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Abstract: Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis
has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as
an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains
unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic
analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum)
in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic
alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have
been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes
may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific
metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming,
which could help follow the progression of HBV infection and explain the underlying pathogenesis.

Keywords: HBV infection; NMR spectroscopy; tissues; metabolomics

1. Introduction

HBV, a hepatotropic DNA virus, is the pathogen of acute and chronic hepatitis B in
humans. HBV infection is one of the most severe public health security problems globally.
Primary liver cancer mainly caused by HBV was the sixth most commonly diagnosed
cancer and the third leading cause of cancer death worldwide in 2020, with approximately
906,000 new cases and 830,000 deaths [1]. To date, the primary treatments for HBV infection
include antiviral, anti-inflammatory, antioxidant, anti-fibrosis, immune regulation, and
symptomatic therapies [2–6]. Currently, no drugs or effective treatment can be utilized
for the complete clearance of HBV, which means that treatment must continue for life [7].
HBV reinfection has become a major risk factor for prognosis, especially HBV infection in
extrahepatic organs [8,9]. Understanding the pathogenesis of HBV will bring new insights
into the potential therapies.

The emergence of metabolomics studies has accelerated the better understanding of
HBV infection pathogenesis and treatment. Metabolomics uncovers the metabolic profiles
of an isolated organ, cell, tissue, biological fluid, or organ connections [10]. Nuclear
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magnetic resonance (NMR) spectroscopy has been extensively used for metabolomics
studies [11]. NMR-based metabolomics can provide an untargeted, quantitative snapshot
of global metabolite abundance [12], while it is less time-consuming in detecting a number
of metabolites and sample preparation, highly reproducible, non-destructive, and non-
invasive compared to mass spectrometry (MS) [13]. Currently, dysregulated metabolism of
HBV infection on host cells has been revealed, including lipid, vitamin, glucose, amino acid,
bile acid, and nucleic acid metabolism [14–18]. However, previous studies have provided
some insights into the role of HBV-induced metabolism dysregulation in liver tissues and
hepatocytes, while other organs that may be affected by HBV have been neglected [19,20].
Viral hijacking is usually systemic, not just one organ [21,22]. HBV cDNA has been observed
in serum, kidneys, skeletal muscle, pancreas, even in hair and fingernails, and not only the
liver [23–25]. The progression of HBV is notoriously difficult to follow in whole organisms.
Metabolomics is an emerging but powerful tool for following the systemic metabolic
reprogramming of HBV infection to provide biological information.

Metabolic regulation is an adaptive mechanism by which proliferating cells adapt
to their increasing energy demands and nutrient-poor microenvironment [26,27]. This
nutrient-poor microenvironment is a highly heterogeneous ecosystem composed of cells
and subcells with interactive signals, low oxygen, and pH, leading to abnormal metabolism
of sugar, pyruvate, amino acids, and lipids, thus promoting tumor formation, invasion,
and metastasis [26,28]. HBV infection triggers metabolic regulation, inflammation and/or
fibrosis processes, with the production and activation of cytokines, chemokines, and growth
factors, as well as leukocyte infiltration, tissue immunity, and fibroblast population ac-
tivation in the whole organism, which is considered to conduce to the various stages of
HBV-HCC (hepatocellular carcinoma) development [29]. As a crucial predisposing factor
in HCC, HBV can coordinate and control liver metabolism by binding transcription factors,
thus driving systemic metabolic reprogramming [30]. For example, activation of PPARα as-
sociated with fatty acid oxidation is required for rapid induction of HBV transcription [31].
Taken together, molecular dysfunctions triggered by viral infection are throughout the
organism, where different organs are connected by blood and lymph vessels. For instance,
in the end-stage of HBV infection, bilirubin that cannot degrade in the liver will reach the
brain and alter its function, resulting in hepatic encephalopathy (HE) [32,33]. A recent
study has shown that the HBV-related microenvironment is more immunosuppressive and
exhausted than the nonviral-related microenvironment [34]. Our previous data show that
HBV-HCC undergoes a global metabolic reprogramming during tumor growth, which
occurs not only in tumors but also in peritumor tissue [12]. As tumors progress from
premalignant lesions to locally invasive tumors to metastatic cancers, metabolic pheno-
types evolve increasingly clearly [35]. Therefore, further studies of virus-induced metabolic
reprogramming, especially in the different organs and premalignant lesions, could help to
explain the underlying pathogenesis and how it invades and metastasizes.

In this study, we found HBV-induced metabolic reprogramming does not only occur in
the liver, but that there were significant metabolic differences in the heart, spleen, kidneys,
and parts of the small intestine. To this end, we applied untargeted NMR spectroscopy
and obtained substantial changes in metabolites of the heart, liver, spleen, lung, kidney,
pancreas, and intestine from HBV-transgenic mice compared to their wild-type littermates.
We observed changes of metabolites in all detected tissues and highlighted their potential
influence on metabolic reprogramming. In addition, we identified a series of metabolites,
such as branched-chain amino acids (BCAAs, commonly known as valine, isoleucine and
leucine), a general potential biomarker in HBV-transgenic mice, there was an increasing
trend in most tissues, and choline could be a liver-specific biomarker for HBV detection.
Taken together, a more profound comprehension of the potential processes might provide
new sights on the HBV infection pathologies and assist in finding potential targets of
the therapies.
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2. Results

2.1. Multivariate Analysis of 1H NMR Spectroscopic Data Revealed Significant Differences in
Tissues Metabolic Profiles between HBV-Transgenic and Control Mice

Given that HBV infection is a systemic disease [21], we hypothesized that the tissues-
specific metabolic landscape of HBV-transgenic mice had undergone significant changes
compared with that of control mice. The NMR profiles of the heart samples between the
HBV-transgenic and control mice showed a significant difference in the orthogonal-partial
least squares-discriminant analysis (O-PLS-DA) plot (Figure 1A). The permutation test
provided the correlation coefficients R2Y up to 0.996 (p = 0.21) and a positive Q2 of 0.576
(p = 0.25) (Figure S1A). Then, comparing the metabolic profiles between liver samples iso-
lated from HBV-transgenic and control mice, they were distinct in the OPLS-DA (Figure 1B),
with correlation coefficients R2Y of up to 0.999 (p = 0.16) and a Q2 of 0.905 (p = 0.03) (Figure
S2A), further indicating the significance of these results. The samples of spleen between the
HBV-transgenic and control mice revealed a significant difference in the O-PLS-DA plot
(Figure 1C), while the correlation coefficients Q2 of up to 0.957 (p = 0.08) and a R2Y of 0.992
(p = 0.08) (Figure S3A) in the permutation test were verified. The O-PLSDA models discrim-
inated NMR spectra of lung samples from HBV-transgenic and control mice (Figure 1D).
The permutation test provided the correlation coefficients Q2 of up to 0.801 (p = 0.04) and
a R2Y of 0.991 (p = 0.08) (Figure S4A). The O-PLS-DA score plots (Figure 1E) of kidneys
presented a clear distinction between samples with correlation coefficients Q2 of up to
0.844 (p = 0.03) and a positive R2Y of 0.996 (p = 0.04) (Figure S5A). Notably, the metabolites
spectra of pancreas samples from HBV-transgenic and control mice were separated clearly
in the O-PLS-DA score plots (Figure 1F), with correlation coefficients Q2 of up to 0.927
(p = 0.03) and a positive R2Y of 0.998 (p = 0.06) (Figure S6A). In small intestinal system, we
found that the metabolites of duodenum samples between HBV-transgenic and control
mice separated in the O-PLS-DA score plots (Figure 1G), and the correlation coefficients
of Q2 was up to 0.888 (p = 0.04) and a positive R2Y of 0.966 (p = 0.09) (Figure S7A). The
metabolites spectra of jejunum samples were distinguishable in the O-PLS-DA score plots
(Figure 1H) with the correlation coefficients Q2 of up to 0.75 (p = 0.04) and a positive R2Y
of 0.92 (p = 0.09) (Figure S8A). Unexpectedly, compared to other samples, the metabolites
of ileum samples showed a slight difference in the O-PLS-DA score plots (Figure 1I), with
a correlation coefficients Q2 of up to 0.602 (p = 0.5) and a positive R2Y of 0.998 (p = 0.75)
(Figure S9A). HBV-transgenic mice underwent a systemic metabolic reprogramming, which
was particularly significant in the liver, spleen, kidney, pancreas, duodenum, and liver
(Figure 1J).

2.2. Tissue-Specific Metabolomic Fingerprints and Related Metabolic Pathways

Extrahepatic manifestations of HBV infection have been observed and some of them
have been underestimated for a long time. For instance, HBV-related cirrhosis may face
cardiac dysfunction as a complication, which includes volume restrictions and decreased
systemic vascular resistance [36]. In line, we observed metabolic changes in the hearts
of HBV-transgenic mice compared to control mice. The volcano plot and reduced spec-
tra of metabolites in the heart displayed the altered metabolites, including the increased
lactic acid, valine, isoleucine, fumaric acid, tyrosine, leucine, alanine, niacinamide, and
3-hydroxybutyric acid, while formic acid decreased (Figure 2A and Figure S1B,C). Metabo-
lite enrichment analysis (MSEA), an analysis method, revealed the relationships between
the metabolic pathways and altered metabolites, which showed that the changes in metabo-
lites of heart were associated with gluconeogenesis, and pyruvate metabolism, Warburg
effect, catecholamine biosynthesis, and thyroid hormone synthesis metabolic pathway
(Figure 3A). Additionally, with the liver being the critical organ in metabolism and nutri-
tional regulation, it is no wonder that HBV infection has been shown to induce metabolic
disorders of the organism [37,38]. In the volcano plot and reduced spectra of liver samples,
many metabolites increased, such as choline, tyrosine, propionic acid, isoleucine, valine,
l-phenylalanine, glutamic acid, leucine, dimethylamine, acetic acid, and 3-hydroxybutyric
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acid (Figure 2B and Figure S2B,C). According to the MESA, betaine metabolism, phos-
phatidylethanolamine biosynthesis, catecholamine biosynthesis, thyroid hormone synthe-
sis, and vitamin K metabolism were related to the changes in liver samples (Figure 3B).
Moreover, the invasion of HBV also causes immune responses in the organism [39], and the
spleen is the largest peripheral lymphatic organ in the body, so it will definitely be affected
by the immune response [40]. In our study, we obtained the metabolites that were altered
clearly from the volcano plot—leucine, valine, phenylalanine, isoleucine, arginine, serine,
aspartic acid, tyrosine, and methionine were the rising group, while uridine, trimethy-
lamine, trimethylamine N-oxide, and glycerophosphocholine were the descending group
in spleen samples (Figure 2C and Figure S3A,B). In the MESA, the significantly altered
metabolites in the spleen were mainly related to homocysteine degradation, catecholamine
biosynthesis, thyroid hormone synthesis, leucine, isoleucine degradation, and pyrimidine
metabolism (Figure 3C). According to the previous studies, long-term exposure to HBV
increases the risk of asthma [41] and is associated with a poorer prognosis of non-small cell
lung cancer [42]. Lung metastasis significantly decreases the survival of HBV-HCC [43].
The volcano plot and reduced spectra of metabolites in the lung indicated that succinic
acid, fumaric acid, l-aspartic acid, l-lysine, and acetic acid all increased (Figure 2D and
Figure S4B,C). The MESA revealed that the metabolites of lung samples are relevant to the
oxidation of branched-chain fatty acids, citric acid cycle, mitochondrial electron transport
chain, ketone body metabolism, and butyrate metabolism (Figure 3D).

More than that, a direct association of HBV infection with kidney diseases [44–48],
especially with glomerular diseases [49,50], has already been demonstrated. HBV DNA has
been detected in kidneys of HBV-related glomerulonephritis [51]. Phenylalanine, valine,
leucine, lysine, isoleucine, arginine, tyrosine, methionine, alanine, aspartic acid, serine,
and creatine increased, which could be obtained in the volcano plot and reduced spectra
of kidney samples (Figure 2E and Figure S5B,C). The MESA supplied the pathways that
influenced kidney samples’ metabolites: biotin metabolism, catecholamine biosynthesis,
thyroid hormone synthesis, spermidine and spermine biosynthesis, and selenoamino acid
metabolism (Figure 3E). At present, HBV infection increases the risk of pancreatic cancer, as
confirmed in many studies [52–54]. The volcano plot and reduced spectra showed increased
acetoacetic acid, 3-hydroxybutyric acid, and isoleucine. In the meantime, decreases in
uridine diphosphate-sugars (UDP-sugars), fumaric acid, and formic acid were observed in
the pancreas (Figure 2F and Figure S6B,C).

In the MESA, we found that the metabolites of pancreas involved pathways were
steroid biosynthesis, pterine biosynthesis, androgen and estrogen metabolism, androstene-
dione metabolism, and catecholamine biosynthesis (Figure 3F). Because of the presence
of the gut–liver axis, HBV has been shown to induce intestinal dysbiosis [55]. To com-
plete our systemic study of HBV-infection in metabolically active tissue, we reported the
metabolic changes in the duodenum, jejunum, and ileum of HBV transgenic and control
mice. The information on metabolites changes was from the volcano plot and reduced
spectra, which indicated that threonine, ethanolamine, alanine, creatine, glycerol, and
glutamic acid were increased, in contrast, to mannose, α-D glucose, and UDP-sugars that
were deduced in the duodenum (Figure 2G and Figure S7B,C). The MESA of the duode-
num supplied the pathways, including the threonine and 2-oxobutanoate degradation,
galactose metabolism, valine, leucine, and isoleucine degradation, glucose-alanine cycle,
and propanoate metabolism (Figure 3G). Increased metabolites in jejunum included ly-
sine, valine, methionine, tyrosine, isoleucine, threonine, phenylalanine, serine, tryptophan,
leucine, and alanine (Figure 2H and Figure S8B,C). Among them in jejunum were related
to the biotin metabolism, propanoate metabolism, spermidine and spermine biosynthe-
sis, catecholamine biosynthesis, and thyroid hormone synthesis, which was provided
in the MESA (Figure 3H). Unexpectedly, the volcano plot and reduced spectra of ileum
presented only one metabolite, xanthine (Figure 2I and Figure S9B,C). The metabolic path-
way of ileum involved glycerolipid metabolism, galactose metabolism, methylhistidine
metabolism, homocysteine degradation, threonine, and 2-oxobutanoate degradation shown
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in the MESA (Figure 3I). Significant changes in metabolites were observed in most tissues
of HBV-transgenic mice, except for the ileum (Figure 2J).

Metabolites 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Multivariate analysis of 1H NMR spectroscopic data revealed significant differences in 
tissues metabolic profiles between HBV-transgenic and control mice. (A–I) represents the O-PLS-
DA plot of the heart, liver, spleen, lung, kidney, pancreas, duodenum, jejunum, and ileum, respec-
tively. (J) Heatmap showing O-PLS-DA-derived Q2 for pairwise comparisons of the different organs 
samples. 

2.2. Tissue-Specific Metabolomic Fingerprints and Related Metabolic Pathways 
Extrahepatic manifestations of HBV infection have been observed and some of them 

have been underestimated for a long time. For instance, HBV-related cirrhosis may face 
cardiac dysfunction as a complication, which includes volume restrictions and decreased 
systemic vascular resistance [36]. In line, we observed metabolic changes in the hearts of 
HBV-transgenic mice compared to control mice. The volcano plot and reduced spectra of 
metabolites in the heart displayed the altered metabolites, including the increased lactic 
acid, valine, isoleucine, fumaric acid, tyrosine, leucine, alanine, niacinamide, and 3-hy-
droxybutyric acid, while formic acid decreased (Figures 2A and S1B,C). Metabolite en-
richment analysis (MSEA), an analysis method, revealed the relationships between the 
metabolic pathways and altered metabolites, which showed that the changes in metabo-
lites of heart were associated with gluconeogenesis, and pyruvate metabolism, Warburg 
effect, catecholamine biosynthesis, and thyroid hormone synthesis metabolic pathway 
(Figure 3A). Additionally, with the liver being the critical organ in metabolism and nutri-
tional regulation, it is no wonder that HBV infection has been shown to induce metabolic 
disorders of the organism [37,38]. In the volcano plot and reduced spectra of liver samples, 

Figure 1. Multivariate analysis of 1H NMR spectroscopic data revealed significant differences
in tissues metabolic profiles between HBV-transgenic and control mice. (A–I) represents the O-
PLS-DA plot of the heart, liver, spleen, lung, kidney, pancreas, duodenum, jejunum, and ileum,
respectively. (J) Heatmap showing O-PLS-DA-derived Q2 for pairwise comparisons of the different
organs samples.

2.3. Overview

We summarized all changes in the metabolites of the nine different tissues between
HBV-transgenic and control mice, and the results are shown in Figure 4. This heatmap
highlights the distribution of metabolites and related metabolic processes of HBV-transgenic
mice, primarily including the enrichment of amino acids in the kidney and intestine,
and the increase of the metabolites that related to the tricarboxylic acid cycle (TCA) and
glycolysis/gluconeogenesis (GG) in the heart, liver, spleen, lung, and pancreas.
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decreased (blue) metabolites illustrate significant fold changes during HBV infection, while grey
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from the volcano plot in different tissues, red indicates an increased number, and blue indicates a
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infected and control mice. The number of samples is divided into 1-8 in each group. A single sample
was represented in columns, while relative metabolites were represented in rows. Red and blue show
the increase and decrease, respectively. Metabolites are indicated and sorted according to different
chemical classes or bio-molecular pathways.

3. Discussion

HBV, a “metabolic virus”, affects many metabolic processes [18]. Our study revealed
that metabolic reprogramming induced by HBV infection occurs not only in the liver but
also in extrahepatic organs, such as the heart, liver, spleen, lung, kidney, pancreas, and
intestine. A few studies have discussed the role of HBV infection on the risk of cardiovas-
cular diseases and have shown the relationship between the two remains controversial [56].
Available evidence supports that HBV infection does not increase relative cardiovascular
disease risk but is associated with metabolic syndrome [57,58]. However, HBV carriers
with an increased prevalence of carotid atherosclerosis have been revealed by Ishizaka
et al. [59]. We found that the metabolic profiles of heart were significantly changed in HBV
transgenic mice. Compared to control mice, lactic acid and fumaric acid accumulated the
most in the heart of HBV-transgenic mice, which may be due to the myocardial ischemia
and hypoxia resulting in a blocked tricarboxylic acid cycle [60]. Previous studies pointed
out the incidence of heart failure [61], and other cardiovascular diseases [62] are positively
correlated with levels of BCAAs. In line, we observed increased levels of BCAAs in heart
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lysates of HBV-transgenic mice, suggesting a higher risk of heart disease after HBV in-
fection. Moreover, we observed increased alanine, niacinamide, and 3-hydroxybutyric
acid, the intermediate products of energy metabolism, further suggesting that the energy
metabolism of the heart was affected by HBV replication [17]. In future clinical practice,
whether HBV patients are more prone to cardiovascular dysfunction and the relationship
between cardiovascular dysfunction and BCAAs metabolism deserves further study.

The metabolic profiles of liver samples from HBV-infected mice are notably different
from those from control mice. The altered metabolites induced by HBV infection were
involved in the choline, amino acid, carbohydrates, and nucleotides metabolism, in line
with a previous study [17]. In line with our results, we found elevated concentrations of
choline in HBV-transgenic mice [63], which may be related to the biofilm synthesis and
lipid metabolism to provide phosphatidylcholine for HBV replication [17]. Moreover, the
increase in tyrosine and glutamic acid accelerated the synthesis of proteins to meet the
protein requirements for HBV transcription [64]. In response to the oxidative stress caused
by HBV replication, the concentration of BCAAs increases to produce more alternative
antioxidants under GSH deficiency [65,66]. Taken together, the increase in the process of
metabolism could be considered an obvious characteristic during the progression of liver
diseases. The metabolic features of HBV infection in liver could shed new light on the
pathological mechanism and provide potential therapeutic targets.

Fourteen changed metabolites have been shown in the spleen of HBV-transgenic mice.
Among them, metabolites are involved in metabolic pathways such as glucose, amino acid,
and lipid metabolism. BCAAs promote glycolysis by stimulating glucose uptake to support
metabolic reprogramming of immune cells [67,68]. In line with this observation, the high
level of BCAAs may represent an increased immune response of the spleen induced by
HBV infection. In addition, a previous study demonstrated that serine, as an essential
immuno-metabolite, directly regulates adaptive immunity by controlling the capacity of T
cell proliferation [69]. The elevated serine concentration in our data implied HBV infection
may change T cell expansion. Accordingly, phenylalanine, tyrosine, and methionine as key
elements for protein synthesis [70,71], and the increase in their concentrations suggested
that HBV accelerates protein synthesis in the spleen [40]. Moreover, uridine deficiency can
reduce the ability of spleen cells to secrete interleukin-2, reduce the activity of natural killer
cells, and even affect the humoral immune response to T cell-dependent antigens [72]. In
detail, we observed that the level of uridine was reduced in samples, which may result from
impaired spleen function. Strikingly, we observed large changes in metabolites associated
with immune response, which highlights inherent regulatory mechanisms of metabolic
profiles benefiting HBV-induced invasion and metastasis.

In the lungs, a panel of 5 metabolites of HBV-transgenic mice was presented and
related mostly to amino-acid metabolism (aspartic acid and lysine), glycolysis (acetic acid),
and the TCA cycle (succinic acid and fumaric acid). Previous studies have reported that
HBV protein and nucleic acids have been detected in the lung tissues [73], and exposure
to HBV also increases the risk of lung disease [41]. According to our data, HBV infection
does affect the metabolism of the lung, although the difference is not as significant as
the liver. In general, energy expenditure in the lungs is classified as performing usual
cellular tasks such as gene transcription and protein translation [74]. Accelerated processes
such as the pulmonary tricarboxylic acid cycle and glycolysis may indicate that the lungs
provide the energy for HBV replication. In line with elevated levels of succinic acid, an
inflammatory signaling molecule suggested that the lungs may become inflamed due to
HBV infection [75,76]. Lysine levels are associated with inflammation [77], and the increase
of lysine indicated that there may be inflammation in the lung of HBV-transgenic mice. The
lungs of HBV-transgenic mice showed changes in metabolites associated with inflammation,
which may reveal how HBV affects lung function through metabolic reprogramming.

Damage to the kidney from HBV does not usually result from direct infection. In fact,
the abnormal reaction to the virus of the immune system may contribute more to disease
causation. In the kidney, we observed profound changes in metabolic spectra, with more
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than 12 metabolites differing between HBV-transgenic and control mice, which are mostly
linked by amino-acid metabolism. Oral supplement of amino acids has been reported to
arrest progressional renal failure in uremic patients, which suggests that amino acids may
be involved in the repair of kidney damage [78]. Protective effects of alanine, aspartic
acid, and arginine against renal injury and failure have been revealed [78,79]. Similarly,
increased amino acid concentrations in the kidneys of HBV-transgenic mice may be in
response to some HBV-induced kidney injury. Arginine is the precursor of creatine, and
there is the possibility of synchronization change between them. As mentioned above,
BCAAs and lysine can enhance the immunity of the organism, and the increase of BCAAs
in our data indicated that HBV infection may alter the immune defense of the kidney. In
this regard, Blachier et al. found that methionine directly regulates the immune system
with increased production of taurine, glutathione, and other metabolites [80], and we found
a similar increase in methionine in the kidneys of HBV-transgenic mice. In addition, the
kidney is involved in the synthesis and exchange in inter-organs of several amino acids [81],
containing arginine, phenylalanine, and tyrosine [82,83]. The high level of these amino
acids concentration indicates metabolic disorders in the kidneys of HBV-transgenic mice.

From the metabolite profiles in pancreatic samples, the increase of acetoacetic acid
and 3-hydroxybutyric acid was most striking, which involved glycolysis. Our results
show that the increase of acetoacetic acid and 3-hydroxybutyric acid are in line with a
study that metabolites changes of the pancreatic intraepithelial neoplasia (PanIN) mice,
a precancerous lesion of pancreatic cancer, suggesting that similar metabolic changes
occurred in the pancreas of HBV-transgenic mice. The abnormal changes of isoleucine
in HBV-transgenic mice may be due to the dysfunction of tumor suppressor genes of
P53, SIRT3, SIRT6, and the oncogenes of Ras, PI3K, Akt, and c-Myc [84]. Acetoacetic
acid, 3-hydroxybutyric acid, and isoleucine might be used in as potential biomarkers to
determine the status of the pancreas in HBV-transgenic mice.

In the intestine, the metabolic processes of the duodenum and jejunum are affected by
HBV infection while the ileum is almost unchanged. To date, studies have focused on the
association of HBV and gut microbiota, while few metabolic analyses of intestinal tissue
has been performed. The data on healthy intestinal tissue in the context of HBV infection
are almost blank. Therefore, our experimental results could lay a foundation for further
investigations, focusing on the changes of intestinal metabolism and related metabolites,
as well as the potential causes or consequences. Amino acids have been demonstrated to
play a key role in the health of the intestine, such as glutamic acid and methionine being
able to maintain intestinal function [85], threonine being able to nourish microflora in the
intestine [86], methionine’s ability to improve the ability of intestinal antioxidants [87],
and arginine and threonine’s ability to improve intestinal immune function [88]. In the
duodenum, the levels of threonine, alanine, glutamic acid, and ethanolamine increased
significantly in HBV-transgenic mice, implying that the intestinal function may change
in HBV-transgenic mice. In the jejunum, metabolic changes were similar to those in the
duodenum, but notably increased levels of BCAAs, serine, and lysine, which were related
to immunity. Previous studies have reported that the intestine used BCAAs as fuel to renew
its defense system against harmful pathogens [68]. This may indicate a similar immune
response in different tissues of HBV transgenic mice.

4. Materials and Methods
4.1. Animals and Diets

For all experiments, organs isolated from age-matched female (6 to 8 weeks old) HBV-
transgenic mice and their wild-type littermates (C57BL/6J) were used in this study [89]
(n = 4). Mice were maintained in a clean, temperature-controlled (22 ± 1 ◦C) environment
with light–dark cycle (12 h/12 h) regularly and free access to diet and water. Mice were
fasted for 12 h before dissection. All experiments were performed in accordance with the
Fujian Medical University Institutional Animal Care and Use Committee (IACUC). The
mouse model of HBV was successfully established and evaluated in a previous study [89,90].
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Microscopic examination was performed on the livers from HBV-transgenic and control
mice. As shown in Figure S10, HBV-infected mice showed increased inflammation and cell
edema (Figure S10B) compared to control group (Figure S10A).

4.2. NMR Sample Preparation

Organ samples were frozen rapidly in liquid nitrogen and stored at −80 ◦C until analy-
sis. We resected 30–50 mg of each organ for the NMR metabolomics. To extract metabolites,
we transferred the samples to a tube (contains 1.4 mm ceramic spheres, MP Biomedicals
LLC, Santa Ana, CA, USA), then added 400 µL of ice-cold methanol and 200 µL MilliQ H2O
to each tube for homogenization by FastPrep-24 tissue homogenizer (MP Biomedicals LLC,
Santa Ana, CA, USA). After centrifugation at 13,000 rpm for 30 min (4 ◦C), the supernatant
was transferred to a fresh tube and evaporated in a centrifugal evaporator (Eppendorf
Concentrator plus, Hamburg, Germany) to generate a dry metabolite pellet. For the NMR
experiments, samples were re-dissolved in 500 µL of NMR buffer (0.08 M Na2HPO4, 5 mM
TMSP (3-(trimethylsilyl) propionic acid-2,2,3,3-d4 sodium salt), 0.04 (w/v) % NaN3 in D2O,
pH adjusted to 7.4 with 8 M HCl and 5 M NaOH).

4.3. Data Acquisition

NMR measurements for 1H NMR metabolic profiling and analyses were performed
as described and using a Bruker Avance III HD 600-MHz NMR spectrometer equipped
with a TXI probe head. The Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence was used
to acquire 1H 1D NMR spectra with a pre-saturation for water suppression (cpmgpr1d,
512 scans, 73,728 points in F1, 12019.230 Hz spectral width, 1024 transients, recycle delay 4 s)
(Figure S11A) [91,92]. NMR spectral data were processed as previously described [93,94].
Briefly, data were processed in Bruker Topspin version 4.0.2 using one-dimensional expo-
nential window multiplication of the Free Induction Decay (FID), Fourier transformation,
and phase correction. The NMR data were then imported into Matlab2014a; Trimethylsilyl
propanoic acid (TSP) was used as the internal standard for chemical-shift referencing (set
to 0 ppm); regions around the water, TSP and methanol signals were excluded; the NMR
spectra were aligned; and a probabilistic quotient normalization (PQN) was performed
for normalization to compensate for differences in concentration between samples [95].
Chenomx NMR suite 8.4 and reference compounds were used to identify the metabolites
tissue during the analysis (Figure S11B). Approximately 60 metabolites above a signal-to-
noise ratio (SNR) of 5 have been identified in mouse tissue extract samples. The integrations
were used to generate the orthogonal partial least squares discriminant analysis (O-PLS-
DA), permutation analysis, volcano plot, MSEA (including associated data consistency
checks and cross-validation), and the heat map using MetaboAnalyst 5.0 [92]. The sta-
tistical significance of the identified differences was validated by the quality assessment
statistic Q2.

4.4. Statistical Analysis

A univariate statistical analysis was carried out using GraphPad Prism (GraphPad
Software, La Jolla, CA, USA). Data were represented as mean ± standard deviation (SD).
The p-values were calculated using a two-tailed Student’s t-test for pairwise comparison of
variables. Metabolites with p < 0.05 are shown in panel C of each supplementary figure [93].
Volcano plot with fold change >1.2, and p-value < 0.05.

4.5. Pathological Section Preparation

As described before [96], the collected liver tissues were fixed overnight in 10% forma-
lin solution. Next, these tissues were processed with standard dehydration procedures and
embedded in paraffin. Then, the embedded tissues were sectioned into 4-µm thick sections
using a microtome (HM-340E, Thermo Fisher Scientific Inc., Waltham, MA, USA). These
tissue sections were stained with hematoxylin and eosin (H&E) according to standard
techniques and examined by a light microscope (BX53F, Olympus Corp., Tokyo, Japan).
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5. Conclusions

A comprehensive metabolomic analysis of HBV infection in HBV-transgenic mice is
provided by our current work. A limitation of our analysis concerns the small sample
size (n = 4), which may increase the margin of error. HBV infection can induce metabolic
reprograming in the organism, including liver and extrahepatic organs. The significantly
increased choline in HBV-transgenic mice provides the potential to be a liver-specific
biomarker. We distinguished valine, isoleucine, and leucine (BCAAs) to be altered in
most tissues such as the heart, liver, spleen, kidney, and intestine, suggesting that they
may be universal biomarkers in HBV-transgenic mice. BCAAs can be used as an energy
supply during exercise [97] and as a fuel source by immune cells within the gut, which
allows the immune system to regenerate itself more efficiently and protect against harmful
pathogens [68]. This leads to the hypothesis that HBV infection mainly affects energy
expenditure with increasing immune responses in most tissues. Lysine, an immunity-
related amino acid [69,77], was observed to increase in the lung, kidney, and intestine, which
suggested an increased probability of inflammatory responses in HBV-transgenic mice.
Meanwhile, the concentration of serine was increased in the spleen, kidney, and intestine,
providing potential evidence of inflammation in HBV-transgenic mice. Accordingly, HBV
infection will lead to the patient being at higher risk of suffering kidney and intestinal
disease. Therefore, the concentrations of lysine and serine in the kidneys and intestines
can be the potential targets for diagnosis and intervention in the early stage of HBV
infection. In addition, almost all of the tissues in HBV-transgenic mice showed changes in
amino acid metabolism. Changes in the TCA cycle have been observed in the heart, liver,
spleen, pancreas, and intestine of HBV-transgenic mice. Taken together, the tissue-specific
metabolites discovered in the current study should provide a novel molecular read-out
for HBV-associated changes of an organism. Further prospective studies are needed to
demonstrate the applicability of these potential biomarkers in extrahepatic manifestations
of HBV infected patient allocation for adjuvant trials and more frequent follow-up. Our
results represent a powerful tool to follow the progression of HBV, especially in extrahepatic
organs. Importantly, HBV hijacking is “hypermetabolic”. The systemic metabolic profiles of
the tissues of HBV-transgenic mice provide an opportunity to understand the pathogenesis
of HBV infection, invasion, and metastasis, and may help in developing powerful therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12040287/s1, Figure S1. (A) Cross validation (left) and
permutation test with number n = 100 (right) from O-PLS-DA (Figure 1A, heart). (B) The reduced
NMR spectrum revealed altered components in normalized heart samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance cor-
responds to decreased component concentration. Predictivity of the model is represented by
R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = 3-hydroxybutyric acid, 5 = lactic acid, 6 = alanine,
7 = arginine, 8 = fumaric acid, 9 = tyrosine, 10 = formic acid, 11 = niacinamide. (C) Statistical analysis
of altered metabolites in heart samples using a Student’s t-test. p < 0.05 was considered statistically
significant. Figure S2. (A) Cross validation (left) and permutation test with number n = 100 (right)
from O-PLS-DA (Figure 1B, liver). (B) The reduced NMR spectrum revealed altered components
in normalized liver samples. Positive covariance corresponds to components present at increased
concentrations, whereas negative covariance corresponds to decreased component concentration.
Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = propionic
acid, 5 = 3-hydroxybutyric acid, 6 = acetic acid, 7 = glutamic acid, 8 = dimethylamine, 9 = choline,
10 = tyrosine, 11 = phenylalanine. (C) Statistical analysis of altered metabolites in heart samples using
a Student’s t-test. p < 0.05 was considered statistically significant. Figure S3. (A) Cross validation (left)
and permutation test with number n = 100 (right) from O-PLS-DA (Figure 1C, spleen). (B) The reduced
NMR spectrum revealed altered components in normalized spleen samples. Positive covariance corre-
sponds to components present at increased concentrations, whereas negative covariance corresponds
to decreased component concentration. Predictivity of the model is represented by R2. 1 = isoleucine,
2 = valine, 3 = arginine, 4 = succinic acid, 5 = methionine, 6 = aspartic acid, 7 = trimethylamine,
8 = glycerophosphocholine, 9 = trimethylamine N-oxide, 10 = serine, 11 = threonine, 12 = tyrosine,

https://www.mdpi.com/article/10.3390/metabo12040287/s1
https://www.mdpi.com/article/10.3390/metabo12040287/s1
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13 = phenylalanine, 14 = uridine. (C) Statistical analysis of altered metabolites in heart samples using
a Student’s t-test. p < 0.05 was considered statistically significant. Figure S4. (A) Cross validation
(left) and permutation test with number n = 100 (right) from O-PLS-DA (Figure 1D, lung). (B) The
reduced NMR spectrum revealed altered components in normalized lung samples. Positive covari-
ance corresponds to components present at increased concentrations, whereas negative covariance
corresponds to decreased component concentration. Predictivity of the model is represented by R2.
1 = acetic acid, 2 = succinic acid, 3 = aspartic acid, 4 = lysine, 5 = fumaric acid. (C) Statistical analysis
of altered metabolites in heart samples using a Student’s t-test. p < 0.05 was considered statistically
significant. Figure S5. (A) Cross validation (left) and permutation test with number n = 100 (right)
from O-PLS-DA (Figure 1E, kidney). (B) The reduced NMR spectrum revealed altered components in
normalized kidney samples. Positive covariance corresponds to components present at increased
concentrations, whereas negative covariance corresponds to decreased component concentration.
Predictivity of the model is represented by R2. 1 = leucine, 2 = isoleucine, 3 = valine, 4 = alanine,
5 = arginine, 6 = methionine, 7 = aspartic acid, 8 = lysine, 9 = creatine, 10 = serine, 11 = tyrosine,
12 = phenylalanine. (C) Statistical analysis of altered metabolites in heart samples using a Student’s
t-test. p < 0.05 was considered statistically significant. Figure S6. (A) Cross validation (left) and
permutation test with number n = 100 (right) from O-PLS-DA (Figure 1F, pancreas). (B) The reduced
NMR spectrum revealed altered components in normalized pancreas samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance cor-
responds to decreased component concentration. Predictivity of the model is represented by R2.
1 = isoleucine, 2 = 3-hydroxybutyric acid, 3 = acetoacetic acid, 4 = UDP-sugars, 5 = fumaric acid,
6 = formic acid. (C) Statistical analysis of altered metabolites in heart samples using a Student’s t-test.
p < 0.05 was considered statistically significant. Figure S7. (A) Cross validation (left) and permu-
tation test with number n = 100 (right) from O-PLS-DA (Figure 1G, duodenum). (B) The reduced
NMR spectrum revealed altered components in normalized duodenum samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance cor-
responds to decreased component concentration. Predictivity of the model is represented by R2. 1
= alanine, 2 = glutamic acid, 3 = lysine, 4 = creatine, 5 = ethanolamine, 6 = glycerol, 7 = threonine,
8 = α-D glucose. (C) Statistical analysis of altered metabolites in heart samples using a Student’s
t-test. p < 0.05 was considered statistically significant. Figure S8. (A) Cross validation (left) and
permutation test with number n = 100 (right) from O-PLS-DA (Figure 1H, jejunum). (B) The reduced
NMR spectrum revealed altered components in normalized jejunum samples. Positive covariance
corresponds to components present at increased concentrations, whereas negative covariance cor-
responds to decreased component concentration. Predictivity of the model is represented by R2.
1 = leucine, 2 = isoleucine, 3 = valine, 4 = alanine, 5 = methionine, 6 = lysine, 7 = serine, 8 = threonine,
9 = tyrosine, 10 = phenylalanine, 11 = tryptophan. (C) Statistical analysis of altered metabolites in
heart samples using a Student’s t-test. p < 0.05 was considered statistically significant. Figure S9.
(A) Cross validation (left) and permutation test with number n = 100 (right) from O-PLS-DA (Fig-
ure 1I, ileum). (B) The reduced NMR spectrum revealed altered components in normalized ileum
samples. Positive covariance corresponds to components present at increased concentrations, whereas
negative covariance corresponds to decreased component concentration. Predictivity of the model is
represented by R2. 1 = xanthine. (C) Statistical analysis of altered metabolites in heart samples using
a Student’s t-test. p < 0.05 was considered statistically significant. Figure S10. Photomicrographs of
representative sections of the livers from mice. Hematoxylin and eosin (H&E) staining of liver tissues
was performed to assess liver injury. (A) Normal livers without HBV infection; (B) HBV-infected liver,
showed significant increased infiltration of inflammatory cells (as denoted by the arrow in dark) and
cell edema (as denoted by the arrow in white). Scale bars = 50 mm. Original magnification, X400.
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