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CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance.
Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease,
whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune
disease. This distinction indicates the importance of the thymus in controlling the
differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting
cells (APC) depend on each other for normal maturation and differentiation. In this
Hypothesis and Theory article, we propose this mutual dependence dictates which
self-antigens induce T-reg cell development in the thymic medulla. We postulate self-
reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation
of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the
development of T-reg cells specific for the same self-antigen. By limiting the number of
antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may
impede the formation of medullary T-reg niches containing certain self-antigens.
Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole”
in the self-antigen repertoire recognized by T-reg cells.

Keywords: thymus, T-cell selection, T-cell tolerance, T-cell deletion, T-regulatory cells, self-antigen recognition,
autoimmune disease
INTRODUCTION

Foxp3+ T-regulatory (T-reg) cells are an immunosuppressive lineage of T cells essential for immune
tolerance (1). The development and function of T-reg cells depend on interactions between the T
cell receptor (TCR) and peptide-major histocompatibility complex class II (pMHCII) antigens on
the surface of other cells (2, 3). Some pMHCII self-antigens induce thymic lymphocytes
(thymocytes) to upregulate Foxp3 (4–6); we refer to these pMHCII self-antigens as Tregitopes (T-
reg epitopes). Some self-peptides fail to form a Tregitope because they cannot bind stably to the
peptide-binding grooves of any MHCII alleles expressed in a given organism (7). In addition, the
expression pattern of a self-peptide affects its capacity to form a Tregitope. Self-peptides not expressed
in the thymus do not affect the development of responding thymocytes, whereas highly expressed
self-peptides induce thymocyte deletion (8, 9). Highly expressed self-peptides induce thymocyte
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deletion because the high number of pMHCII complexes per
APC, or high number of pMHCII+ APC, triggers persistent TCR
signaling in thymocytes. Alternatively, highly expressed self-
peptides may induce deletion because they are presented in the
cortex to immature thymocytes that are more sensitive to
deletion than mature thymocytes in the medulla (10, 11).
Thus, according to current concepts, self-peptides with low or
sparse presentation in the thymic medulla should form Tregitopes.

A self-peptide derived from the a3 chain of type IV collagen
(a3) forms a Tregitope when presented by the MHCII molecule,
human leucocyte antigen (HLA)-DR1, but not when presented
by HLA-DR15 (4). HLA genotype would not be expected to
affect a3 expression, which has been observed in the thymic
medulla in a pattern suitable for Tregitope formation (12).
Although HLA-DR1 and HLA-DR15 both present the a3 self-
peptide to T cells, the peptide anchor residues are offset by one
position so that the TCR “sees” different amino acids of the
peptide when it is presented by HLA-DR1 versusHLA-DR15 (4).
The distinct fates of a3-specific CD4+ T cells are of special
interest because humans and mice expressing HLA-DR15 are
susceptible to Goodpasture’s disease, also known as anti-
glomerular basement membrane disease, characterized by pro-
inflammatory T cell responses towards a3/DR15 (13, 14).
However, co-expression of HLA-DR1 induces development of
a3/DR1-specific T-reg cells and prevents Goodpasture’s disease
in a manner that depends on T-reg cells (4).

To account for the distinct fates of CD4+ T cells specific for
a3/DR1 versus a3/DR15, and other findings, here we propose an
extension to current concepts of thymic T-reg cell development.
We postulate the potential of medullary pMHCII self-antigens to
form a Tregitope can be extinguished when a high percentage of
cognate antigen-specific thymocytes are deleted by encountering
the same or similar pMHCII self-antigens in the cortex. We
suggest antigen-specific CD4+ CD8– (CD4 single-positive,
CD4SP) thymocytes deliver signals that induce medullary
thymic epithelial cells (mTEC) to “lock in” expression of their
cognate self-antigen. Self-reactive CD4SP thymocytes may
thereby generate a medullary niche for subsequent
development of T-reg cells specific for the same self-antigen.
Thus, antigen-specific T-reg niche size may be inversely related
to the extent of cortical deletion of antigen-specific thymocyte
populations. Implications of this extended model for the
pathogenesis of organ-specific autoimmune diseases
are discussed.
IMPACT OF THYMOCYTE DELETION IN
THE CORTEX ON T-REG SELECTION IN
THE MEDULLA

Thymocyte deletion has been dissected based on the maturation
stage and/or the intrathymic location of the thymocytes
undergoing deletion (15). Most CD4+ CD8+ (double positive,
DP) thymocytes are located in the cortex, whereas CD4SP
thymocytes migrate between cortex and medulla, preferentially
residing in the medulla (16, 17). In models in which deletion
Frontiers in Immunology | www.frontiersin.org 2
occurs at the DP stage, increased numbers of apoptotic cells are
found in the cortex (18–20), whereas deletion at the CD4SP stage
results in increased numbers of apoptotic cells in the medulla
(18). Thus, it is plausible that deletion of DP thymocytes occurs
in the cortex and deletion of CD4SP thymocytes occurs in the
medulla. However, DP CD69+ thymocytes can enter the medulla
in a CCR4-dependent mechanism (21). In mixed chimeras,
Ccr4–/– thymocytes are overrepresented in all TCR-signalled
thymocyte subsets starting at the DP CD69+ stage (21). Those
findings indicate CCR4 is required for normal deletion and
suggest this deletion may occur in DP thymocytes inside the
medulla. Still, considering the high frequency of thymocytes that
undergo deletion at the DP stage (22–24), the relatively mild
effect of CCR4 deficiency on deletion (21, 25) suggests that a
substantial amount of deletion at the DP stage is independent of
CCR4. While the relative contributions of the cortex and medulla
to thymocyte deletion at the DP stage remain unclear, for
conceptual clarity, in this Hypothesis and Theory article we
have assumed that deletion at the DP stage occurs predominantly
in the cortex, and we refer to this process as cortical deletion.
Cortical deletion is widely considered to be inconsequential to T-
reg selection because a thymocyte deleted in the cortex cannot
directly affect events taking place in the medulla. However, we
postulate that cortical deletion can affect T-reg selection by
creating variation in the number of antigen-specific CD4SP
thymocytes in the medulla.

An antigen-specific CD4+ T cell is typically identified by the
binding of its TCR to a given pMHCII tetramer (26). In a naïve
C57BL/6 (B6) mouse, the number of self-antigen-specific CD4SP
thymocytes varies by 100-fold depending on the peptide
embedded in the MHCII tetramer (27). Most of this effect arises
from variation in the proportion of antigen-specific thymocytes
that undergo deletion (28). Deletion of antigen-specific
thymocytes need not be triggered by the antigen itself. For
example, the IgM:I-Ab-specific CD4SP thymocyte population in
B6 mice is small (28). This population is ~ 8 times larger in mice
that lack B cells–the only source of the IgM self-peptide–
indicating IgM:I-Ab itself is required for the deletion of some
IgM:I-Ab-specific thymocytes. However, the IgM:I-Ab-specific
CD4SP thymocyte population is 450 times larger in mice with
truly defective deletion due to MHCII expression being confined
to cortical thymic epithelial cells, demonstrating that most IgM:I-
Ab-specific thymocytes can be deleted by self-antigens other than
IgM:I-Ab (28). Enumerating CD4+ T cells specific for a panel of
foreign pMHCII antigens revealed the extent of such “deletion via
TCR cross-reactivity” correlates with the number of self-peptides
with the same or similar TCR-exposed amino acids (29). Deletion
of thymocytes expressing a cross-reactive TCR (30) is
indistinguishable from deletion of thymocytes specific for
ubiquitous self-antigen (20). Both are initiated at the DP stage
and the thymocytes never reach theCD4SP stage atwhichFoxp3 is
upregulated in developing T-reg cells (31, 32). Cortical deletion
prevents cross-reactive and ubiquitously self-reactive thymocytes
from developing into T-reg cells.

The perinatal period is a critical time for immune tolerance
(33). Perinatal T-reg cells are more effective than adult T-reg cells
May 2022 | Volume 13 | Article 892498
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at preventing autoimmune disease provoked by Aire deficiency
(34). The perinatal T-reg TCR repertoire is distinct from, and
more diverse than, the adult T-reg TCR repertoire (34). The age-
dependent change in T-reg selection is partly attributable to
mTEC directly presenting a higher number of self-antigens in
perinates than in adults (34). However, several findings suggest
the extent of cortical deletion is also different in perinates and
adults. The percentage of strongly TCR-signalled (Helios+) cells
in the immature (CCR7– CD24+) thymocyte population
increases with age (Figure 1). This effect, which was reported
previously (35), suggests cortical deletion is smaller in magnitude
during the perinatal period than in adult life. This may be due to
MHCIIhigh CD8a+ DC being less frequent in the perinatal
thymus than in the adult thymus (34). Although cortical
thymic epithelial cells can induce strong TCR signaling in
some thymocytes (20, 36, 37), BM-derived APC (BM-APC),
including DC, are present in the cortex (38, 39) and are required
for normal cortical deletion (20, 36, 37, 40). An age-dependent
change in the fate of thymocytes specific for one natural self-
antigen has been documented (6). In mice with transgenic
expression of the TCRb chain from the Yae62 TCR (Yae62b-
tg) (41), peptidyl arginine deiminase type IV (Padi4):I-Ab is a
Tregitope at 1-3 weeks after birth; however, Padi4:I-Ab-specific
thymocytes are deleted at the DP stage or at the DP-CD4SP
transition from 4 weeks after birth onwards (6). Analysis of
Padi4–/– Yae62b-tg mice confirmed Padi4:I-Ab-specific
thymocytes undergo T-reg development in perinates and
deletion in adults in response to Padi4 itself, with Padi4
expression in BM-APC sufficient to induce deletion in adult
mice (6). Thymocytes with the potential to develop into T-reg
cells can be deleted instead of developing into T-reg cells if they
encounter a related self-peptide, or the cognate self-peptide itself,
at the DP stage in the thymic cortex.

Events that occur within the DP stage in thymocytes that
become T-reg cells have been puzzling to resolve. Commitment
Frontiers in Immunology | www.frontiersin.org 3
to the T-reg lineage within the DP stage was thought to be
common, based on flow cytometry data indicating ~ 33% of
Foxp3+ thymocytes in adult wild-type mice were DP cells (42).
However, another study reported <10% of Foxp3+ thymocytes
were DP cells including during the perinatal period (31). After
rigorous exclusion of doublet events during flow cytometric
analysis, <5% of Foxp3+ thymocytes had a DP phenotype (32).
Accordingly, analysis of thymocytes that had incorporated a
DNA label at the DP stage showed that Foxp3 upregulation
predominantly occurs 4-8 days after label uptake, by which time
the labelled cells have acquired a CCR7+ CD4SP phenotype (43)
and moved to the medulla (44). Although we cannot exclude the
possibility that commitment to the T-reg lineage can occur at the
DP stage in the cortex, we favour the view that this usually occurs
at the CCR7+ CD4SP stage when the thymocytes are in
the medulla.
CURRENT CONCEPTS OF
DEVELOPMENTAL NICHES FOR T-REG
CELLS IN THE THYMIC MEDULLA

T-reg cells that develop in the thymus are thought to encounter
their cognate self-antigen for the first time in the medulla (45,
46). This is plausible because the intra-thymic expression of
some self-antigens, including tissue-restricted antigens (TRA), is
confined to mTEC (47). Two major mTEC subsets are
distinguished by expression of CCL21 (48), a chemokine that
attracts CCR7+ thymocytes to the medulla (49), or the nuclear
protein, Aire, which is required for normal expression of
thousands of TRA by mTEC (50–52). Another nuclear protein,
Fezf2, which is required for a distinct program of TRA
expression independent of Aire (53), is expressed by CCL21+

mTEC and Aire+ mTEC (54, 55). Self-antigens expressed by
FIGURE 1 | Age-dependent shift in cortical and medullary tolerance induction in the thymus. Flow cytometry plots (left) show HELIOS/BIM phenotypes of Foxp3–

thymocytes, divided into CCR7– CD24+ (cortical) and CCR7+ CD4+ CD8– (medullary) populations. Note that HELIOS and BIM tend to be co-expressed. Within each
population, numbers on the plots show the percentage of HELIOS+ cells among all thymocytes, with graphs (right) showing results for multiple mice of the indicated
ages and strains. Cortical tolerance appears less prominent during perinatal life, potentially enabling a higher frequency of strongly self-reactive thymocytes to
develop into T-reg cells in the medulla in perinates compared to adults. P and rho values were determined using Spearman’s test for correlation.
May 2022 | Volume 13 | Article 892498
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mTEC can be taken up and presented by BM-APC (56, 57) and
the presentation of some self-antigens to thymocytes is
completely dependent on this mechanism (58, 59). While the
mTEC population collectively expresses almost all protein-
coding genes, the expression of individual genes varies widely
both at the level of transcript abundance and in the frequency of
mTECs that express the transcript (52). Many self-antigens are
thought to be presented to thymocytes in small and discrete foci,
which form a “mosaic” of developmental niches for antigen-
specific T-reg cells in the medulla (45, 60).

This “mosaic” of self-antigen expression is shaped by
proliferation, differentiation, and maturation of mTEC.
Proliferating mTEC, which express many chromatin-modifying
factors and some TRA, give rise to cells that express Aire and a
higher number of TRAs per mTEC (54, 61). Whether CCL21+

mTEC are precursors or progeny of proliferating mTEC
remains unclear (35, 54, 61). The current concept is that an
individual mTEC expresses different sets of self-antigens over its
lifetime (61–63). In support of this “colinear differentiation”
model (62), an individual mTEC can switch off expression of one
self-antigen and switch on expression of another (62, 64). In
addition, single-cell RNA sequencing identified sets of self-
antigens that were co-expressed in multiple mTEC (61, 63, 65).
In this model, the presence of cells spanning all mTEC
subsets and all maturation stages is necessary and sufficient
for the expression of a full “mosaic” of self-antigens in
the medulla.

The thymic medulla is smaller in mice lacking CD4SP
thymocytes compared to wild-type mice or mice lacking
CD8SP thymocytes (66). Development of the mature mTEC
population, defined by high expression of MHCII and the
costimulatory molecule CD80, and comprising an Aire+ subset,
requires cognate interactions between the TCR on CD4SP
thymocytes and pMHCII on mTECs (67). CD4SP thymocytes
express the ligands for RANK, CD40, and LTbR, which are cell-
surface receptors necessary for mTEC maturation (66, 68, 69).
Anti-RANK ligand (RANKL) antibody treatment and the
absence of self-reactive CD4SP thymocytes both cause
deficiency of Aire+ mTEC, whereas CCL21+ mTEC remain
largely intact (54, 55). Notably, anti-RANKL antibodies
diminish the frequency of proliferating cells in the mTEC
population (54, 70), whereas the absence of self-reactive
CD4SP thymocytes does not (55). It is possible that invariant
NKT cells provide enough RANKL to support mTEC
proliferation (71). However, normal transition from the
proliferating stage to the Aire+ stage in mTEC development
requires signals uniquely provided during cognate interactions
with self-reactive CD4SP thymocytes (66). Similarly, normal
development of mature thymic DCs requires cognate TCR-
pMHCII interactions with CD4SP thymocytes (72).

CD4SP thymocytes also contribute to thymic T-reg cell niches
by producing IL-2 (73, 74). Consumption of this IL-2 prevents
deletion of strongly TCR-signalled CD4SP thymocytes (75) and
enables these T-reg precursors to upregulate Foxp3 expression
(76, 77). CD4SP thymocytes are thus both inducers and “clients”
of antigen-specific T-reg cell niches in the thymic medulla.
Frontiers in Immunology | www.frontiersin.org 4
A ROLE FOR CD4SP THYMOCYTES IN
GENERATING THE T-REG NICHE
CONTAINING THEIR COGNATE
SELF-ANTIGEN?

To this picture we wish to add the hypothesis that strongly self-
reactive CD4SP thymocytes foment the niche containing their
cognate self-antigen. Sustained, repetitive, cognate interactions
between CD4SP thymocytes and mTEC may be necessary for the
survival of post-cycling Aire+ mTEC and may induce the mTEC
to pause or arrest its “colinear differentiation” program. In other
words, these interactions may “lock in” continued expression of
those self-antigens that the mTEC is expressing at the time.
Currently available data do not exclude this extended model.
During the post-cycling Aire+ stage, different studies found the
mean number of TRAs expressed per Aire+ mTEC remained
constant (61) or increased by a factor of only two (54). Multiple
mTEC that co-express sets of self-antigens may be “daughters of
the same epithelial cell progenitor” (65).

Through this process, antigen-specific CD4SP thymocytes
may seed a niche for the development of T-reg specific for the
same self-antigen or another self-antigen in the same co-
expression “module” (61). Generating a functional T-reg niche
requires collaboration between CD4SP thymocytes because no
single cell can fulfil all functions required of CD4SP thymocytes.
These functions include: (i) to induce the post-cycling Aire+

mTEC to survive and “lock in” its current self-antigen expression
profile; (ii) to induce the mTEC and local DC to upregulate
antigen-presenting and costimulatory molecules; (iii) to produce
IL-2; and (iv) to develop from a naïve CD4SP thymocyte into a
T-reg precursor and then into a T-reg cell. At another level, there
is inter-niche competition because the medullary volume limits
the number of niches present at a given time. Success in this
inter-niche competition may be proportional to the extent of
intra-niche collaboration, which is in turn dictated by the size of
the antigen-specific CD4SP thymocyte population in the
medulla (Figure 2).

This extended hypothesis can accommodate some
unexplained findings. Two TCRs, called DO11 and N7, can
facilitate T-reg development in mice expressing the neo-self-
antigen, ovalbumin (OVA) (78). For these two TCRs, as had
been observed in other models (2, 79), antigen-specific CD4SP
thymocyte population size and Foxp3+ cell frequency were
inversely related, consistent with T-reg development being
constrained by OVA:I-Ad availability (78). Surprisingly, and in
contrast to the inverse relationship, T-reg development failed
when the CD4SP thymocyte populations expressing the DO11 or
N7 TCR were very small (78). We suggest the OVA:I-Ad-specific
population size had a lower limit, below which intra-clonal
collaboration between the TCR-transgenic CD4SP thymocytes
was insufficient to generate a niche for effective OVA:I-Ad-
specific T-reg development.

Our hypothesis also accommodates complementary findings
based on CD4+ T cell responses to natural self-antigens.
Although T-reg cell populations specific for myelin
May 2022 | Volume 13 | Article 892498
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oligodendrocyte glycoprotein (MOG):I-Ab can be expanded in
B6 mice immunized with MOG peptide (8, 80), MOG:I-Ab-
specific T-reg cells are rare in naïve B6 mice (27, 81). A notably
different phenotype is observed in B6.Kaa mice (81), which
express a transgenic TCRb chain repetitively found in MOG:I-
Ab-specific T cells (82). Compared to naïve B6 mice, naïve
B6.Kaa mice have 4 times more MOG:I-Ab-specific CD4+ T-
conv cells and 16 times more MOG:I-Ab-specific CD4+ T-reg
cells (81). Furthermore, proliferation and suppressive function of
MOG:I-Ab-specific CD4+ T-reg cells were demonstrable in T-reg
populations from naïve B6.Kaamice but not from naïve B6 mice
(81). Similar findings were made in an analogous study of CD4+

T cells specific for proteolipid protein (PLP):I-Ab (83). In the
latter study, comparison of Plp1+/+ and Plp1–/– mice on the
TCRb-transgenic background provided the additional insight
that PLP expression induced the post-thymic expansion of PLP:
I-Ab-specific CD4+ T-reg and Foxp3– FR4+ CD73+ anergic (84)
populations, but not the Foxp3– FR4– CD73– naïve T-conv cell
Frontiers in Immunology | www.frontiersin.org 5
population (83). In both studies (81, 83), enlarging the antigen-
specific CD4SP thymocyte population via a TCRb transgene
expanded the antigen-specific T-reg cell niche.

A challenge to our hypothesis is that the MOG:I-Ab-specific
CD4+ population in naïve B6 mice is relatively large, close to the
top of the spectrum of foreign pMHCII-specific population sizes
(29). Our hypothesis would predict the large MOG:I-Ab-specific
CD4SP thymocyte population in B6 mice ought to establish a
MOG:I-Ab-specific T-reg cell niche. To compare the intra-
thymic expression of MOG with natural self-antigens known
to form Tregitopes (4–6), we analyzed data from two studies that
conducted RNA sequencing on mTEC samples (52, 63). In this
panel of 20 self-antigens, both studies found MOG had the
lowest expression in mTECs (Figure 3), suggesting low “basal”
MOG expression in the thymic medulla might limit MOG:I-Ab-
specific T-reg niche generation in B6 mice. An initial test of our
hypothesis would be to compare the abundance of MOG
transcripts in mTEC from B6 versus B6.Kaa mice. We predict
FIGURE 2 | Determinants of antigen-specific T-reg niche size in the thymus. (A) The extent of cortical deletion is minor when the relatedness between cortical and
medullary peptides is low. Out of four DP thymocytes specific for a medullary peptide, M1, one is deleted by a related cortical peptide, C1, and the other three progress
to the CD4SP stage and migrate into the medulla. (B) Cognate CD4SP-mTEC interactions “seed” the T-reg niche. CD4SP thymocytes could mediate this effect by
interacting with immature mTEC prior to the onset of proliferation and/or by promoting mTEC survival at the post-cycling stage through sustained engagement of RANK,
CD40 and LTbR expressed on mTEC. The key outcome is that M1-specific CD4SP thymocytes induce the M1-presenting mTEC to “lock in” M1 expression. (C) A
functioning T-reg niche. By now, the mature M1-expressing mTEC has high expression of MHCII, CD80, Aire and the protein from which the M1 peptide is derived. M1-
specific CD4SP thymocytes also induce local DC to increase MHCII and CD80 expression. M1-specific CD4SP thymocytes also produce IL-2. However, most M1-
specific CD4SP thymocytes undergo deletion due to insufficient NF-kB activation or insufficient IL-2 consumption. Rare M1-specific CD4SP thymocytes activate sufficient
NF-kB and consume sufficient IL-2 to survive, upregulate Foxp3 and progress to the next stage of T-reg development. (D) The extent of cortical deletion is major when
the relatedness between cortical and medullary peptides is high. Out of four DP thymocytes specific for medullary peptide, M2, three are deleted in the cortex by related
self-peptides, C2.1, C2.2 and C2.3, and only one progresses to the CD4SP stage and migrates into the medulla. (E) A failed T-reg niche. The number of M2-specific
CD4SP thymocytes is too low to provide inductive signals to the M2-expressing mTEC. The mTEC may switch off expression of M2 and switch on expression of different
self-antigens. Activation of M2-specific CD4SP thymocytes is insufficient to induce T-reg development but may be sufficient to induce deletion of some cells. No M2-
specific T-reg niche forms and the small M2-specific CD4SP population develops into T-conv cells. Figure created with BioRender.com.
May 2022 | Volume 13 | Article 892498
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the unusually large MOG:I-Ab-specific CD4SP thymocyte
population in B6.Kaa mice would result in higher MOG
transcription in the mTEC population. Our hypothesis would
also predict the presence of B6.Kaa thymocytes should enhance
T-reg development in co-resident wild-type thymocytes in
mixed chimeras.
IMPACT OF THYMOCYTE DELETION IN
THE MEDULLA ON T-REG SELECTION

Outside the thymus, in a self-tolerant and functional immune
system, T-reg cells are thought to outcompete T-conv cells for
APCs that are presenting self-antigens, whereas the reverse
would apply for APCs presenting foreign antigens (85).
Theoretically, self-tolerance should be most robust if the
thymus selected the most self-reactive thymocytes into the T-
reg lineage, in order to maximize the difference in self-reactivity
between T-reg and T-conv cells. However, this is not observed
experimentally. Antigen-specific T-reg cells bind fewer pMHCII
tetramer molecules per cell than some antigen-specific T-conv
cells in mice lacking the self-antigen (8, 80). This suggests the
self-antigen deletes those thymocytes that express the most self-
reactive TCRs. Consistent with this conclusion, the half-lives and
functional avidities of 10 Padi4:I-Ab-specific TCRs indicated the
high, intermediate and low ranges of TCR self-reactivity induced
deletion, (perinatal) T-reg cell development, and T-conv cell
development, respectively (6). However, there is also compelling
evidence that CD4SP thymocytes can undergo deletion as a
result of their TCR self-reactivity being too low for T-reg
development (86). Accordingly, in a panel of 4 PLP:I-Ab-
specific TCRs, the TCRs with the highest and lowest functional
Frontiers in Immunology | www.frontiersin.org 6
avidity induced deletion, whereas the 2 TCRs with intermediate
functional avidity induced T-reg development (83). The TCR
self-reactivity most conducive to T-reg development would
appear to be “sandwiched” between two ranges of TCR self-
reactivity that induce deletion in the thymic medulla.

After CD4SP thymocytes initiate strong TCR signaling in the
medulla, the thymocyte-intrinsic pathways required to prevent
deletion change as the thymocyte matures. Canonical NF-kB
activation prevents deletion within the Foxp3– T-reg precursor
stage (22, 87–89), whereas IL-2 signaling prevents deletion at a
later stage, close to the time of Foxp3 upregulation (75). DOCK8
inhibits deletion at both of these stages (90). For CD4SP
thymocytes inside a medullary T-reg cell niche, survival
requires signaling that is not required for deletion. Evidence
that most of these cells are deleted (22, 75) suggests those cells
that complete T-reg development are rigorously selected.

CD4SP thymocytes can also develop into T-reg cells via a
developmental pathway that includes a Foxp3+ CD25– T-reg
precursor stage (31, 91). Compared to Foxp3– CD25+ T-reg
precursors, Foxp3+ CD25– T-reg precursors take longer to
develop, tend to have lower TCR self-reactivity and are less
susceptible to deletion (92). This alternative pathway may be
used by TCRs such as the OVA:I-Ad-specific TCR called R4 (78)
and another TCR called G113 (2). The R4 and G113 TCRs still
induce T-reg development when they are expressed by very few
CD4SP thymocytes (2, 78), implying intra-clonal collaboration is
unnecessary for these TCRs to support T-reg development.
Unlike the DO11 and N7 TCRs, the R4 and G113 TCRs do
not induce measurable deletion (2, 78), suggesting only TCRs
that trigger deletion require the antigen-specific CD4SP
thymocyte population size to exceed a lower limit in order to
induce T-reg development. CD4SP thymocytes with a TCR self-
A B

FIGURE 3 | Low expression of Mog compared to self-antigens known to induce T-reg cell development in the thymus. (A) Transcripts encoding myelin oligodendrocyte
glycoprotein (Mog) and 19 self-antigens known to induce thymic T-reg development (4–6) were measured by RNA sequencing of mTEC at the population level (y-axis)
(52) and in 305 single cells (x-axis) (63). FPKM, fragments per kilobase of exon per million mapped fragments. (B) Transcription levels of the 20 genes represented in (A)
in the mTEC population (left) and in single mTEC (right) with red shading according to the scales shown on the axes in (A).
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reactivity too low to induce deletion would be expected to have a
longer lifespan in the thymic medulla, which may increase their
probability of finding a pre-existing, functional T-reg niche, and
surviving long enough to upregulate Foxp3. Whether an antigen-
specific CD4SP Foxp3– thymocyte is at risk of deletion or not, it
can still contribute to the antigen-specific T-reg cell niche by
providing inductive signals to APCs and by producing IL-
2 (Figure 2).

The adult thymus also contains recirculatingor thymus-resident
T-reg cells (93), which may impact de novo thymic T-reg
development. GK-transgenic mice, which have few peripheral
CD4+ T cells and few non-nascent T-reg cells in the thymus due
to transgenic expression of an anti-CD4 antibody, have a slightly
higher frequency of Foxp3+ thymocytes than wild-type mice (94).
Non-nascent T-reg cells may thus limit de novo thymic T-reg
development by competing for limiting IL-2 (94, 95). However,
de novo thymic T-reg development is not reduced in mice with
enlarged non-nascent thymic T-reg cell populations (96, 97). As
non-nascent T-reg cells express more Tnfsf11 and Cd40lg
transcripts (which encode RANKL and CD40L, respectively) than
nascent thymic T-reg cells (94), they may also positively affect the
thymic T-reg niche by providing inductive signals to APC.
DISCUSSION

Certain self-antigens reproducibly “select” CD4SP thymocytes to
enter the T-reg lineage (4–6). We refer to these self-antigens as
Tregitopes. Here, we postulate a mechanism that operates in the
opposite direction, wherein CD4SP thymocytes “select” self-
antigens to become Tregitopes. This hypothesis draws on
evidence that the major T-reg-inducing APC subsets in the
thymus, mTEC and DC, require cognate TCR-pMHCII-
dependent interactions with CD4SP thymocytes in order to
form mature populations (55, 66, 67, 72). We propose CD4SP
thymocytes deliver signals that promote mature mTEC survival
and “lock in” the set of self-antigens being expressed by the
mTEC at the time. This endows a self-reactive CD4SP thymocyte
with the ability to generate a medullary niche containing its
cognate self-antigen, enabling subsequent development of T-reg
cells specific for the same self-antigen. We propose the “mosaic”
of antigen-specific T-reg niches in the thymic medulla (45, 60) is
not predetermined but is shaped by the antigen specificities of
CD4SP thymocytes in the medulla. Deletion creates variation in
the number of CD4SP thymocytes specific for different self-
antigens (27, 28). The size of the antigen-specific T-reg niche in
the medulla may be inversely related to the extent of cortical
deletion of antigen-specific thymocyte populations (Figure 2).

It is unclear why a3/DR1 is a Tregitope, whereas a3/DR15 is
not (4). Although the thymus was not analyzed, peripheral CD4+

T cell populations in mice expressing these human HLA
molecules contained a higher frequency of a3/DR1-specific
cells than a3/DR15-specific cells (4). This difference may be
due to greater cortical deletion of a3/DR15-specific thymocytes
compared to a3/DR1-specific cells. If so, then this cortical
deletion is unlikely to be triggered by a3/DR15 itself, as the a3
Frontiers in Immunology | www.frontiersin.org 7
protein is sparsely expressed in the thymic medulla (12).
Furthermore, a3/DR1 is a Tregitope, suggesting the a3 self-peptide
is not displayed to cortical thymocytes. We infer that cortical
deletion of a3/DR15-specific thymocytes is mediated by related
self-peptideswith similar TCR-exposed residues (29).An initial test
of this hypothesis may involve enumerating antigen-specific
thymocytes at distinct maturation stages, as described (6). Our
hypothesis would predict the presence ofDR1 ought to “lock in”a3
expression and augment selection of a3/DR15-specific T-reg cells.
However,DR1expressiondidnot affect thea3/DR15-specificT-reg
or T-conv cell frequency in DR1+ DR15+mice compared toDR15+

mice (4). Differential affinity of thea3 peptide forDR1 versusDR15
may lead to differences in the quantity of the two pMHCII
complexes. Alternatively, differences in the chemistry of the
different TCR-exposed peptide residues may lead to differences in
the TCR affinity distribution of CD4SP thymocytes specific for the
two pMHCII complexes. These differences may bias T-reg
development towards the a3/DR1 Tregitope despite co-expression
of the two MHC alleles.

Associations between human autoimmune diseases and
particular MHC alleles (98) indicate a role for TCR-peptide-
MHC interactions in pathogenesis. The current paradigm is that
autoimmune diseases are mediated by pro-inflammatory T-conv
cells specific for self-peptides presented by disease-associated
MHC alleles (99). Interestingly, compared to TCR-peptide-MHC
interactions elicited by infection or immunization, some
autoimmune interactions have unusual features, including
atypical positioning of the TCR or the self-peptide, post-
translational self-peptide modifications and self-peptide fusions
(99). These findings shed light on the nature of inappropriate
self-antigen recognition by T cells. However, they do not explain
why only some people with disease-associated MHC alleles
develop autoimmune disease. This implies the action of an
additional predisposing factor, such as the absence of an
antigen-specific T-reg cell population that would otherwise
prevent autoimmune disease. The association between
autoimmune diseases and particular MHC alleles may reflect
the lack of an organ-specific self-peptide that can form a Tregitope

when presented by the disease-associated MHCII allele. We refer
to this as Tregitope deficiency.

Other genetic factors may combine with a disease-associated
MHCII allele to avert or contribute to Tregitope deficiency. Co-
expression of an MHCII allele that can form a Tregitope can avert
Tregitope deficiency, as exemplified with HLA-DR1 in
Goodpasture’s disease (4, 13). Tregitope sufficiency or deficiency
may explain why pairs of HLA haplotypes are associated with a
decreased or increased risk of autoimmune diseases beyond the
additive contributions of each haplotype (100). In addition,
Tregitope deficiency may require a high relatedness between (at
least) two self-peptides, one presented in the cortex and the other
in the medulla, a situation that may extinguish the potential of
the medullary self-peptide to serve as a Tregitope. Hence, Tregitope

deficiency would be expected in only a subset of individuals who
inherit a disease-associated MHCII allele, providing an
explanation for why most such individuals never develop
autoimmune disease.
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