations as the scenarios presented in
every patient data analyzed.

The AUC of the SVM is slightly better that the rest of the models including the final
ensemble, nether less, this could change as the random nature of the partition sets changed,
performing worst in some cases, the scenario presented in this work is included as it
provided an outcome achieving over 90% AUC.

5. Conclusions

The results obtained were 90% ± 3% in the GLM–SVM–ANN ensemble model using
LASSO for feature selection and dividing the data into 75% for training and 25% for
testing , validated by 10-fold cross-validation and AUC are satisfactory but conclusive. The
percentage of AUC is close to the goal of 95% to be used in a clinical setting, the need to
implement new ways of processing the data and still avoid the Glucose feature or use it
only as a reference, as proposed, ensures obtaining features with predictive potential.

As a disadvantage, inconsistencies were obtained in some LASSO runs, in this case,
throwing a thirteenth feature that varied alternating between: Education, uncorrected LDL
and SBP, these features were shown by the randomness product of cross-validation and
were not taken as part of the final model. For this reason, otherwise, the features that were
selected persisted in each run even with the change of data used in the different samplings
that each separation generated by the folds performed.
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All models confusion matrices including the final ensemble obtained a 3% to 4%
sensitivity higher than the specificity, this behavior is considered within the accepted
parameters for the detection of a disease.

The machine learning algorithms and the clinical data used for this methodology,
showed potential to identify relationships, predictions and behavior patterns that classify
over 90% of the patients accurately with or without T2DM, using biomarkers extracted by
non-invasive methods with the same or superior precision than the invasive laboratory
blood tests: FPG, OGTT or the H1A1c.

6. Future Work

For future research, it is proposed to delve into the relationship between Diastolic
Blood Pressure and T2DM. Another proposal is to use a different type of imputation to
have a different approach with some of the discarded features, using other feature selection
approaches like genetic algorithms or Boruta and trying new models, hoping to successfully
reach or exceed 95% AUC and ultimately discover potential biomarkers.
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