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The ORAI calcium release-activated calcium modulator 1 (ORAI1) has been proven to be an important gene for breast cancer
progression and metastasis. However, the protective association model between the single nucleotide polymorphisms (SNPs) of
ORAI1 gene was not investigated. Based on a published data set of 345 female breast cancer patients and 290 female controls,
we used a particle swarm optimization (PSO) algorithm to identify the possible protective models of breast cancer association
in terms of the SNPs of ORAI1 gene. Results showed that the PSO-generated models of 2-SNP (rs12320939-TT/rs12313273-CC),
3-SNP (rs12320939-TT/rs12313273-CC/rs712853-(TT/TC)), 4-SNP (rs12320939-TT/rs12313273-CC/rs7135617-(GG/GT)/rs712853-
(TT/TC)), and 5-SNP (rs12320939-TT/rs12313273-CC/rs7135617-(GG/GT)/rs6486795-CC/rs712853-(TT/TC)) displayed low values
of odds ratios (0.409–0.425) for breast cancer association. Taken together, these results suggested that our proposed PSO strategy
is powerful to identify the combinational SNPs of rs12320939, rs12313273, rs7135617, rs6486795, and rs712853 of ORAI1 gene with a
strongly protective association in breast cancer.

1. Introduction

Single nucleotide polymorphisms (SNPs) are the most com-
mon variants of human genome [1]. Genome-wide asso-
ciation studies (GWAS) have widely been used to detect
the association models to diseases in terms of multiple SNPs

[2–7].The SNP interaction was gradually identified in a lot of
GWAS [8–10] and non-GWAS [11, 12] literature.

The ORAI calcium release-activated calcium modula-
tor 1 (ORAI1) [13] was reported to be involved in cancer
progression and metastasis of several types of cancers [14–
17]. The cell- and animal-based studies found that inhibition
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of ORAI1 gene impeded the migration of breast cancer
cells [18]. Several association studies of the SNPs of ORAI1
gene were also investigated in predicting the predisposition
of diseases and cancers [19–22]. However, the SNP-SNP
interaction-based association model between SNPs ofORAI1
gene and the protective association in breast cancer was less
addressed.

For computational biologic challenge, the significant and
potential association models are usually hidden in the large
number of possible combinations between several genotypes
of SNPs. Many methods had been developed to analyze the
potential association models to GWAS using the traditional
statistics, datamining, andmachine learning techniques [23–
30]. Among them, the particle swarm optimization (PSO)
method was used to explore the association models for
several diseases and cancers [28]. The advantages of PSO are
easy and rapid to apply the statistics analysis to identify the
potential association models.

The objective of this study aims to use the PSO to
investigate whether combinational SNPs of ORAI1 gene in
data set [22] are protectively associated with breast cancer in
the Taiwanese population.

2. Methods

2.1. Problem Description. The set 𝑋
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},
is defined as possible solution in the detection of protective
association model problem, and the set is named SNP bar-
code in this study. The objective function (fitness function)
𝑓(𝑋
𝑖
) is defined as the difference between case group and

control group. The objective of detecting the protective
association model is a search for maximal SNP barcode 𝑋

∗

via the evaluation of objective function𝑓(𝑋) (𝑓 : 𝛿 ⊆ R𝐷 →

R); that is, 𝑓(𝑋
∗
) > 𝑓(𝑋) for all 𝑋 ∈ 𝛿, where 𝛿 is a

nonempty large finite set serving as the search space, and
𝛿 = R𝐷.

2.2. PSO. In PSO, particle is regarded as a solution of any
problem [31]. The two experiences, (1) the particle’s own
experience (pbest) and (2) the global knowledge (gbest), are
the two important objectives for leading the particle moves
toward better search region of the problem space. An optimal
result can be searched by gbest when the PSO produce is
repeated in much generation.

Algorithm 1 illustrates the PSO produce which has the
four operations, including particle initializations, particle
evaluations, pbest and gbest updates, and particle position
update. The first step initializes the particles reasonable val-
ues. The second step computes the fitness values of particles.
The third step updates the pbest of particle if the fitness
value is better than the pbest. The fourth step updates the
gbest if a fitness value of particle is better than the gbest.
The fifth step updates the particle’s velocity and position.The
steps 2 to 5 are repeated until the maximum generation is
achieved. Next, these four operations are introduced in detail
as follows.

01: begin
02: Particle initializations
03: for g = 1 to the number of generations
04: Particle evaluations using fitness function
05: pbest update
06: gbest update
07: Particle position update
08: next 𝑔
09: end

Algorithm 1: Particle swarm optimization pseudocode.

2.3. Particle Initializations. A particle is defined as the SNP
barcode; that is, 𝑋

𝑖
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The initial population (i.e., generation is 0) should cover this
range as much as possible by randomizing individuals within
the problem space constrained by the prescribed minimum
andmaximum bounds:𝑋
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of the 𝑖th particle can initialize as
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1, recessive genotype
2, dominant/heterozygous genotype,

(1)

where SNPmax and SNPmin are the maximum number of
SNPs and the minimum number of SNPs, respectively.
Genotypemin is set to 1 (i.e., the minor allele is regarded as
the recessive genotype) and Genotypemax is set to 2 (i.e., the
major allele is regarded as the dominant genotype with the
homologous major genotype or heterozygous genotype).

2.4. Particle Evaluations. The fitness function is defined by
the frequency difference value between breast cancer patients
and controls, and the relevant equation can be written as

𝑓 (𝑋
𝑖
) =

(𝑋
𝑖
∩ control)
controls

−
(𝑋
𝑖
∩ breast patients)

patients
. (2)

The𝑋
𝑖
represents the 𝑖th particle.The𝑋

𝑖
∩ control is defined

as the total number of intersections between the 𝑖th particle
and control group. The controls are defined as the total
number of control group. The 𝑋

𝑖
∩ breast patients is defined

as the total number of intersections between the 𝑖th particle
and breast patient group.The patients are defined as the total
number of breast patient group.
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Table 1: Estimated risk of each individual SNP on the occurrence of breast cancer.

SNPs Genotype Breast cancer patients (%)∗1 Controls (%)∗1 OR (95% CI)∗2
(𝑛 = 345) (𝑛 = 290)

rs12320939 (1) TT 67 71 0.74 (0.51–1.09)
(2) GG/GT 278 219 1

rs12313273 (1) CC 20 29 0.55 (0.31–1.00)
(2) TT/TC 325 261 1

rs7135617 (1) TT 55 51 0.89 (0.59–1.35)
(2) GG/GT 290 239 1

rs6486795 (1) CC 35 43 0.65 (0.40–1.04)
(2) TT/TC 310 247 1

rs712853 (1) CC 33 28 0.99 (0.58–1.68)
(2) TT/TC 312 262 1

∗1The genotype information of case and control was derived from our previous work [32] and it was reachable at http://bioinfo.kmu.edu.tw/BRCA-ORAI1-
5SNPs.xlsx.
∗2The genotype frequencies on the occurrence of breast cancer are not significant (𝑃 > 0.05).
OR = odds ratio.

2.5. pbest and gbest Updates. The pbest can record the particle
experience, and gbest can record the common experience
of particles. For pbest update, if the current fitness value of
particle is better than pbest, then both the position and fitness
values of pbest are replaced by the current position and fitness
values of this particle. For gbest update, if the fitness value of
pbest is better than that of gbest, then both the position and
fitness values of gbest are replaced by the current position and
fitness values of pbest.

2.6. Particle Position Update. Theparticle position is updated
by the three different vectors, including the inertia weight
𝑤, pbest, and gbest. Equation (3) is the 𝑤 updating function,
and this function can iteratively reduce the value of 𝑤 from
𝑤max to 𝑤min [33]. Equation (4) is used to update the particle
velocity. Equation (5) is used to adjust the particle position.
Consider
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where 𝑤max is maximum value of inertia weight 𝑤 and 𝑤min
is minimum value of inertia weight 𝑤. Iterationmax is the
maximumgeneration.The 𝑟

1
and 𝑟
2
are the random functions

within the range [0, 1]. The acceleration constants 𝑐
1
and 𝑐
2

are used to control the particle search direction (pbest or
gbest). Velocities Vnew

𝑖𝑑
and Vold
𝑖𝑑

are the new and old velocities,
respectively. The 𝑥

old
𝑖𝑑

and 𝑥
new
𝑖𝑑

are the current and updated
particle positions, respectively.

2.7. Parameter Settings. In this study, the PSO parameters
are chosen under the optimal setting [34]. For example,

the population size is 50, the maximum generation is 100, the
𝑤max of the inertia weight 𝑤 is 0.9, the 𝑤min is 0.4 [33], 𝑉max
is set to (𝑋max − 𝑋min), and 𝑉min is set to −(𝑋max − 𝑋min).
Learning factors 𝑐

1
and 𝑐
2
are both set to 2 [35].

2.8. Data Set Collection. In this study, we selected the five
ORAI1 related SNPs from theHapMapHanChinese database,
including rs12320939, rs12313273, rs7135617, rs6486795, and
rs712853, and the breast cancer data set with patients (𝑛 =

345) and controls (𝑛 = 290) were obtained from our previous
study [22].

2.9. Statistical Analysis. Theodds ratio (OR), 95% confidence
interval (CI), and 𝑃 value were used to evaluate the detected
associationmodels. A𝑃 value < 0.05 indicates the occurrence
of the association models significantly differing between the
breast cancer patients and controls. The SPSS version 19.0
(SPSS Inc., Chicago, IL) was used to compute all statistical
analysis.

3. Results

3.1. Evaluation of the Breast Cancer Risk of Individual SNP.
Table 1 showed the breast cancer risks of five individual SNPs
in ORAI1 gene. Among them, we identified six genotypes
of SNPs with the protective association against breast can-
cer, including rs12320939-TT, rs12313273-CC, rs7135617-TT,
rs6486795-CC, and rs712853-CC. However, the frequency
differences of these genotypes for each individual SNP were
nonsignificant between the breast cancer patients and con-
trols.

3.2. The Association Models of 2-SNP Combinations with
Maximum Differences between Cases and Controls. Table 2
showed the top ten association models of 2-SNP com-
binations from five SNPs listed in Table 1. Four associa-
tion models showed significant difference between paired
specific combination and others (𝑃 < 0.05), including SNPs
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Table 2: The top ten best protective association models of 2-SNP combinations.

Specific 2-SNP combination∗1 Genotypes∗1 Case number
/control number OR 95% CI 𝑃 value Power

1-2 Others 330/261 1 0.005∗2 0.792
1-1 15/29 0.409 0.215–0.779

2-4 Others 330/261 1 0.010∗2 0.752
1-1 15/28 0.424 0.222–0.810

1-3 Others 278/219 1 0.123 0.339
1-2 67/71 0.743 0.509–1.085

2-3 Others 327/261 1 0.022∗2 0.629
1-2 18/29 0.495 0.269–0.912

1-4 Others 310/247 1 0.073 0.432
1-1 35/43 0.649 0.403–1.044

3-4 Others 310/247 1 0.073 0.432
2-1 35/43 0.649 0.403–1.044

4-5 Others 311/249 1 0.096 0.385
1-2 34/41 0.664 0.409–1.078

2-5 Others 325/261 1 0.048∗2 0.506
1-2 20/29 0.554 0.306–1.002

1-5 Others 289/234 1 0.311 0.174
1-2 56/56 0.810 0.538–1.218

2-3 Others 292/239 1 0.451 0.118
2-1 53/51 0.851 0.558–1.296

∗1The information of the SNP and genotypes is provided in Table 1.
∗2The models have significance on the occurrence of breast cancer (𝑃 < 0.05).
OR = odds ratio.

Table 3: Estimated joint effects on models of 2- to 5-SNP combinations associated with breast cancer.

Combined SNP
number
(specific SNP
combination)∗1

SNP
genotypes

Case number
/control number OR 95% CI 𝑃 value Power

2-SNP Others 330/261 1 0.005∗2 0.792
(1-2) 1-1 15/29 0.409 0.215–0.779
3-SNP Others 330/261 1 0.005∗2 0.792
(1-2-5) 1-1-2 15/29 0.409 0.215–0.779
4-SNP Others 330/261 1 0.005∗2 0.792
(1-2-3-5) 1-1-2-2 15/29 0.409 0.215–0.779
5-SNP Others 330/262 1 0.008∗2 0.750
(1-2-3-4-5) 1-1-2-1-2 15/28 0.425 0.223–0.813
∗1The information of the SNP and genotypes is provided in Table 1.
∗2The models have significance on the occurrence of breast cancer (P < 0.05).
OR = odds ratio.

(1-2)-genotypes (1-1), SNPs (2-4)-genotypes (1-1), SNPs (2-3)-
genotypes (1-2), and SNPs (2-5)-genotypes (1-2). In these 2-
SNP association models, the SNPs (1-2)-genotypes (1-1), that
is, [rs12320939-TT]-[rs12313273-CC], had the maximum fre-
quency difference (5.65%) between the breast cancer patients
and controls and displayed the smallest OR value (<1) with a
protective effect against breast cancer. Similarly, the SNPs (1-
2)-genotypes (1-1) displayed the highest power value between
these models of 2-SNP combinations.

3.3. The Association Models of 3- to 5-SNP Combinations with
Maximum Differences between Cases and Controls. Using
similar computation like in Table 2, Table 3 showed the
best association models of 3- to 5-SNP combinations with
maximum difference between the breast cancer patients and
controls. We found that three SNPs rs12320939, rs12313273,
and rs712853 were strongly associated with protective effect
against breast cancer when their genotypes were TT, CC,
and TT/TC, respectively (OR = 0.409, 95% CI = 0.215–0.779,
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𝑃 = 0.005). The 4-SNP combinations showed that rs7135617
was included to generate the protective association with
breast cancer. The OR, 𝑃 value, and power were the same
for 3-, 4-, and 5-SNP combination models. For 5-SNPmodel,
SNPs (1, 2, 3, 4, 5) showed a similar protective effect against
breast cancer when their genotypes are TT, CC, GG/GT, CC,
and TT/TC, respectively (OR = 0.425, 95% CI = 0.223–0.813,
𝑃 = 0.008).

4. Discussion

SNP interaction analyses can improve the performance of
association studies in disease predisposition [26, 36–41]. In
this study, we investigated the protective factors for genetic
variants of complex traits in breast cancer. We hypoth-
esized that five important SNPs within the ORAI1 gene
may reduce the genetic susceptibility to breast cancer. In
the current study, a robust PSO algorithm combined with
the statistical analysis was used to detect the relationship
between protective association of breast cancer and ORAI1
SNPs. As expected, our proposed PSO algorithm has a good
performance to identify the protective effects of ORAI1 SNPs
against breast cancer in this study.

The statistical analyseswere reported to have the difficulty
to identify the complex multifactor association [42]. Accord-
ingly, several studies proposed comprehensive approaches to
identify the associationmodelwith disease related factors [27,
30, 43, 44]; these approaches have adequate power to explore
the potential association models. The SNP combination
generated by PSO can detect the association relationship in
terms of selecting several important genotypes of SNPs. This
algorithm can help us to understand the genetic basis of the
complex diseases/traits.

Our previous studies had shown that ORAI1 is an asso-
ciated gene to breast cancer with the nodal involvement,
progesterone receptor status, and estrogen receptor status
studies [22]. In our previous work [32], the specific combi-
national SNPs of ORAI1 gene were reported to be associated
with breast cancer risk. However, the protective association
of breast cancer in terms of combinational SNPs of ORAI1
gene was not investigated in SNP-SNP interaction manner.
In the current study, we found a strong protective association
between specific combinational SNPs of ORAI1 gene in
relation to breast cancer susceptibility.

We detected the possible 2-factor association models in
terms of specific SNP combination. PSO analysis selected
two SNPs (rs12320939 and rs12313273) in ORAI1 genes as the
best protective association model against breast cancer when
the genotypes of rs12320939 and rs12313273 are TT and CC,
respectively. This model can not specify whether the model
was a synergistic relationship or not, but it suggested that the
combination of factors (rs12320939 with genotype TT and
rs12313273 with genotype CC) had very low risk for breast
cancer susceptibility.

Haplotype is defined by a group of heritable SNPs of
linked genes on the same chromosome. Haplotype analysis
can provide the performance between cases and controls
for patterns of SNP combination involving all SNPs, for
example, 5 SNPs in the case of the current study. However,

the SNP-SNP interactions for different SNPs involved are not
considered in traditional haplotype analysis. In contrast, our
proposed PSO-based SNP-SNP interaction was not limited
to SNPs of the same chromosome although it is in the current
study. Moreover, our proposal algorithm can identify the best
SNP model with the maximum difference between cases and
controls for different numbers of SNPs, for example, from 2
to 5 SNPs. Recently, haplotype analysis was also reported to
combine with PSO [45, 46]. Therefore, the computation of
traditional haplotype analysis may be improved with the help
of PSO.

5. Conclusions

We used the PSO strategy to detect the protective association
models between five combinational SNPs of ORAI1 gene in
the breast cancer. Among them, the two SNPs (rs12320939
and rs12313273) were found to be most essential components
to protectively associate in breast cancer when their geno-
types are TT and CC, respectively. PSO identified SNPmodel
may enhance the detection of genetic variants to disease or
cancer susceptibility. Therefore, our findings provided the
important information regarding combinational patterns of
SNPs located in the relevant genes.
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