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Abstract
We previously demonstrated that Akt differentially modulated a subset of
NF-kB target genes during T cell activation. In the current study, we further
explored the broader effects of Akt inhibition on T cell gene induction. Global
microarray analysis was used to characterize T helper cell transcriptional
responses following antigen receptor stimulation in the absence or presence of
Akti1/2 (an allosteric inhibitor which targets Akt1 and Akt2), to identify novel
targets dependent upon Akt and obtain a more comprehensive view of
Akt-sensitive genes in Th2 helper T cells. Pathway analysis of microarray data
from a CD4  Th2 T cell line revealed effects on gene networks involving
ribosomal and T cell receptor signaling pathways associated with Akti1/2
treatment. Using real-time PCR analysis, we validated the differential regulation
of several genes in these pathways, including , ,  and ,Ier3 Il13, Egr1 Ccl1 Ccl4
among others. Additionally, transcription factor target gene (TFactS) analysis
revealed that NF-kB and Myc were the most significantly enriched transcription
factors among Akt-dependent genes after T cell receptor and CD28 stimulation.
Akt activation elicited increases in the enrichment of NF-kB- and Myc-targeted
genes. The present study has identified a diverse set of genes, and possible
mechanisms for their regulation, that are dependent on Akt during T cell
activation.
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Introduction
Akt/protein kinase B (PKB) is a serine/threonine kinase that is 
activated downstream of PI-3 kinase. The activation of Akt leads 
to the phosphorylation and regulation of a wide spectrum of sub-
strates involved in multiple cellular processes, including cell sur-
vival, growth, differentiation, cell cycle progression, proliferation 
and metabolism1. The expression of a constitutively active form of 
Akt (myr-Akt) in transgenic mice was reported to influence thymo-
cyte selection, lead to accumulation of CD4+ T cells in peripheral 
lymphoid organs, and to enhance T cell survival in the presence 
of various apoptosis-inducing stimuli2. We have previously studied 
the role of the Akt kinase in T cells, and most recently showed 
that a subset of NF-kB-dependent genes required Akt for optimal  
upregulation during T cell activation3. Studies of individual tran-
scription factors and their target genes have uncovered numerous 
aspects of Akt signaling in T cells, including regulation of not only 
NF-kB, but also FOXO and NFAT4–9. However, the overall gene 
expression program controlled by Akt signaling in activated helper 
T cells has not been elucidated. Mapping global changes in gene 
expression has proven extremely useful in revealing previously  
unappreciated connections between groups of expressed genes 
and biological events, such as development and tumorigenesis. A 
study from the Cantrell lab10 concluded that the chief role of Akt 
in CD8+ cytotoxic T cells is to control the transcriptional programs 
that direct effector versus memory cell fate. Nonetheless, Akt may 
not have the same role in all T cell subpopulations. For example, 
constitutively active Akt can stimulate the growth and survival of 
CD4+ T cells but not CD8+ T cells11,12. 

In the current study, we tested the effects of a selective, allosteric  
inhibitor of Akt1 and Akt2 (Akti1/2)13–16 on activated T cells and 
further explored potential mechanism of action of Akt, by perform-
ing network analysis of gene expression data and validating the  
expression changes of selected genes by real-time qPCR analysis. 
Our findings demonstrate that Akt inhibition by Akti1/2 significantly 
affects ribosomal protein expression and the cytokine-cytokine 
receptor interaction gene expression axis. Asthma and the anti-
gen receptor signaling pathways were also impaired by Akti1/2 in  
activated T cells. Moreover, Akt inhibition decreased the enrich-
ment of NF-kB- and Myc-targeted genes after CD3/CD28 stimula-
tion. These effects may contribute to the functions of dysregulated 
Akt activation in tumorigenesis, as well as in normal T cell activa-
tion and development12.

The importance of Akt for T cell activation and transformation led us to 
explore the underlying pathways and mechanisms (or target genes and 
downstream cellular pathways) by a genome-wide gene expression 
profiling approach. Therefore the aims of the present study were to 
(1) identify, at the genome-wide level, the genes that are differen-
tially expressed in activated Th2 helper T cells, with or without Akt 
inhibition and (2) conduct bioinformatics analyses to identify the 
pathways and possible mechanisms involved.

Materials and methods
Antibodies and reagents
Biotin-anti-mCD28 (37.51) and biotin-anti-mCD3e (145-2C11) were 
obtained from BD-Biosciences (San Jose, CA). Streptavidin was 
obtained from Invitrogen (Carlsbad, CA) and Akti1/2 was from 
EMD Biosciences (San Diego, CA). rhIL-2 was obtained through 
the NIH AIDS Research and Reference Reagent program, Division 
of AIDS, NIAID, NIH (Cat.#136 from Hoffman-LaRoche, Inc.).

T cells
The D10 T cell line, a fast-growing variant of the D10.G41 murine 
Th2 T cell clone17–19 was maintained in RPMI 1640 media (Mediatech, 
Manassas, VA), supplemented with 10% heat-inactivated bovine 
growth serum (BGS; Hyclone, Logan, UT), 0.1 mM nonessential 
amino acids (Lonza, Walkersville, MD), 2 mM l-glutamine, 50 µM 
2-ME, 100 U/ml penicillin, 100 µg/ml streptomycin (Mediatech, 
Manassas, VA) and 25 IU/ml rhIL-2.

RNA extraction and microarray gene expression profiling 
D10 T cells were left untreated or pretreated with 10 µM Akti1/2 
for 1 h and then stimulated with biotinylated anti-mCD3/CD28 
and streptavidin for 0, 2, 6 and 12 hrs. RNA extraction was per-
formed using a commercially available kit (RNeasy, Qiagen, 
Frederick, MD) according to the manufacturers’ recommenda-
tions. RNA quality was confirmed based on a RNA integrity 
number >8 by use of the Agilent 2100 bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA). The microarray analysis was performed 
by Genomics and Proteomics Core Laboratories (GPCL) of the 
University of Pittsburgh, USA. An Illumina mouse RefSeq8 chip 
was used. Microarray data have been deposited in the GEO data-
base and are accessible through the GEO series accession number 
GSE45221.

Statistical analysis of gene expression microarray data
To compare the molecular characteristics between different time 
points, Automated Efficiency Analysis was first performed using 
7 transformation methods, 9 normalization methods and 5 tests for 
differentially expressed genes20.  A global normalization method 
and the J5_Quantile95_None method were applied on each time 
point. The differentially expressed genes were identified using 
caGEDA with a reasonable threshold of J5 for each time point21. 
To survey the spectrum of biological functions within genes, which 
were differentially expressed between different groups, functional 
classification of the genes were performed using Pathway Express  
(http://vortex.cs.wayne.edu; a pathway level Impact Analysis 
as described by Draghici et al., 200722). Pathway Express was 
designed to provide both statistical and biological significance in 
the indication of which pathways may be affected by the observed 
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changes in gene expression. The results are summarized as Impact 
scores and p-values. Pathway-Express orders the affected path-
ways in the decreasing order of their expected importance for the 
given condition.

Real-time PCR analysis
Quantitative real-time PCR was performed using the ABI Step 
One Plus Real-time PCR system (Applied Biosystems, Foster 
City, CA) as described previously3. Amplification was performed 
on a cDNA amount equivalent to 25 ng total RNA with 1×SYBR 
green universal PCR Master mix (Applied Biosystems) containing  
deoxyribonucleotide triphosphates, MgCl

2
, AmpliTaq Gold DNA 

polymerase, and forward and reverse primers. Specific primers for 
each gene were purchased from SABiosciences (Qiagen, Frederick, 
MD). Experimental samples and no-template controls were all run in 
duplicate. The PCR cycling parameters were: 95°C for 10 min, and 
40 cycles of 94°C for 15s, 60°C for 1 min. The amount of cDNA 
in each sample was calculated by the comparative threshold (Ct) 
method and expressed as 2exp (Ct) using 18S RNA as an internal 
control. Statistical significance was determined using the Student’s 
T test. All statistical tests were performed using GraphPad Prism 
(GraphPad Prism, San Diego, CA). 

Enrichment in transcription factor target gene analysis
TFactS was used to predict the activities of transcription factors in 
our microarray data23. The lists of up- and down-regulated genes 
were compared to a list of curated target gene signatures. The nomi-
nal p-value (Pval) represents the risk of a false positive for a sin-
gle test. Since the list of query genes is systematically compared 
to each target gene signature, a multi-testing condition is required. 
The e-value (Eval) represents the expected number of false posi-
tives for a given nominal value. It is computed using the formula: 
Eval=Pval*T, where T is the number of tests.

Results
Identification of genes regulated by Akt signaling in activated 
CD4+ T cells
We previously demonstrated that Akt activity was rapidly inhib-
ited in T cells by addition of the allosteric inhibitor Akti1/2, which  
inhibited phosphorylation of Akt within one minute, an effect that 
can last as long as twelve hours3. In the present study, microarray 
analysis was performed at three different time points after CD3/
CD28 stimulation to characterize the effects of Akt inhibition on 
the T cell gene activation program in helper T cells. Thus, D10 T 
cells (a murine Th2 T cell line) were pre-incubated with 10 µM 
Akti1/2 or solvent, then stimulated for 2–12 hours. We chose this 
concentration of inhibitor for two reasons. First, in our recent 
study we observed good concordance between results obtained with  
10 µM Akti1/2 and those obtained with combined siRNA-mediated 
knock-down of Akt1 and Akt23. In addition, although 1–5 µM can 
substantially inhibit Akt activity in different cell types under acute 
conditions24,25, at least one study has demonstrated that a higher 
concentration (10 µM) of Akti1/2 was required for more signifi-
cant inhibition of Akt substrate phosphorylation over the course 
of several hours25. This could be related to the fact that full-length 
Akt is only inhibited approximately 80% by 1 µM (and 90% by 10 
µM) Akti1/2 in in vitro kinase assays, as shown in a kinase profil-
ing study by Cohen and colleagues26. After stimulation, mRNA was 
isolated, which was converted into labeled cDNA for hybridiza-
tion to Illumina chips for microarray analysis (Figure 1A). A rough 
analysis of the genes modulated in our study after six or twelve 
hours of CD3/CD28 stimulation (using the default settings with the 
GEO2R tool at the GEO database) revealed that of the top 30 genes 
in each case, seven were modulated to a nearly identical degree in 
the presence or absence of 10 µM Akti1/2. Thus, we were reason-
ably confident that Akti1/2, with this cell type, and at the concentra-
tion used in our study, did not have widespread, off-target, effects 
on gene transcription or cell viability.

Figure 1. Flowchart of experimental outline (A) and data analysis (B), as described further in the text.

Control
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Efficiency Analysis (Jordan 2008)
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B
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-   Tests for differentially expr. genes
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We next determined which genes were differentially modulated after 
T cell receptor (TCR) stimulation using caGEDA with reasonably 
chosen thresholds for different time points (2 h, 6 h and 12 h). This 
methodology allows for the capture of a more complete set of differ-
entially modulated genes, which is less dependent on overall expres-
sion levels. Further validation and downstream analysis were then 
performed to confirm some of the differentially expressed genes and 
to extract functional information from the dataset (Figure 1B). We 
identified differentially expressed gene sets that were dependent on 
Akt among the three different time point groups. We compared the 
gene expression patterns of cells plus or minus addition of Akti1/2. 
First, we generated two gene lists for each time point. Gene list 
one represents the genes that were differentially expressed between 
the unstimulated and CD3/CD28 stimulated group in the absence 
of Akti1/2. Gene list two represents the genes that were differen-
tially expressed between the unstimulated and CD3/CD28 group in 
the presence of Akti1/2. When comparing the two gene lists, three  
different patterns were observed: 

1. Genes significantly modulated by CD3/CD28 alone but not mod-
ulated in the presence of Akti1/2 (genes in this category showed 
Akt–dependent expression after T cell activation; column 1, top, in 
Data File 1– Data File 3 and Supplementary Figure 1).

2. Genes significantly modulated by CD3/CD28 alone but less 
strikingly modulated in the presence of Akti1/2 (genes in this cat-
egory showed some dependence on Akt; columns 1–2, middle, in 
Data File 1– Data File 3 and Supplementary Figure 2).

3. Genes not modulated by CD3/CD28 alone but significantly mod-
ulated in the presence of Akti1/2 (genes in this category displayed 
Akti1/2-specific expression; column 2, bottom, in Data File 1–  
Data File 3 and Supplementary Figure 3).

Genes with significant modulation at 2 hours of CD3/CD28 
stimulation in the presence or absence of Akti1/2

1 Data File

http://dx.doi.org/10.6084/m9.figshare.678213

Genes with significant modulation at 6 hours of CD3/CD28 
stimulation in the presence or absence of Akti1/2

1 Data File

http://dx.doi.org/10.6084/m9.figshare.678214

Genes with significant modulation at 12 hours of CD3/CD28 
stimulation in the presence or absence of Akti1/2

1 Data File

http://dx.doi.org/10.6084/m9.figshare.678215

By examining multiple time points after stimulation, we were able to 
obtain a kinetic picture of gene expression ± Akt inhibition. The 6 h 
Akti1/2 (+) and Akti1/2 (-) comparison showed the highest number 
of differentially expressed genes, and there were fewer differentially 
expressed genes after two or twelve hours of TCR/CD28 stimulation. 

Among these, only the genes that expressed the most consistent dif-
ferences (either increased or decreased expression) were selected for 
further analysis. Genes with no known function were excluded.

Our previous work identified several NF-kB target genes that were 
dependent on Akt after TCR stimulation in T helper cells, including 
those encoding the cytokines TNF-a, GM-CSF, and IL-10, among 
others3. Analysis of the microarray data confirmed the dependency 
of these genes on Akt activation, which inspired confidence in our  
results. Moreover, expression of the mRNAs encoding many 
secreted proteins was also decreased by Akt inhibition, including 
IL-13, IL-5, IL-3 and IL-4 (Figure 2). The protein products of 
these genes (except IL-3) were examined in our previous paper3, 
which confirmed similar decreases after Akt inhibition. Our data 
agrees with Patra et al’s study7, which showed that myr-Akt expres-
sion in activated CD4+ T cells resulted in increased Il-4 and Il-13 
expression. In addition we found that expression of Ltb (encoding 
lymphotoxin b), Areg (encoding amphiregulin) and genes encoding 
the chemokines CCL1, CCL3 and CCL4 were also affected by Akt 
inhibition (Figure 2). 

Of note, several cell-surface proteins, including CD69, CD52 and 
CD82 were among the Akt-dependent genes after T cell activa-
tion (Figure 2). The CD82 molecule is a type III integral mem-
brane protein with four transmembrane domains and is part of the 
tetra-span-transmembrane (TST) family, which also includes CD9, 
CD37, CD53, CD63 and CD81/TAPA-127. Interestingly, proteins of 
this family are involved in cell activation. For example, engage-
ment of CD82 can deliver a co-stimulatory signal, similar to CD28, 
for full T cell activation, leading to strong IL-2 production28. CD52 
is a small glycopeptide molecule and tethered to the outer surface 
of the plasma membrane by a glycosylphosphatidylinositol (GPI)- 
anchor29. CD52 crosslinking can also provide a co-stimulatory 
signal that causes the activation of normal human T lymphocytes30 
and induction of CD4+ regulatory cells31. Since Akt was reported 
to mimic CD28 co-stimulation in a T cell line by synergizing with 
TCR-induced signals to increase transcription of the IL-2 promoter5, 
activation of these other co-stimulatory molecules might also func-
tion through this pathway. 

Interestingly, inhibition of Akt resulted in impaired up-regulation 
of the genes encoding many ribosomal proteins (Figure 3). These 
included: Rps6 (a major substrate of ribosomal protein kinases32); 
Rps8, Rps9 (reported to be activated in various tumors, including 
colon cancer33); Rps10, Rps15, Rps24 (mutations in these gene 
result in Diamond-Blackfan anemia34); Rpl7a (which interacts with 
a subclass of nuclear receptors and inhibits their ability to activate 
transcription35); Rplp1 (important for elongation during protein 
synthesis36). All these proteins belong to either small or large subu-
nits of ribosomes; changes in their expression may contribute to 
an increase in protein synthesis to accommodate numerous cellular 
processes involved in T cell activation, in addition to the possible 
connections to cancer. Importantly, the expression of 18S ribosomal 
genes, which was used for our qPCR housekeeping gene, did not 
differ between our experimental groups.

Expression validation of selected genes
In order to validate the microarray data and obtain more quantita-
tive data on specific genes, real-time PCR analysis was performed 
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at different time points after CD3/CD28 stimulation ± Akti1/2. Ier3 
(also named IEX-1, immediate early response gene X-1), Il13, Ccl1 
and Ccl4 were selected for real-time PCR validation because their 
expression was greatly enhanced after CD3/CD28 stimulation and 
decreased in the presence of the Akt inhibitor. Of note, the gene 
expression of Ccl1 and Il3 was rapidly up-regulated by CD3/CD28 
stimulation, while the up-regulation of Ier3 and Ccl4 expression by 
CD3/CD28 stimulation was delayed. Egr1 was also selected as a 
control gene, which showed no CD3/CD28 dependent increase in 
gene expression, but rather a sharp decrease. Thus, Akt inhibition 
could affect different genes that showed diverse kinetics after CD3/
CD28 stimulation. At least for these specific genes, the changes in 
expression, as assessed by real-time PCR, confirmed the microarray 
results, giving us confidence in the overall quality of the dataset. 

Akt is known to directly phosphorylate FOXO3a (including in  
T cells) and, once phosphorylated, FOXO3a is excluded from the 
nucleus and becomes transcriptionally inactive37. One of the best 
characterized FOXO target genes in T cells is Klf238. For reasons 
that are unclear, we did not observe modulation of Klf2 expres-
sion after CD3/CD28 stimulation, with or without Akti1/2. Among 
known or suspected FOXO target genes38,39, several that did display 
enhanced expression in our microarray experiment in the presence 
of Akti1/2 were Ctla4, Gadd45, Cebpb and Klf6. The latter was 
recently identified as a FOXO target gene, which was confirmed 
by chromatin immunoprecipitation40,41. Our own real time PCR 
analysis confirmed that in Akti1/2-treated samples, there was an 

up-regulation of Klf6, relative to stimulation with anti-CD3/CD28 
alone, which by itself resulted in a sharp decline in the Klf6 mes-
sage (Figure 4). 

Functional classification of the gene expression signature 
for Akt inhibition in activated T cells (pathway analysis of 
Akti1/2-mediated transcriptome changes)
From our previously published array data, we found that at two, six 
and twelve hours after CD3/CD28 stimulation. Akti1/2 elicited a 
wide range of effects on expression of numerous genes, including 
both over- and under-expressed genes. In the present study, genes 
that showed changes in expression after two, six and twelve hours 
of stimulation in the presence of Akti1/2 were largely not over-
lapping and cannot be combined for subsequent analysis. There 
were 54, 71 and 58 genes dependent on Akt at the two, six and 
twelve hour time points, respectively, after CD3/CD28 stimulation 
(Data File 1– Data File 2 and Supplementary Figure 1).

To determine whether our gene expression signature was enriched in 
specific subsets of genes with known biological functions, bioinfor-
matic functional classification analysis of the genes that were differ-
entially expressed was carried out as described in the Methods. The 
functional classifications of gene sets are illustrated in Figure 5. We 
found that genes involved in ribosome, cytokine-cytokine receptor 
interaction, antigen receptor signaling pathway, hematopoietic cell 
lineage and asthma were significantly enriched among genes affected 
by Akt inhibition in the presence of CD3/CD28 stimulation.

Figure 2. Selected Akt-dependent genes differentially expressed between control (0 h) and 2 h, 6 h and 12 h CD3/CD28 stimulation 
groups. Relative levels of expression are represented by the J5 score.
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Enrichment of transcription factors in target genes
Co-expressed genes are often regulated by common transcription 
factors. Therefore, we separately analyzed the genes that showed 
altered expression at 2, 6 and 12 h time points after CD3/CD28 
stimulation using TFactS, an algorithm that used a catalog of well-
characterized transcription factor targets to predict the activity of 
transcription factors based on microarray data23. Enrichment of tran-
scription factors was found at all the time points tested (Figure 6). 
These included NF-kB family members (RelA, Rel, NF-kB1), Myc, 
Jun and C/EBP. At the 2 h time point, Myc, NF-kB family members 
(Nfkb1, RelA and Rel) and Egr1 were significantly enriched. RelA, 
Nfkb1 and Rel, along with Myc and Egr1 were also significantly 
regulated after 6 h of CD3/CD28 stimulation. Moreover, other tran-
scription factors, including Sp1, C/EBPB, Ets1, Jun and Nfam1, 
were also enriched at the 6 h time point. At 12 h after stimulation, 
however, fewer transcription factors were regulated, with Myc and 
NF-kB1 still significantly regulated. In summary, the most signifi-
cantly enriched transcription factor binding sites in the regulatory 
regions of Akt-dependent genes after CD3 and CD28 stimulation 
were those of NF-kB family members and Myc. 

Discussion
Akt activation impacts the expression of genes responsible for 
cell proliferation and survival42,43. The majority of previous global 
gene expression studies have investigated transcriptional programs  

under the combined control of both PI3K and Akt44,45. Despite 
much attention in recent years to the role of Akt-regulated metabo-
lism in T cells46, a recent study provided clear evidence that Akt 
indeed contributes to changes in gene expression after activation 
of cytotoxic T cells10. We have also been interested for some time 
in achieving a greater level of clarity in separating the effects of 
PI3K and Akt during helper T cell activation47. Our recent study 
identified a subset of NF-kB-dependent genes that require Akt for 
optimal upregulation during helper T cell activation by using a tar-
geted gene profiling approach3. In the present study, we performed 
a broader microarray analysis to characterize the global changes in 
gene expression resulting from inhibition of Akt in activated CD4+ 
helper T cells. Analysis of the affected genes revealed pathways 
that are central to the effects of Akt on helper T cell activation.  
Finally, analysis of the enrichment in transcription factor binding 
sites in our target genes further confirmed NF-kB as a regulator of 
these genes in response to TCR stimulation. 

The generation and maintenance of memory T cells is central to 
the development of protective immunity, as characterized by a 
rapid and vigorous response after a secondary encounter with a 
given pathogen or antigen48,49. Recent studies have suggested that 
proper regulation of Akt activity is essential for the development 
of memory T cells. Riou et al., found that Akt plays a critical role 
in the phosphorylation of FOXO3 in CD4+ central memory T cells 
(TCM), thereby promoting TCM survival50. Abrogating the Akt sur-
vival pathway led to a greater degree of apoptosis in TCM as com-
pared with effector memory T cells (TEM), confirming that TCM are 
more dependent on these pathways for their survival. Sustained and 
strong activation of Akt was also shown in CD8+ cytotoxic T cells 
(CTL) to coordinate the TCR and IL-2-induced transcriptional pro-
grams that control expression of key cytolytic effector molecules, 
adhesion molecules, and cytokine and chemokine receptors that 
distinguish effector from memory and naïve T cells10. It has been 
suggested51 that Akt simultaneously induces and represses expres-
sion of key genes, leading to the development of effector CTL, with 
the FOXO transcription factors being at the center of this process. 
Thus, Kim et al., found that Akt appeared to function as a cellular 
rheostat, controlling distinct facets of the program that governed 
differentiation of Ag-activated CD8+ T cells into effector cells 
or memory CD8+ T cells51. Myristoylated Akt transgenic mice 
were found to accumulate memory phenotype CD4+ T cells and 
to develop both tumors and autoimmunity52, effects that could, in 
principle, be due in part to non-metabolic outcomes of Akt activa-
tion, such as NF-kB activation6. In addition, FOXO transcription 
factors control the development and function of natural regulatory  
T cells (nTreg)53, and the generation of inducible Treg (iTreg) is 
also regulated by both Akt and FOXO’s54,55.

The enrichment of multiple NF-kB family members in Akt-dependent 
genes confirmed our previous study emphasizing the important role 
of NF-kB in Akt-dependent biological processes1. Although FOXO 
did not appear in the list of the most significantly affected transcrip-
tion factors in our analysis of Akt-dependent genes, expression of 
multiple FOXO target genes (including Klf6, Gadd45 and Ctla4) 
was increased in the presence Akt inhibition, relative to stimula-
tion with anti-CD3/CD28 alone. Using RT-PCR, we confirmed that 
Klf6 expression was decreased, as expected, by stimulation with  

Figure 3. Akt-dependent ribosomal subunit genes differentially 
expressed between control (0 h) and 2 h, 6 h and 12 h CD3/CD28 
stimulation groups. Relative levels of expression are represented 
by the J5 score.
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Figure 4. Quantitative real-time PCR (qPCR) confirmation of the stimulation-dependent expression of selected Akt-dependent genes. 
qPCR was used to validate the gene expression of Ier3, Il13, Klf6, Egr1, Ccl1 and Ccl4. The RNA samples were the same as those used for 
the microarray. Results are presented as relative mRNA expression, compared to the unstimulated control sample, normalized to 18S RNA 
expression. ***p<0.001, *p<0.05 compared with the control group.

Figure 5. Functional classification of Akt dependent genes. Classification enrichment was determined using Pathway Express. Significance 
is indicated as –Log (p-value).
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anti-CD3/CD28 alone, an effect that was significantly retarded 
(particularly at earlier time points) in the presence of the Akt inhibi-
tor. Although Klf6 is not the most commonly discussed FOXO tar-
get gene, a recent whole transcriptome analysis of FOXO-deficient 
liver endothelial cells identified Klf6 as one of the top two most 
significantly down-regulated genes with the highest number of con-
served FOXO-binding elements40. Moreover, a ChIP-based study 
identified Klf6 as a direct transcriptional target of FOXO141. Further 
study will be necessary to determine to what extent the global ef-
fects of Akt on CD4+ T cell biology are due specifically to effects 
on FOXO vs. NF-κB.

Of note, Myc target genes were also found enriched in the subset of 
Akt-dependent genes after T cell activation. It is well known that Myc 
is associated with cell activation. However, it is now thought that Myc 
is not an on-off specifier of a particular transcriptional program(s) but 
is a universal amplifier of gene expression, increasing output at all 
active promoters56. Relevant for our findings, N-Myc was reported 
to function as a regulator of cell growth by stimulating expression 
of genes functioning in ribosome biogenesis and protein synthesis57. 
Akt was also reported to cooperate with c-Myc to increase ribosome 
biogenesis and cell growth, which includes the synthesis of rRNA 
and ribosomal proteins, processing of 45S rRNA, and assembly of 

Figure 6. Transcription factor binding sites enriched in Akt-dependent genes, as predicted by TFactS. The list of Akt-dependent genes 
was submitted to TFactS (sign-less) using default settings. Significance of regulated transcription factors was determined with–log10 (e-value).
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functional ribosomal subunits52. In our present study, we showed 
that Akt inhibition decreased the expression of many ribosomal pro-
teins, including components of both the small (40S) and large (60S) 
ribosomal subunits. Putting together these disparate observations, 
it may be that in activated T helper cells, one of the mechanisms 
through which Akt broadly regulates ribosomal subunit transcrip-
tion is by activating Myc.

Akt is also known to enhance ribosomal protein production through 
the mammalian target of rapamycin (mTOR) pathway. However, it 
was reported that direct inhibition of Akt only weakly suppressed 
the phosphorylation of S6 and S6K1 in CTLs10 and Akti1/2 could 
only weakly suppress the CD3/CD28 stimulation dependent 
phosphorylation of S6 in Jurkat T cells and primary helper T 
cells (unpublished data from our lab). Akt could signal through 
mTORC1-dependent and independent mechanisms to promote 
rDNA transcription in mammalian cells52. Dissecting out the 
mTOR-independent mechanism that Akt utilizes to regulate ribo-
somal biogenesis is crucial to understand the therapeutic response to 
Akt inhibitors in cancer. 

Author contributions
The project was conceived by LPK. Experiments were carried out 
by JC. Data were analyzed by JC and LPK, in consultation with the 
University of Pittsburgh Genomics and Proteomics Core Laboratory 
(GPCL). The paper was written by JC and LPK.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by grant GM080398 from the NIH/NIGMS 
to LPK. 

The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

Acknowledgements
We thank James Lyons-Weiler and Haiwen Shi of the University of 
Pittsburgh Genomics and Proteomics Core Laboratory (GPCL) for 
assistance with data analysis.

Page 10 of 19

F1000Research 2013, 2:109 Last updated: 05 MAR 2015



Supplementary Figure 1. Genes significantly modulated by CD3/CD28 stimulation alone, but not modulated in the presence of Akti1/2. 
Each row represents a gene and each column shows one of the duplicates from two different groups (from left to right 0 h vs. 2 h, 0 h vs. 6 h, 
0 h vs. 12 h). The red and green colors reflect high and low expression levels, respectively.

Supplementary materials
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Supplementary Figure 2. Genes significantly modulated by CD3/CD28 stimulation alone but less modulated in the presence of 
Akti1/2. Each row represents a gene and each column shows one of the duplicates from two different groups (from left to right 0 h vs. 2 h, 0 
h vs. 6 h, 0 h vs. 12 h). The red and green colors reflect high and low expression levels, respectively.
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Supplementary Figure 3. Genes significantly modulated by Akti1/2 alone. Each row represents a gene and each column shows one of 
the duplicates from two different groups (from left to right 0 h vs. 2 h, 0 h vs. 6 h, 0 h vs.12 h). The red and green colors reflect high and low 
expression levels, respectively.
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While some of my concerns that I stated in my first report remain, the authors have clarified most of the
issues that I highlighted. This article contributes to our knowledge of Akt in CD4 T cells and so I am happy
to approve it.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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I have looked through this revised version and approve of this one as well, with some of the same caveats
that are indicated in my initial review. Nevertheless, this is a valuable addition to the field and data that will
be of use to researchers, so I approve of its publication in its present form.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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 20 May 2013Referee Report

doi:10.5256/f1000research.1303.r957

 Michael Gold
Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada

This article provides useful information for further assessing the role of Akt signaling in the activation of
CD4+ T cells. The microarray experiments that assess the effect of an Akt inhibitor compound on gene
regulation by TCR/CD28 co-stimulation are well done and the accompanying bioinformatics analyses are
quite sophisticated such that identified changes in gene expression needed to have passed multiple
statistical tests.

Although a good starting point for further studies, the data presented have several limitations. First, the
experiments were carried out entirely with a T cell line. It would have been straightforward, and of
significant value, to confirm some of the key gene expression changes in primary T cells stimulated with
anti-CD3/anti-CD28 in the presence or absence of the Akt inhibitor. It is of interest that two of the
Akt-dependent genes identified in this report are IL-13 and IL-4, suggesting that Akt is critical for the
effector functions of Th2 cells. It would be worthwhile to discuss the role of Akt signaling in Th2
polarization versus Th2 function and to refer to, or propose, further studies to address this question. 

Second, as for any study employing chemical inhibitors, it would have been useful for the authors to
briefly review selectivity of this compound as well as known off-target effects on other kinases. In this
regard, confirming some of the key gene expression changes by using other commercially available Akt
inhibitors with different off-target effects would help confirm the dependence on Akt. 

Similarly, the conclusion that many of the Akt-regulated genes may be co-regulated by NF-kB or Myc
could have been tested in a limited fashion.

Despite these limitations, which will likely be dealt with in follow-up studies by these authors and others,
this article provides useful data that will stimulate further work and discussion.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 03 May 2013Referee Report

doi:10.5256/f1000research.1303.r925

Page 17 of 19

F1000Research 2013, 2:109 Last updated: 05 MAR 2015

http://dx.doi.org/10.5256/f1000research.1303.r957
http://dx.doi.org/10.5256/f1000research.1303.r925


F1000Research

doi:10.5256/f1000research.1303.r925

 Ursula Bommhardt
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In this publication, Cheng and Kane mapped the gene expression profile of a Th2 cell line stimulated with
cross-linked CD3/CD28 Abs in the presence of Akti1/2 inhibitor using microarray and qRT-PCR analysis.
They found gene expression that is not moderately or strongly affected by Akti1/2. Akt-dependent genes
included cytokines (like IL-4, IL-5 and IL-13), chemokines (CCL1, CCL3 and CCL4), and a number of
genes involved in the biosynthesis and function of ribosomes. Major Akt-dependent transcription factors
included members of the NFkappaB family, c-myc and their target genes.

The study provides interesting and novel information on Akt-dependent signalling and Akt target genes
which will be very useful for the further understanding of Akt function in T cells. In this line, previous
publication by Patra . on myrAkt expression in activated CD4+ T cells had shown increasedet al
expression of Th1 as well as Th2 cytokines, including IL-10, IL-4, IL-13 ( ). Thus, thePatra ., JI, 2004et al
data of the current study support those previous results. The authors should include this publication in
their citation list as well as other publication from the groups of  P. Ohashi, C. Thompson and others with
regard to Akt, NFkappaB and tumorigenesis.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 24 April 2013Referee Report

doi:10.5256/f1000research.1303.r910

 David Finlay
School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland

This paper aims to determine to what extent Akt regulates the transcriptional landscape in TCR/CD28
activated CD4 T cells. While a considerable amount is known regarding Akt regulation of gene expression
in activated CD8 cytotoxic T cells ( ) less information existsMcIntyre , 2011 Immunity 34(2) 224-236et al.
with respect to CD4 T cells. Indeed it is true, as the authors say, that Akt may have distinct roles in
different T cell subsets. Therefore, determining the role of Akt in controlling the transcriptome in CD4 T
cell subsets addressed an important and relevant question. However, the data would have been of a
much higher value had this study been carried out in primary T cells rather than a CD4 T cell line. There is
no reason that using primary CD4 T cells would not have been feasible and I struggle to understand why
this was not done. Therefore, this data needs to be viewed with this major caveat in mind.

I have substantial concerns regarding the concentration of Akti1/2 that is used in this study. In CD8 T cells
1µM Akti1/2 is sufficient to completely block all Akt activity. This study uses 10µM, 10 times the dose
used in CD8 T cell. When using kinase inhibitors, it is extremely important to use the lowest dose that
effectively inhibits the kinase activity, as excessive doses can have increased off target effects. For
example it has been shown that Akti1/2 has multiple off target effects at 10µM when screened against a
panel of 80 kinases ( ). Additionally, in CD8 Cytotoxic TBain J,  2007, Biochem. J. 408, 297-315et al.,
cells, 10µM Akti1/2 is toxic and compromises cell viability, a clear demonstration of off target effects
(unpublished data). The authors should demonstrate that they are using the minimum effective dose and
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cells, 10µM Akti1/2 is toxic and compromises cell viability, a clear demonstration of off target effects
(unpublished data). The authors should demonstrate that they are using the minimum effective dose and
consider what aspect of the results that they present in this paper might be due to off target effects of the
Akti1/2 compound.

With respect to their data, the authors discuss the role of Foxo transcription factors as Akt substrates and
there role in CD4 T cells despite the fact that they have little to no evidence that the activity of Foxo
transcription factors are altered in response to Akt inhibition in this model. They state Klf6 as a Foxo
target. . At bestThe authors must clearly reference the work that describes Klf6 as a Foxo Target
Klf6 is an obscure Foxo target gene. There are numerous well defined Foxo targets in T cells, Klf2 for
example, yet the absence of these Foxo target genes in the Akti1/2 regulated gene lists is not discussed
at all.

A minor point, in the text it is stated that CREB was one of the transcription factors predicted by TFactS to
be altered in activity (bottom of page 5), yet CREB does not appear in the corresponding figure (Figure 6).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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