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Purpose: The aim of this study is to investigate radiomics features extracted from the
optimal peritumoral region and the intratumoral area on the early phase of dynamic
contrast-enhanced MRI (DCE-MRI) for predicting molecular subtypes of invasive ductal
breast carcinoma (IDBC).

Methods: A total of 422 IDBC patients with immunohistochemical and fluorescence in
situ hybridization results from two hospitals (Center 1: 327 cases, Center 2: 95 cases) who
underwent preoperative DCE-MRI were retrospectively enrolled. After image
preprocessing, radiomic features were extracted from the intratumoral area and four
peritumoral regions on DCE-MRI from two centers, and selected the optimal peritumoral
region. Based on the intratumoral, peritumoral radiomics features, and clinical–radiological
characteristics, five radiomics models were constructed through support vector machine
(SVM) in multiple classification tasks related to molecular subtypes and visualized by
nomogram. The performance of radiomics models was evaluated by receiver operating
characteristic curves, confusion matrix, calibration curves, and decision curve analysis.

Results: A 6-mm peritumoral size was defined the optimal peritumoral region in
classification tasks of hormone receptor (HR)-positive vs others, triple-negative breast
cancer (TNBC) vs others, and HR-positive vs human epidermal growth factor receptor 2
(HER2)-enriched vs TNBC, and 8 mm was applied in HER2-enriched vs others. The
combined clinical–radiological and radiomics models in three binary classification tasks
(HR-positive vs others, HER2-enriched vs others, TNBC vs others) obtained optimal
performance with AUCs of 0.838, 0.848, and 0.930 in the training cohort, respectively;
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0.827, 0.813, and 0.879 in the internal test cohort, respectively; and 0.791, 0.707, and
0.852 in the external test cohort, respectively.

Conclusion: Radiomics features in the intratumoral and peritumoral regions of IDBC on
DCE-MRI had a potential to predict the HR-positive, HER2-enriched, and TNBC
molecular subtypes preoperatively.
Keywords: breast cancer, magnetic resonance imaging, dynamic contrast-enhanced imaging, radiomics,
molecular subtype
INTRODUCTION

Breast cancer is one of the most common malignant tumors, and it
has been the leading cause of cancer death among women aged 20
to 59 years (1, 2). The invasive ductal breast carcinoma (IDBC),
accounting for approximately 80% in all breast cancers, is the most
common histological subtype of breast cancer (3, 4). As a highly
heterogeneous malignant tumor, IDBC included four main
molecular subtypes including Luminal A, Luminal B, epidermal
growth factor receptor 2 (HER2)-enriched, and triple-negative
breast cancer (TNBC) (5, 6). More importantly, molecular
subtypes of IDBC are closely correlated with treatment strategies,
therapeutic effects, and clinical outcomes (7–9). Currently, IDBC
molecular subtyping mainly rel ied on pathological
immunohistochemistry (IHC) and gene expression profiling (10).
However, both IHC and gene expression profiling are time-
consuming and depend on resection or biopsy specimens, in
which an accurate diagnosis before surgery is difficult to make.
(11) Therefore, there has been more attention on developing new
and noninvasive strategies to preoperatively assess molecular
subtypes for guiding clinical decisions. MRI is commonly used in
clinic for preoperative evaluation of breast cancer. Dynamic
contrast-enhanced MRI (DCE-MRI) has been reported to reflect
more detailed biological information of tumor through analyzing
tumorous hemodynamic features (12, 13). Several studies have
reported that texture features derived from DCE-MRI were
correlated with diverse biomarker levels, such as estrogen receptor
(ER), progesterone receptor (PR), and HER2 (14, 15).

Radiomics enables subtle imaging feature extraction and
quantification for exploring the underlying associations between
the features and tumoral pathophysiology (16). Recently, several
studies found that the radiomics features extracted from DCE-
MRI are partially correlated with the tumoral heterogeneity or
biological behavior, including molecular subtypes, Ki-67
expression, and therapeutic effect of neoadjuvant chemotherapy
(15, 17, 18). However, most previous studies mainly focused on
the intratumoral region while neglecting the areas surrounding the
tumor containing the peritumoral information. The interactions
between intratumoral cells and peritumoral elements influence
tumor evolution and progression (19). For example, interactions
between tumor cells and mesenchymal cells in the peritumoral
area could induce the cytokine release and promote the tumor
immunosuppressive microenvironment formation, leading to
tumor progression (20). Peritumoral edema and angiogenesis
are correlated with the malignant behavior of the tumor (21,
22). Several studies have explored the radiomics features in the
2

peritumoral areas based on various image types, such as
mammography, ultrasound, and MRI, and had preliminary
results in tumor diagnosis, biological indicator prediction, and
prognosis evaluation (23–25). Li et al. recently reported that the
radiomics features in the intra-/peritumoral regions based on
DCE-MRI are able to identify the HER2 and Ki-67 status in
breast cancer (26). In Li’s study, the peritumoral region was set as
4 mm from the tumor boundary; however, the optimal
peritumoral size for breast cancer has rarely been studied.

In this study, we first aimed to clarify the optimal peritumoral
region in differentiating the IDBCmolecular subtypes. Moreover,
the radiomics features in the intratumoral and peritumoral areas
based on DCE-MRI were generated, and it was verified whether
radiomics analysis in DCE-MRI is helpful for the preoperative
discrimination of IDBC molecular subtypes.
METHODS AND MATERIALS

Patient Population
This study was approved by the institutional review boards from
both participating hospitals, and the requirement for informed
consent was waived. The data of 472 IDBC women from the First
Affiliated Hospital of Bengbu Medical College (Center 1, from
May 2016 to March 2021) and 141 IDBC women from Sir Run
Run Shaw Hospital, Zhejiang University (Center 2, from April
2018 to August 2019) were retrospectively analyzed. The patient
inclusion criteria were as follows: 1) underwent DCE-MRI scans
less than 1 month before biopsy or resection; 2) no surgery or
treatment before MRI scans; 3) all patients were pathologically
diagnosed by surgical resection sample or needle biopsy; and 4)
solitary tumor. Patient exclusion criteria were as follows: 1) more
than a month between histopathological examination and MRI
scans; 2) tumor size less than 1 cm; 3) patients with incomplete
clinical, imaging, and pathological data; 4) inadequate
image quality.

We finally included 422 women who met the criteria in this
study (Figure 1). In the binary classification analyses, 327
women from Center 1 were randomly divided into two
datasets at a ratio of 7:3 (228 in the training cohort and 99 in
the internal test cohort). A total of 95 women from Center 2 were
allocated to the external test cohort. To avoid overfitting in the
ternary classification analysis, given the difference in sample size,
all patients from Center 1 were allocated to the training cohort,
and patients from Center 2 comprised the test cohort.
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Analysis of Molecular Subtypes
The expressions of ER, PR, and HER2 for each patient were
recorded from IHC and fluorescence in situ hybridization (FISH)
results. The molecular subtypes were diagnosed in accordance with
the American Society of Clinical Oncology (ASCO)/College of
American Pathologists (CAP) guidelines (27). When at least 1% of
tumor cell nuclei exhibited positive staining for ER or PR, the
samples were considered as ER-positive or PR-positive,
respectively. For the expression status of HER2, a score of 3+
was defined as positive and a score of 0 or 1+ was considered
negative. And in the case of HER2 scores between 1+ and 3+,
samples will be further tested by FISH for a definite diagnosis.
According to the expression status of ER, PR, and HER2, IDBC
patients were subdivided into three molecular subtypes as HR-
positive (ER+ and/or PR+, HER2+, or HER2-), HER2-enriched
(ER-, PR-, and HER2+), and TNBC (ER-, PR-, and HER2-)
(Supplementary Table S1). Three binary classification tasks (task
1 as HR-positive vs HR-negative; task 2 as HER2-enriched vs non-
HER2-enriched; task 3 as TNBC vs non-TNBC) were performed
for predicting the molecular subtypes. In addition, to further
analyze the overall molecular subtype differences, a ternary
classification task (task 4 as HR-positive vs HER2-enriched vs
TNBC) was developed.

MRI Examinations
For all patients enrolled in this study, images were obtained
respectively with two MRI scanners, a 3.0-T MRI scanner
Frontiers in Oncology | www.frontiersin.org 3
(Philips Achieva, Center 1) and a 1.5-T scanner (GE Signa HD,
Center 2). All patients were positioned in the prone position and
scanned with a bilateral dedicated breast coil. T2WI, T1WI,
diffusion-weighted imaging (DWI), pre-contrast-enhancement
T1WI, and DCE were sequentially acquired. Gd-DTPA
(Magnevist) was used as the contrast agent in both centers. Pre-
contrast-enhancement T1WI was obtained prior to contrast agent
injection. For the DCE sequence, six phases (Center 1) and seven
phases (Center 2) were acquired after the end of high-pressure
syringe injection with 60 s (Center 1) and 70 s (Center 2) per
phase, respectively. In both centers, Gd-DTPA was intravenously
injected at a dose of 0.1 mmol/kg and at a flow rate of 2 ml/s, and
20–30 ml of saline flush was subsequently injected at the same flow
rate. Detailed parameters are listed in Supplementary Table S2.

Radiomics Feature Processing
As previous studies suggested, the contrast between the mass of
breast cancer and background reached a peak at 60–120 s after
contrast injection (28, 29). In this study, we selected the first
phase of DCE-MRI from Center 1 and Center 2 to segment the
region of interest (ROI). The normalization preprocessing of
images is necessary before ROI segmentation since images are
from two hospitals. Based on the slice thickness and pixel
spacing, we performed image isotropic resampling and set new
spacing to (1, 1, 1) to prevent image distortion caused by
different scanners. The default window width and window level
were read for each slice to get the average gray value of the whole
FIGURE 1 | Flow diagram of study enrollment.
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3D data, and the gray values of all slices were normalized to the
range (1, 4097) using a linear transformation. After image
preprocessing, intratumoral ROIs were annotated on a
“DARWIN intelligent research platform” by two radiologists
(Reader 1 SZ and Reader 2 XW) with more than five years of
experience, and they were blinded to the patients’ clinical,
radiological, and pathological data. The intratumoral ROIs
were manually delimitated by Reader 1 slice by slice on the
first phase of axial DCE-MRI images. Considering that the lesion
boundaries are sensitive to partial-volume effects on MRI, the
boundaries of the intratumoral ROI is slightly smaller than the
lesion boundary observed by human eyes (30). After 1 month,
10% of the images were randomly selected from Center 1 and
Center 2, and the intratumoral ROIs of the selected images were
segmented again by Reader 1 and Reader 2 to calculate the inter-/
intraclass correlation coefficient (ICC) for evaluating
Frontiers in Oncology | www.frontiersin.org 4
segmentation reproducibility. Since different peritumoral
regions within 10 mm of the tumor may be closely associated
with tumor vascular density, lymph node metastasis, and
biomarkers, we set four peritumoral ranges of 2, 4, 6, and
8 mm, drawing on a previous peritumoral radiomics study (22,
31). The 2-, 4-, 6-, and 8-mm peritumoral ROIs are ring-like
regions obtained by automatically expanding the intratumoral
ROIs slice by slice (Figure 2). After segmentation, the three-
dimensional ROIs of the intratumoral and peritumoral regions
were obtained. To further amplify the abundance of features,
the intratumoral and peritumoral ROIs in the original
image underwent six image-filtering processes, including
squared filtering, square root filtering, exponential filtering,
logarithm filtering, Laplacian of Gaussian (LOG) filtering, and
wavelet filtering. Finally, a total of 1,316 radiomics features were
automatically extracted over the original and derived filtered
FIGURE 2 | Schematic illustration of intratumoral and peritumoral ROI segmentation. The example segmentation is from Center 1, a 47-year-old woman diagnosed
with a left-sided IDBC, 29 mm, Luminal B (HER2-positive). (A) Maximal cross-sectional of tumor on the first phase DCE-MRI image. (B) The 3D visualization
intratumoral ROI with layer-by-layer delineation. (C–F) The red masks are the intratumoral ROIs, and the peritumoral ROIs are annular masks that automatically
shape-modulated the intratumoral ROIs with sizes of 2 mm (yellow), 4 mm (green), 6 mm (blue), and 8 mm (purple).
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ROIs based on an open-source Python package: Pyradiomics
(https://pyradiomics.readthedocs.io).

To prevent the influence of the magnitude difference between
features on feature selection, we normalized the feature
magnitude before feature dimensionality reduction. All features
were transformed to between (-1, 1) by using the maximum
absolute value normalization method. In the first feature
selection step, features were retained if both inter-/intraclass
correlation coefficients > 0.75. Then, a statistical feature selection
method named “Select K Best” with f_calssif function were used
to further reduce feature dimensionality. The threshold for K was
set to 20 while calculating the F statistics of ANOVA and
retaining the features with F values in the top 20%. Finally, an
embedded feature selection method, L1-regularized support
vector machine (SVM-L1), was used to filter out the optimal
radiomics features. More details about image filtering and feature
normalization processing are given in the Supplementary
Materials and Methods.

Clinical–Radiological Characteristics
Clinical characteristics including age, mass palpation (firmness
and mobility), and menopausal status were obtained by
reviewing the patient ’s clinical records. Radiological
characteristics including tumor size, background parenchymal
enhancement (BPE), fibro glandular tissue (FGT), margin
sharpness, and short diameter of axillary lymph node (ALN)
were evaluated mainly by two other radiologists (Reader 3 ZY
with 4 years of experience in MRI diagnosis, and Reader 4 YZ
with 6 years of experience). In cases of disagreement, Reader 5
(ZX) with 14 years of experience made the final decision. After
univariate and multivariate logistic regression analyses, the
selected characteristics were used to be the clinical–radiological
independent predictors for predicting molecular subtypes in the
four classification tasks. More details about the clinical–
radiological characteristics processing are given in the
Supplementary Materials and Methods.

Model Construction and Validation
An overview of the radiomics analysis pipeline is shown in
Figure 3. SVM was used as a classifier to construct the
intratumoral radiomics model (IRM) and 2-, 4-, 6-, and 8-mm
peritumoral radiomics model (PRM) with the selected radiomics
features, and Rad-scores for each model were calculated. In tasks
1–3, the receiver operating characteristic (ROC) curves were
plotted to evaluate the performance of each PRM, and the area
under the ROC curves (AUC) was performed to select the
optimal PRM. In task 4, a confusion matrix was plotted to
calculate the accuracy of PRM, and the optimal PRM was
selected. Subsequently, the combined intra- and peritumoral
radiomics model (CIPRM) was developed based on the
intratumoral and optimal peritumoral Rad-score. Clinical–
radiological independent predictors in the training cohort were
used to establish clinical–radiological models (CMs) by logistic
regression. Finally, we used the intratumoral Rad-score, the
optimal peritumoral Rad-score, and clinical–radiological
independent predictors to develop the combined clinical–
radiological and radiomics models (CCRMs).
Frontiers in Oncology | www.frontiersin.org 5
In tasks 1–3, the ROCs were plotted to assess the performance
of each model, and DeLong test was used to select the optimal
model and to evaluate the consistency of the model in the
training cohort, the internal test cohort, and the external test
cohort. Tenfold cross-validation was applied to evaluate model
stability. Nomogram, calibration curve, and decision curve
analysis (DCA) were depicted to visualize models, evaluate
model fit, and analyze clinical usefulness, respectively. In task
4, a confusion matrix was used to describe the performance of
ternary classification models.

Statistical Analysis
All statistical analyses were performed using the SPSS 22.0 software
(SPSS, Chicago, IL) and R software (Version 4.1.0). Kolmogorov–
Smirnov test was used to test the data normality. In binary
classification tasks, independent-sample t-test, Mann–Whitney U
test, and binary logistic regression analysis were used to assess the
associationbetween themolecular subtypesand features.And in the
ternary classification task, ANOVA, Kruskal–Wallis test, and
multinomial logistic regression analysis were used to analyze the
associationbetween themolecular subtypesand features. ICC>0.75
was considered to indicate good reproducibility of segmentation.
Delong test was used to compare the differences of ROCs. P < 0.05
was considered statistically significant.
RESULTS

Patient Characteristics
A total of 422 patients from Center 1 (327 cases, 49.61 ± 9.36 years)
andCenter 2 (95cases, 51.55±9.15years)were included in this study.
HR-positive is the most common subtype and comprised 69.4% of
cases (293/422), and HER2-enriched was the least common
accounting for 14.0% of cases (59/422). The difference of clinical–
radiological and pathological characteristics in the training, internal,
and external test cohorts is not statistically significant different. The
detailed clinical–radiological and pathological characteristics are
described in Table 1. And the clinical–radiological independent
predictors in tasks 1–4 are shown in Supplementary Figure S1
and Supplementary Table S3. The logistic regression analysis
showed that a short diameter of the axillary lymph node (ALN) (P
< 0.001, OR = 0.264, 95% confidence interval [CI]: 0.146–0.479) and
mass palpation (mobility) (P = 0.018, OR = 0.376, 95% CI: 0.168–
0.843) were selected as independent predictors in task 1; margin
sharpness (P = 0.025, OR = 3.146, 95% CI: 1.158–8.547) and short
diameter of ALN (P = 0.004, OR = 2.374, 95% CI:1.312–4.298) were
selected as independent predictors in task 2; the short diameter of
ALN (P = 0.003, OR= 2.886, 95%CI:1.436–5.800) was selected as an
independent predictor in task 3. For task 4, tumor sizewas selected as
an independent predictor.

Radiomics Features
Out of the 1,316 extracted radiomics features from the intratumor,
82.8% (1,089 features) were retained when ICCs > 0.75. The
peritumor retained the same 1,089 features as the intratumor.
Based on the predicted labels for tasks 1–4, 217 features were
retained by the f_calssif function. After being filtered by SVM-L1,
June 2022 | Volume 12 | Article 905551
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FIGURE 3 | An overview of radiomics analysis methodology in this study. Five predictive models were developed based on clinical–radiological characteristics and
intratumoral and peritumoral radiomics features. CM, clinical–radiological model; IRM, intratumoral radiomics model; PRM, peritumoral radiomics model; CIPRM,
combined intratumoral and peritumoral radiomics model; CCRM, combined clinical–radiological and radiomics model.
TABLE 1 | Clinical–radiological and pathological characteristics of patients in the training, internal, and external cohorts.

Characteristics All patients Training Internal test External test statistics P

Number 422 228 99 95 – –

Molecular subtypesc 8.791d 0.186
HR-positive 293 (69.4%) 153 (67.1%) 67 (67.7%) 73 (76.8%)
HER2-enriched 59 (14.0%) 32 (14.0%) 18 (18.2%) 9 (9.5%)
TNBC 70 (16.6%) 43 (18.9%) 14 (14.1%) 13 (13.7%)

Agea 50.05 ± 9.33 49.71 ± 8.89 49.39 ± 10.39 51.54 ± 9.15 2.218e 0.11
Tumor sizeb 21 (16-28) 21 (16-28) 22 (16-30) 20 (15-25) 5.899d 0.052
BPEc 0.434d 0.805

Minimal 18 (4.3%) 10 (4.4%) 3 (3%) 5 (5.3%)
Mild 228 (54%) 131 (57.5%) 48 (48.5%) 49 (51.6%)
Moderate 123 (29.1%) 63 (27.6%) 30 (30.3%) 30 (31.6%)
Marked 53 (12.6%) 24 (10.5%) 18 (18.2%) 11 (11.6%)

FGTc 0.095d 0.954
Dense 120 (28.4%) 66 (28.9%) 27 (27.3%)/ 27 (28.4%)
Non-dense 302 (71.6%) 162 (71.1%) 72 (72.7%) 68 (71.6%)

Margin sharpnessc 2.567d 0.168
Clear 84 (19.9%) 45 (19.7%) 14 (14.1%) 25 (26.3%)
Blurry 338 (80.1%) 183 (80.3%) 85 (85.9%) 70 (73.7%)

Short diameter of ALNc 5.007d 0.082
≤ 5 mm 282 (66.8%) 149 (65.4%) 61 (61.6%) 71 (74.7%)
> 5 mm 140 (33.2%) 79 (34.6%) 38 (38.4%) 24 (25.3%)

Mass palpation (Firmness)c 5.886d 0.053
Soft 67 (15.9%) 33 (14.5%) 17 (17.2%)/ 17 (17.9%)
Hard 355 (84.1%) 195 (85.5%) 82 (82.8%) 78 (82.1%)

Mass palpation (Mobility) c 1.091d 0.58
Pushable 112 (26.5%) 53 (23.2%) 30 (30.3%) 29 (30.5%)
Non-pushable 310 (73.5%) 175 (76.8%) 69 (69.7%) 66 (69.5%)

Menopausal Statusc 2.482d 0.289
Premenopausal 216 (51.2%) 117 (51.3%) 57 (57.6%) 42 (44.2%)
Postmenopausal 206 (48.8%) 111 (48.7%) 42 (42.4%) 53 (55.8%)
Frontiers in Oncology | www.fron
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Characteristicsa: The measurement data conforming to the normal distribution were expressed as mean ± standard deviation.
Characteristicsb: The non-normally distributed measurement data were expressed as median (lower quartile-upper quartile).
Characteristicsc: The enumeration data were expressed as frequency (constituent ratio); Statistic d: H-value; Statistic e: F-value; P is derived from univariate association analyses between
each of the Patients Characteristics and Molecular subtypes, and P < 0.05 is considered statistically significant. ALN, axillary lymph node; BPE, background parenchymal enhancement;
FGT fibro glandular tissue; HER2, human epidermal growth factor receptor 2; HR hormone receptor; TNBC triple-negative breast cancer.
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optimal intra-/peritumoral radiomics features were selected to
construct the classification models (Table S4). Among the selected
features, features based on the wavelet filtering images occupied
the highest proportion (49.30%, 35:71), followed by features based
on original images (21.13%, 15:71).

Optimal Peritumoral Model Selection
Table 2 summarizes the performance of PRMs in binary
classification tasks (tasks 1–3). The 6-mm PRM was selected as
the optimal peritumoral size in task 1 (AUC: 0.794, 95% CI:
0.735–0.844) and task 3 (AUC: 0.906, 95% CI: 0.860–0.941). And
the 8-mm PRM achieved the highest AUC (0.784, 95% CI:
0.741–0.823) in task 2. In task 4, the 6-mm peritumoral model
showed the highest accuracy (0.697) from the confusion matrix.

Model Performance
In tasks 1–3, DeLong test showed that the models combined with
peritumoral radiomics features exhibited higher performance
compared to the individual models (Table 3). The CCRMs
yielded optimal performance, and ROC analyses showed that
the AUCs were 0.838, 0.827, and 0.791 in training, internal test,
and external test cohorts of task 1, respectively; 0.848, 0.813, and
0.707 in task 2, respectively; 0.930, 0.879, and 0.852 in task 3,
respectively (Table 4 and Figure 4). Internal and external tests
Frontiers in Oncology | www.frontiersin.org 7
proved that the models had satisfactory repeatability. After the
10-fold cross-validation, CCRMs performed excellent stability
(Supplementary Figure S2). In addition, DeLong test showed
that the CCRMs have good consistency in the training, internal,
and external test cohorts of tasks 1–3 (P > 0.05, Table 5). The
nomograms of the CCRMs showed that intratumoral and
peritumoral Rad-scores were given higher weighting compared
to the clinical–radiological independent predictors (Figure 5).
The calibration curves illustrated that CCRMs are in excellent
agreement with the ideal curve, and the DCA demonstrated that
CCRMs have a high overall net benefit (Figure 6). In task 4,
CIPRM instead of CCRM had the highest accuracy (training
cohort: 0.697; test cohort: 0.663) and the highest F1-score
(training cohort: 0.79; test cohort: 0.76) from the confusion
matrix among the five models (Figure 7 and Supplementary
Table S5, Supplementary Figure S3).
DISCUSSION

In this multitask radiomics analysis, we developed the
noninvasive radiomics models based on DCE-MRI to
preoperatively predict molecular subtypes of IDBC. The
subtype classification results of both the individual models and
TABLE 2 | Performance of peritumoral models in tasks 1–3.

Task Peritumoral Size AUC (95%CI) Sensitivity Specificity

Task 1 2 mm 0.681 (0.616-0.741) 73.86 61.33
4 mm 0.725 (0.662-0.782) 71.90 69.33
6 mm 0.794 (0.735-0.844) 63.41 86.67
8 mm 0.751 (0.689-0.805) 77.12 65.33

Task 2 2 mm 0.642 (0.576-0.704) 55.56 70.51
4 mm 0.744 (0.683-0.800) 66.67 72.44
6 mm 0.728 (0.665-0.785) 69.44 69.87
8 mm 0.784 (0.741-0.823) 79.84 65.23

Task 3 2 mm 0.787 (0.728-0.838) 95.01 54.26
4 mm 0.751 (0.690-0.806) 80.00 60.64
6 mm 0.906 (0.860-0.941) 98.62 69.5
8 mm 0.769 (0.709-0.822) 72.5 76.06
June 2022 | Volume 12 | Art
Task 1: Classification task for prediction of HR-positive and HR-negative. Task 2: classification task for prediction of HER2-enriched and non-HER2-enriched. Task 3: classification task for
the prediction of TNBC and non-TNBC. AUC, Area under the curve; CI, Confidence interval.
TABLE 3 | Pairwise comparison of ROC curves in tasks 1–3.

Models Task 1 Task 2 Task 3

Z Statistic P Z Statistic P Z Statistic P

CM vs IRM 2.821 0.005* 3.394 < 0.001* 3.908 < 0.001*
CM vs PRM 2.271 0.023* 3.855 < 0.001* 5.947 < 0.001*
CM vs CIPRM 3.408 < 0.001* 4.799 < 0.0001* 6.315 < 0.001*
CM vs CCRM 4.093 < 0.001* 5.296 < 0.0001* 6.476 < 0.001*
IRM vs PRM 0.591 0.554 0.409 0.683 1.879 0.06
IRM vs CIPRM 1.551 0.121 1.512 0.131 3.267 0.001*
IRM vs CCRM 1.775 0.076* 1.964 0.05* 3.388 < 0.001*
PRM vs CIPRM 2.197 0.028* 1.755 0.079* 1.992 0.046*
PRM vs CCRM 2.467 0.014* 2.516 0.012* 2.073 0.038*
CIPRM vs CCRM 0.9 0.368 1.495 0.135 0.74 0.459
icl
P is derived from Delong test between each of the models, and P* < 0.05 is considered statistically significant. CM, clinical–radiological model; CIPRM, combined intra- and peritumoral
radiomics model; CCRM, combined clinical–radiological and radiomics model; IRM, intratumoral radiomics model; PRM, peritumoral radiomics model.
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TABLE 4 | Summary of five models’ performance in training, internal test, and external test cohorts of tasks 1–3.

Task Models Training Cohort Internal Test Cohort External Test Cohort

AUC (95%CI) Sensitivity Specificity AUC (95%CI) Sensitivity Specificity AUC (95%CI) Sensitivity Specificity

Task1 CM 0.697 (0.633-0.756) 75.82% 56% 0.614 (0.511-0.710) 52.24% 68.75% 0.586 (0.481-0.686) 56.16% 59.09%
IRM 0.811 (0.754-0.859) 73.20% 78.67% 0.767 (0.672-0.846) 68.66% 84.37% 0.791 (0.696-0.868) 61.64% 86.36%
PRM 0.794 (0.735-0.844) 63.40% 86.67% 0.799 (0.706-0.873) 71.64% 84.37% 0.682 (0.578-0.774) 76.71% 63.64%
CIPRM 0.832 (0.777-0.878) 83.66% 70.67% 0.789 (0.695-0.864) 67.16% 81.25% 0.788 (0.692-0.865) 75.34% 72.73%
CCRM 0.838 (0.784-0.884) 70.59% 86.67% 0.827 (0.738-0.896) 71.64% 84.37% 0.791 (0.696-0.868) 75.34% 72.73%

Task2 CM 0.659 (0.593-0.720) 48.61% 77.56% 0.616 (0.513-0.712) 54.84% 66.18% 0.534 (0.429-0.637) 22.50% 86.67%
IRM 0.800 (0.742-0.850) 70.83% 76.28% 0.671 (0.569-0.762) 48.39% 80.88% 0.607 (0.501-0.705) 55% 73.33%
PRM 0.815 (0.758-0.863) 87.50% 64.10% 0.813 (0.722-0.884) 70.97% 85.29% 0.737 (0.636-0.822) 93.75% 60.00%
CIPRM 0.838 (0.784-0.884) 77.78% 76.28% 0.801 (0.708-0.874) 67.74% 83.82% 0.699 (0.596-0.789) 48.75% 86.67%
CCRM 0.848 (0.795-0.892) 81.94% 76.92% 0.813 (0.722-0.884) 77.42% 77.94% 0.707 (0.604-0.796) 50% 86.67%

Task3 CM 0.628 (0.562-0.691) 57.50% 68.09% 0.654 (0.552-0.747) 58.82% 71.95% 0.666 (0.561-0.759) 53.85% 79.27%
IRM 0.843 (0.790-0.888) 85% 66.49% 0.838 (0.750-0.904) 70.59% 90.24% 0.792 (0.696-0.868) 61.54% 84.15%
PRM 0.906 (0.860-0.941) 100% 67.55% 0.877 (0.795-0.934) 76.47% 87.80% 0.852 (0.764-0.916) 92.31% 76.83%
CIPRM 0.928 (0.887-0.958) 90% 82.45% 0.877 (0.795-0.934) 76.47% 87.80% 0.792 (0.696-0.868) 61.54% 84.15%
CCRM 0.930 (0.888-0.959) 92.50% 81.38% 0.879 (0.799-0.936) 76.47% 87.80% 0.852 (0.764-0.916) 69.23% 89.02%
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AUC, area under the curve; CI, confidence interval; CM, clinical–radiological model; CIPRM, combined intra- and peritumoral radiomics model; CCRM, combined clinical–radiological and
radiomics model; IRM, intratumoral radiomics model; PRM, peritumoral radiomics model.
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FIGURE 4 | Receiver operating characteristic (ROC) curves of five models in the training, internal, and external test cohorts of task 1 (HR-positive vs HR-negative,
(A) training cohort, (B) internal test cohort, (C) external test cohort), task 2 (HER2-enriched vs non-HER2-enriched, (D) training cohort, (E) internal test cohort, (F)
external test cohort), and task 3 (TNBC vs non-TNBC, (G) training cohort, (H) internal test cohort, (I) external test cohort).
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TABLE 5 | DeLong Test between Training Cohort, Internal Test Cohort, and External Test Cohort in tasks 1–3.

Tasks Compares Z P

Task 1 External Test Cohort vs Internal Test Cohort 0.514 P = 0.6075
External Test Cohort vs Training Cohort 0.772 P = 0.4400
Internal Test Cohort vs Training Cohort 0.216 P = 0.8292

Task 2 External Test Cohort vs Internal Test Cohort 1.154 P = 0.2485
External Test Cohort vs Training Cohort 1.711 P = 0.0871
Internal Test Cohort vs Training Cohort 0.634 P = 0.5260

Task 3 External Test Cohort vs Internal Test Cohort 0.41 P = 0.6821
External Test Cohort vs Training Cohort 1.32 P = 0.1868
Internal Test Cohort vs Training Cohort 1.193 P = 0.2329
Frontiers in Oncology | www.frontiersin
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P is derived from Delong test between each of the ROCs, and P < 0.05 is considered statistically significant.
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FIGURE 5 | Nomogram of CCRMs in tasks 1–3. (A) Nomogram of CCRMs for the prediction of HR-positive and HR-negative in task 1. (B) Nomogram of CCRMs
for the prediction of HER2-enriched and non-HER2-enriched in task 2. (C) Nomogram of CCRMs for the prediction of TNBC and non-TNBC in task 3.
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FIGURE 6 | Calibration curve and decision curve of CCRMs in tasks 1–3. Calibration curve (A) and decision curve (B) of CCRMs for the prediction of HR-positive
and HR-negative in task 1. Calibration curve (C) and decision curve (D) of CCRMs for the prediction of HER2-enriched and non-HER2-enriched in task 2. Calibration
curve (E) and decision curve (F) of CCRMs for the prediction of TNBC and non-TNBC in task 3. In the calibration curve, the gray dotted line represents the ideal line
of the model. In decision curves, the gray solid line represents the net benefit for all patients after pathological diagnosis (All), and the black solid line represents the
net benefit for none patients after pathological diagnosis (None).
A B

FIGURE 7 | Confusion matrix of CIPRM in task 4. (A) Confusion matrix of the training cohort; (B) confusion matrix of the test cohort.
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combined models showed reasonable distinguishing
performance. And the CCRMs achieved excellent predictive
performance for predicting molecular subtypes in the binary
classification tasks. In contrast to an individual clinical–
radiological model or a radiomics model, the combined model
with optimized peritumoral radiomics features has higher
predictive values for the molecular subtypes of IDBC.

The microenvironment surrounding breast cancer has been
reported to contain important biological information that may
result in subtle changes on MRI images (20, 22, 32, 33). However,
the optimal peritumoral area size for breast cancer on DCE-MRI
remains controversial.Wanget al. found that the radiomics features
extracted from the 3-mm peritumoral region could differentiate
benign and malignant breast lesions on contrast-enhanced
mammography (25). Li et al. extracted intratumoral and 4-mm
peritumoral radiomics features to predict the expression of HER2
and Ki-67 in breast cancer, and their models achieved good
performance (26). In our study, 6 mm was determined as the
optimal peritumoral size in tasks 1, 3, and 4, and 8 mm was
determined as the optimal peritumoral size in task 2. In
agreement with our findings, Ding et al. also analyzed radiomics
features of multiple peritumoral areas, and they found that 4-, 6-,
and 8-mm peritumoral radiomics features could further improve
the performance of lymph node metastasis radiomics models in
breast cancer (31). Our results demonstrate the excellent prediction
performance of peritumoral radiomics features and suggest that the
optimal peritumoral size should be selected based on the predictive
label, which could further optimize the performance of the model.

The SVM is one of most frequently used machine-learning
methods for solving classification problems, which is not
susceptible to feature colinearity and is not prone to overfitting
(34). In this study, we used the SVM to construct several high-
performance and stable radiomics models. In tasks 1–3, CCRMs
exhibited higher performance compared to other models. After
internal test, external test, and 10-fold cross-validation, CCRMs
showed satisfactory repeatability and stability. In the three binary
classification tasks, the CCRM identifying TNBC vs non-TNBC
exhibited the highest AUC.Our results are consistentwith previous
studies. Son et al. constructed threemodels for predictingmolecular
subtypes of breast cancer based on digital breast tomosynthesis
(DBT), and they suggested that the radiomics featureswere superior
for predicting TNBC over HER2 and luminal-like subtypes (AUC:
0.838, 0.556, and 0.645) (35). Doris et al. reported that radiomics
features extracted from multiparametric MRI could noninvasively
assess breast cancer molecular subtypes (Accuracy: 0.852, AUC:
0.860) (15). Compared to these results, the binary classification
models developed in our study exhibit better differentiable
capability, and this may be due to the fact that our study is based
on 3D segmentation and optimized the peritumoral ROIs, which
could obtain more comprehensive tumor information.

Comparatively, themodelperformancewasnot adequate in task4
(training cohort: 0.697; test cohort: 0.663). The result is in agreement
with a recent study by Huang et al. who built ternary classification
MRI-based models to predict molecular subtypes of breast cancer
(accuracy, 0.623–0.735) (36). Although we incorporated the optimal
peritumoral features, the performance is still unsatisfactory in the
Frontiers in Oncology | www.frontiersin.org 11
ternary classification task.We argue that themolecular heterogeneity
of the IDBC may lead to the diversification of radiomics features,
which could be amplified in the ternary classificationmodel resulting
in reducedperformance. Particularly, the optimalmodel (CIPRM) in
task 4 did not incorporate a clinical–radiological feature, which was
the result of the collinearity that exists between the radiomics shape
feature maximum 2D diameter and the clinical–radiological feature
tumor size.

Previous studies have reported that voxel size resampling and
gray level normalization could reduce the variability of radiomics
features (37, 38). In our study, we validated the radiomics-based
classification models for evaluating the generalization ability of the
models by external test cohort from center 2. As different centers
have different protocols for imaging, we utilized image resampling
and normalization before ROI segmentation to help mitigate the
effects of data heterogeneity. After pairwise comparisons of the
training cohort, the internal test cohort, and the external test cohort,
Delong test showed that the ROC of CCRM was not statistically
significantly different between the three groups. This result may
indicate that the difference of imaging protocols in the two centers
had a negligible effect on the models constructed after image
preprocessing. However, the external test cohort revealed
relatively low AUC compared to other groups, which may be due
to the fact that image preprocessing did not completely eliminate
the differences of imaging protocols in the two centers, and the
sample size of the external test cohort was relatively small.

Moreover, our results suggest that there might be unique
radiomics features in intratumoral and peritumoral regions
associated with microscopic morphological alterations in
molecular subtypes. Among the radiomics features included in
this study, wavelet features accounted for the highest proportion,
which may suggest that the features from wavelet-filtered DCE-
MRI potentially associated with IDBC molecular subtypes. In
consistent with our results, Li et al. extracted wavelet features for
predicting HER2 and Ki-67 expression status and suggested that
wavelet features contain more detailed information about breast
cancer (26). In addition, second- and higher-order texture
features accounted for a higher proportion (56.34%) compared
to shape features and first-order statistical features, suggesting
that regional or local variation predominates over global
variation in the distribution of different molecular subtypes (39).

Several limitations exist in this study. First, this is a retrospective
study, leading to inevitable selection bias. Moreover, molecular
subtypes are derived from IHC results at two hospitals but not from
formal genetic testing, which might result in unstable results from
the external test cohort. Third, in our study, the proportion of the
peritumoral size was not adjusted for the size of the tumor itself.
More detailed subgroup analysis according to different tumor sizes
should be further studied to illustrate the wide applicability of the
tumor outer margin. Finally, this study only constructed the
radiomics models based on the first phase of DCE-MRI and did
not analyze the whole DCE-MRI sequence, and further radiomics
research on different phases of DCE-MRI is needed in the future.

In conclusion, this study further demonstrates the feasibility of
preoperative radiomics analysis in predicting the molecular
subtypes of IDBC. Combining the radiomics features of the
June 2022 | Volume 12 | Article 905551
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intratumoral and the optimal peritumoral region from early DCE-
MRI could effectively predict theHR-positive, HER2-enriched, and
TNBC molecular subtypes of IDBC and potentially provide
guidance for preoperative clinical decision-making.
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