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Many neural mechanisms regulate experience-dependent plasticity in the visual cortex
(V1), and new techniques for quantifying large numbers of proteins or genes are
transforming how plasticity is studied into the era of big data. With those large data
sets comes the challenge of extracting biologically meaningful results about visual
plasticity from data-driven analytical methods designed for high-dimensional data. In
other areas of neuroscience, high-information content methodologies are revealing
more subtle aspects of neural development and individual variations that give rise to
a richer picture of brain disorders. We have developed an approach for studying V1
plasticity that takes advantage of the known functions of many synaptic proteins for
regulating visual plasticity. We use that knowledge to rebrand protein measurements
into plasticity features and combine those into a plasticity phenotype. Here, we provide
a primer for analyzing experience-dependent plasticity in V1 using example R code
to identify high-dimensional changes in a group of proteins. We describe using PCA
to classify high-dimensional plasticity features and use them to construct a plasticity
phenotype. In the examples, we show how to use this analytical framework to study
and compare experience-dependent development and plasticity of V1 and apply the
plasticity phenotype to translational research questions. We include an R package
“PlasticityPhenotypes” that aggregates the coding packages and custom code written
in RStudio to construct and analyze plasticity phenotypes.

Keywords: high-dimensional analysis, development, human, cluster, fluoxetine, amblyopia, translation, synaptic
plasticity

INTRODUCTION

Development of the primary visual cortex (V1) is regulated by many neurobiological mechanisms
that form a complex set of cellular and molecular states to enhance or reduce experience-
dependent plasticity. Often, studies of V1 development and plasticity focus on just a few of
those mechanisms. However, the field is rapidly moving to large-scale studies that measure
tens to thousands of plasticity-related markers to understand how V1 develops (Nowakowski
et al., 2017; Siu et al., 2017; Lehallier et al., 2019) and changes in response to disease (Smith
et al., 2016, 2019) or visual experience (Majdan and Shatz, 2006; Tropea et al., 2006; Beston
et al., 2010; Dahlhaus et al., 2011; Balsor et al., 2019b). The complexity of the data is posing
new challenges for understanding the molecular mechanisms (proteins or genes) that underpin
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experience-dependent development and plasticity of vision.
Nevertheless, big-data studies of protein or gene expression hold
the potential of revealing subtle aspects of V1 development
and plasticity that might affect visual function. Those studies
can also enhance translation from animal models to humans
by measuring the same plasticity features in different species.
The idea of a plasticity phenotype is one way to tackle those
challenges. Here, we present a primer for discovering collections
of plasticity-related proteins, rebranding those into plasticity
features, combining features to construct a plasticity phenotype,
and using the phenotype to classify normal and abnormal
development of V1.

The term plasticity phenotype has been used to describe
the waxing and waning of gene expression during the critical
period (CP) (Smith et al., 2019). It has also been used as a
tool to rebrand high-dimensional patterns of protein expression
into a reduced set of plasticity-related features (Balsor et al.,
2019b). In this paper, we take advantage of insights gained from
previous studies that identified the role of various neural proteins
in V1 development and plasticity, especially glutamatergic and
GABAergic receptor subunits, to select the set of proteins used
for the examples in this primer (Froemke et al., 2005; Hensch,
2005; Philpot et al., 2007; Maffei and Turrigiano, 2008; Yashiro
and Philpot, 2008; Cho et al., 2009; Smith et al., 2009; Heimel
et al., 2011; Turrigiano, 2011; Cooke and Bear, 2012; Durand
et al., 2012; Hensch and Quinlan, 2018). Furthermore, because
the approach uses protein expression, the same method can
be applied to study translational aspects of V1 plasticity in
animal models and humans. The heuristic that we describe,
a plasticity phenotype, will help for exploring and comparing
neurobiological features that regulate experience-dependent
development and plasticity of V1. The goal of constructing
a plasticity phenotype is to take the unique computational
signature obtained from high-dimensional analyses of proteins
and transform it into a biologically interpretable plasticity
phenotype for V1.

We describe a workflow with example code for constructing
and using a plasticity phenotype by illustrating the steps in the
statistical software R. The steps include a visualization tool that
enhances the exploration of the data. The data sets used in the
examples are from studies by our laboratory of V1 development
and plasticity in cats (Beston et al., 2010; Balsor et al., 2019b),
rats (Beshara et al., 2015) and humans (Murphy et al., 2005;
Pinto et al., 2010, 2015; Williams et al., 2010; Siu et al., 2017).
The examples address how to construct plasticity phenotypes
for different experiments by discovering biological features in
the data and using them to identify plasticity mechanisms that
underpin differences among ages or rearing conditions.

Contributions of This Paper
• We demonstrate how to combine measurements of

plasticity-related proteins to construct and visualize a
plasticity phenotype.
• We illustrate how to use the plasticity phenotype to

rebrand the data to discover biologically meaningful
interpretations of the data.
• We show how to use the plasticity phenotype

to identify biological features that change during

development, after different types of visual experience or
after drug treatment.
• We aggregated all of the R code used in this paper

into an R package “PlasticityPhenotypes” that is
available for download using the devtools function:
install_github("visualneurosciencelab/PlasticityPheno
types").

The paper is organized as follows. First, we review some of the
high-dimensional data analysis methods that have been used in
recent papers studying cortical development. Next, we introduce
the workflow to construct a plasticity phenotype and demonstrate
how to use it with three examples: characterizing and comparing
the development of V1 in cats and humans; classifying the
effects of different types of treatment for abnormal early visual
experience; identifying the effects of fluoxetine on adult rat V1.
Finally, we provide a summary and discussion. This manuscript
and a previous version have been released as Pre-Prints at bioRxiv
(Balsor et al., 2019a, 2020).

Past Work Using High-Dimensional
Analysis
Principal Component Analysis
The most commonly used high-dimensional analysis for
exploring gene or protein expression in the brain has been
principal component analysis (PCA) (Hotelling, 1933; Jolliffe
and Cadima, 2016). PCA transforms the data, which is likely
to include correlated genes or proteins, into a linear set of
uncorrelated principal components that capture successively less
of the variance in the data. Thus, individual cases can be
visualized and analyzed in the transformed lower-dimensional
space, and that is often helpful for identifying clusters in the
data. For example, a recent survey of human brain development
used PCA to reduce the dimensionality of the protein and
gene expression to identify differences among brain regions
(Carlyle et al., 2017). That analysis separated cerebellar samples
from other clusters, but the unitless dimensions of the PCA
components made it hard to determine which biological features
partitioned the samples into various clusters.

A different approach to using PCA takes advantage of known
plasticity functions for a set of synaptic proteins. It uses the basis
vectors for each component (the weights for each protein) to
attach biological significance to otherwise unitless dimensions
(Jones et al., 2007). For example, the information from the
basis vectors may reflect biological features such as sums of
proteins, balances between pairs of proteins or maturational
states of protein families that are known to affect plasticity
(Beston et al., 2010). The current workflow builds on that
approach to using PCA.

t-Distributed Stochastic Neighbor Embedding
Another popular method for transforming and visualizing
high-dimensional data is t-Distributed Stochastic Neighbor
Embedding (t-SNE; Maaten and van der Hinton, 2008). tSNE
measures the shortest distance between pairs of data points
then calculates pairwise probability estimates of similarity across
all dimensions. Often, these estimates are mapped onto a 2-
dimensional (2D) space by scaling the distance between data
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points and positioning similar data points closer together.
The new mapping preserves local and global patterns, thereby
representing the relationships among data points to highlight
clusters in the data. The artificial scaling makes it easier to identify
clusters by either color-coding points based on a known attribute
(e.g., cortical area), or by applying a clustering method to the
tSNE XY coordinates. Furthermore, the unsupervised nature of
tSNE is particularly useful when exploring data without strong
a priori knowledge of the biological features that may differ
among the conditions.

A recent study of single-cell mRNA expression in the
developing human brain analyzed the data using a combination
of PCA and tSNE (Nowakowski et al., 2017). In that example,
PCA was used to reduce the dimensionality of the data and
tSNE to reduce the dimensions further and visualize clusters. This
has become a common workflow for analyzing and visualizing
complex gene or protein data about brain development. Care
is needed, however, when using the output from PCA as the
input to a clustering algorithm because the orthogonal principal
components (PC) may not contain the information needed to
partition the data into clusters (Chang, 1983).

Whether clustering is done with PCA, tSNE or some
other method, the same challenge remains for studying brain
development and plasticity – how to link a holistic exploration
of the data with the plasticity-related biological features that
differentiate the clusters. The task of pinning down biological
features is often done by presenting a large number of plots
and univariate analyses aimed at finding individual proteins or
genes that are over- or under-expressed in a cluster (Carlyle
et al., 2017; Luo et al., 2017). That approach, however, loses
sight of differences that arise from higher-order combinations
of proteins or genes. The workflow presented here was
developed to address that problem by using a series of steps
for discovering combinations of proteins that represent high-
dimensional features and a heuristic for analyzing the features
that we call a plasticity phenotype. While the idea of brain
phenotypes is not new (Cody et al., 2002), it has most often been
used with brain imaging data, and the term plasticity phenotype
has been used as a descriptor of gene changes during the CP
(Smith et al., 2019). Our approach aims to construct a plasticity
phenotype from neural protein expression data and use it to
classify developmental and experience-dependent changes in V1.

METHODS AND RESULTS

Note About the Preparation of the Data
Before beginning the analyses described in this paper, it is
important to inspect and organize the raw data set. For example,
if using Western blotting data, ensure that the quantification
of the bands did not include artifacts (e.g., bubbles, spots) or
poorly labeled bands that could skew the results. Those data
points should be omitted, and the missing data can be filled
by imputation. A variety of imputation functions have been
implemented in R, and a package impute was developed for
microarray data to impute missing gene or protein expression
data using a nearest-neighbor analysis (Hastie et al., 2020).

Description of the Example Data Sets
The data sets used for the examples in this paper come from our
studies of V1 development and plasticity in cats (Beston et al.,
2010; Balsor et al., 2019b), rats (Beshara et al., 2015) and humans
(Murphy et al., 2005; Pinto et al., 2010, 2015; Williams et al.,
2010; Siu et al., 2017). The workflow was tested on three different
study designs including, small-N cross-sectional development
studies, a small-N exploratory study of treatments after MD
and a larger-N study examining the effects of fluoxetine on
adult rats V1.

The cat data1 set has a maximum nxp matrix size of n = 768
rows of observations (24 cases X 16 tissue samples X 2
replications) and p = 7 columns of protein variables (Table 1).
There were, however, some missing data, so the observed matrix
had 3,906 data points, and the average protein expression
from the western blotting runs was used, resulting in a matrix
with 1,953 cells.

The human data2 set has a maximum nxp matrix size of n = 90
(30 cases X 3 replications) rows of observations and p = 7 columns
of protein variables that are the same as the cat data set (Table 1).
The average protein expression from the western blotting runs
was used, resulting in a matrix with 210 data points.

The rat data3 set has a maximum nxp matrix size of n = 840
(28 animals total X 3 replications) rows of observations from the
contralateral hemisphere and p = 10 columns of protein variables
(Table 1). Some of the data points were omitted because of poor
labeling resulting in a matrix with 770 data points.

Constructing Plasticity Phenotypes to
Describe V1 Development
The development of plasticity mechanisms in V1 is often
described using scatterplots and curve fitting to capture the
trajectory of protein or gene expression changes with age. For
example, with the current cat data set, that approach leads to
21 scatterplots and curves representing the 7 proteins and 3
sampling regions in V1. Even with that relatively small number of
proteins, the number of possible trajectories multiplies, making
it difficult to describe an overall pattern for the development of
V1. Furthermore, that approach does not realize the potential of
high-dimensional data since it does not include the full repertoire
of proteins. Instead, holistic approaches that examine all proteins
can identify patterns in the data that suggest how the biological
functions might change. To address this combinatorial problem,
we developed a workflow that reduces the dimensionality of
the data set (Figures 1A,B), explores and identifies biological
features contributing to variance in the data (Figures 1C,D),
validates the features (Figure 1E) and uses those features to
construct a plasticity phenotype (Figure 1F). First, the workflow
is described using data for the development and recovery of cat
V1 (Beston et al., 2010; Balsor et al., 2019b) and then extended
to data for the development of human V1 (Murphy et al., 2005;
Pinto et al., 2010, 2015; Williams et al., 2010; Siu et al., 2017) and
fluoxetine induced changes in adult rat V1 (Beshara et al., 2015).

1https://osf.io/45rjy/?action=download
2https://osf.io/6pbgr//?action=download
3https://osf.io/d5pzt//?action=download
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TABLE 1 | Experiment observations (n) and variables (p).

Data set Categories Specific Total

Experiment observations (n)

Cat Age (wks) Normal (9): 2wk (1), 3wk (1), 4wk (1), 5wk (1), 6wk (1), 8wk (1), 12wk (1), 16wk (1), 24wk (1) Monocular
Deprivation (8): 4wk (1), 5wk (2), 6wk (2), 9wk (2), 24wk (1) Treatment (7): Reverse Occlusion (RO) (1), Binocular
Deprivation (BD) (1), Binocular Vision [Long-term, LT 1d, 2d or 4d, (3); Short-term, ST 1hr or 6hrs, (2)] (5)

24

Regions Central (2 or 3), Peripheral (6 to 11), Monocular (2) 10–16

WB Runs 1, 2 2

Sum 768

Human Age (years) 0.05, 0.24, 0.26, 0.27, 0.33, 0.33, 0.36, 0.37, 0.75, 1.34, 2.16, 2.21, 3.34, 4.56, 4.71, 5.39, 8.14, 8.59, 9.13,
12.45, 13.27, 15.22, 19.21, 22.98, 32.61, 50.43, 53.90, 69.30, 71.91, 79.5

30

WB Runs 1,2,3 2 or 3

Sum 90

Rat Rearing condition Normal (6), 1wk MD (6), Fluoxetine +1wk MD (8), fluoxetine (8) 28

WB Runs 1,2, 3 2 or 3

Sum 84

Variables (p)

Cat Protein Synapsin (Syn), GluN1, GluN2A, GluN2B, GluA2, GABAAα1, GABAAα3 7

Human Protein Synapsin (Syn), GluN1, GluN2A, GluN2B, GluA2, GABAAα1, GABAAα3 7

Rat Protein GluA2, GluN1, GluN2A, GluN2B, GABAAα1, GABAAα3, Gephyrin, PSD95, VGLUT1, VGAT 10

Dimension Reduction Using PCA
The first step in the workflow uses PCA to explore the
high-dimensional nature of the data. We implemented
a two-step procedure that reduced the dimensionality
of the data and then used the basis vectors for those
dimensions to identify candidate biological features that
capture the variance in the data. Figure 2 illustrates
the workflow using the cat data set (Beston et al., 2010;
Balsor et al., 2019b), and the R code can be found
in the Markdown file Cat&Human_Markdown in the
Supplementary Material.

To start the analysis, load relevant packages and data
files (Cat&Human_Markdown, section “Load Cat and
Human Data,” lines 5–186) including installing the package
PlasticityPhenotypes from the Visual Neuroscience Lab GitHub
repository (Cat&Human_Markdown, section “Install the
package, ‘PlasticityPhenotypes.’,” lines 8–9).

devtools::install_github("visualneuro
sciencelab/PlasticityPhenotypes")

Next, load the package into the library
(Cat&Human_Markdown section “Load the package,
‘PlasticityPhenotypes.’,” lines 10–54).

library(PlasticityPhenotypes)

Then, import the data sets of interest by setting the
destination file paths for the CSV files (Cat&Human_Markdown
section “Store the cat and human file paths in unique
objects.”, lines 55–60).

raw.cat.dev <-
’https://osf.io/45rjy//?action=download’

raw.cat.tsne <-
’https://osf.io/59yu6//?action=download’

raw.hum.imputed <-
’https://osf.io/6pbgr//?action=download’

raw.hum.non-imputed <-
’https://osf.io/azdv8//?action=download’

Finally, import the CSV files from the Visual Neuroscience
Lab Open Science Framework (OSF) repository for the cat
(Cat&Human_Markdown section “Import the necessary cat
data CSVs from OSF.”, lines 61–127) and human data
(Cat&Human_Markdown section “Import the necessary human
data CSVs from OSF.”, lines 128–186).

Cat Data Files
filename <- ’cat_proteins.csv’

GET(raw.cat.dev, write_disk(filename,
overwrite = TRUE))

raw.data <- read.csv(filename)

filename <- ’cat_tsne.csv’

GET(raw.cat.tsne, write_disk(filename,
overwrite = TRUE))

tsne.raw.data <- read.csv(filename)

Human Data Files
filename <- ’human_imputed.csv’

GET(raw.hum.imputed,
write_disk(filename, overwrite = TRUE))

raw.data.imputed <- read.csv(filename)
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FIGURE 1 | Analysis workflow to construct plasticity phenotypes. The analysis workflow for the data analysis described in the study [adapted from Balsor et al.
(2019b), used with permission]. (A). Immunoblots were quantified using densitometry, then comparisons among rearing conditions were made. Next, a series of
steps were used to explore the data in a high dimensional space and create plasticity phenotypes. First, (B) dimensionality reduction (principal component analysis)
was done on the centered data, followed by (C) feature exploration (correlations between principal components and proteins), (D) identification of candidate features
(saliency), (E) feature rebranding (Correlation between principal components & features) and (F) ending with visualization of those features by creating plasticity
phenotypes.

filename <- ’human_non-imputed.csv’

GET(raw.hum.non-imputed,
write_disk(filename, overwrite = TRUE))

raw.data.non-imputed <-
read.csv(filename)

Cat Analysis
Analysis of the cat data (Cat&Human_Markdown, Cat Analysis
lines 187–557) began with the PCA (Cat&Human_Markdown,
section “Cat: Dimension Reduction Using PCA – Additional
Processing & Analysis,” lines 188–310). The column headers that
include special characters were renamed, so those characters
could be used in the figures (Cat&Human_Markdown section
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FIGURE 2 | Using principal component analysis to identify candidate plasticity features. (A) The explained variance captured by each principal component after the
singular value decomposition (SVD). The first three principal components capture 54, 18, and 10% of the variance, respectively, totaling >80% and thus representing
the significant dimensions. (B) The quality of the representation, cos2, for the proteins is plotted for each dimension (small/white: low cos2; large/blue: high cos2).
(C) The strength (circle size) and direction (blue-positive, red-negative) of the correlation (R2) between each protein and the PCA dimensions. (D–F) The basis vectors
for dimensions 1–3 showing the amplitude of each protein in the vector. (G) Correlations between the plasticity features (columns) identified using the basis vectors
(see Results) and PCA dimensions 1–3. Filled cells are significant, Bonferroni corrected correlations (green = positive, red = negative). Adapted from Balsor et al.
(2019b), used with permission.
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“Rename columns in the ‘raw.data’ object. . .,” lines 190–222).
Here, the subscript (A) and Greek letter alpha (α) were
represented with Unicode text in GABAAα1 and GABAAα3.

colnames(raw.data)[13:14] <-
c(’GABA\u1D00\u03b11’,
’GABA\u1D00\u03b13’)

The original data frame (Cat&Human_Markdown section
“Assign ‘raw.data’ to the object ‘my.data.’,” lines 223–256) was
duplicated to preserve the raw data set (raw.data), and have a
second set of the raw data (my.data) to be preprocessed for
PCA (see below).

my.data<- raw.data

Note: many implementations of PCA do not work well when
there are empty cells in the matrix. There are a variety of
approaches that can be used, including imputation to fill in the
empty cells, removing runs with missing data, or averaging across
runs. In this example, protein expression was averaged across
multiple runs of western blotting, so there were no missing values.

This section is not an overview of PCA, and we encourage
readers to go to online tutorials to learn more about the
application of PCA to biological data. It is important, however,
to emphasize that our use of PCA is a data-driven approach to
understanding V1 development because only protein expression
was used, and no categorical information such as treatment
condition, cortical area, or age were included in the PCA.

The first step for performing the PCA was to center the
data, but the data were not scaled. It is important to note that
for many applications, the data are centered and scaled so that
genes or proteins with abundant expression do not obscure
the contribution of those with less expression but a significant
variation. When scaling is added, the data will have a standard
deviation of± 1, and a mean of zero.

Centering the data in R was done with the base scale
function and stored in the new data frame my.data.scaled
(Cat&Human_Markdown section “Centre (but do not scale) the
protein columns.”, lines 273–277).

my.data.scaled <- scale(my.data[,10:16],
center = TRUE,
scale = F)

There are a variety of PCA packages in R, and here, we used
the PCA function from the FactoMineR package (Lê et al., 2008;
Husson et al., 2020). The PCA function produces eigenvalues
and a large set of visualization tools to aid the exploration of
the data set and identification of plasticity features described in
the next section.

PCA was run on the data set my.data.scaled,
and the results were saved as the object pca.scaled
(Cat&Human_Markdown section “Perform a PCA on
‘my.data.scaled’,” lines 278–282).

pca.scaled <- PCA(my.data.scaled,
ncp=ncol(my.data.scaled),
scale.unit=FALSE,
graph = FALSE)

Principal components returned by that function are the set
of orthogonal vectors in the object pca.scaled that identify
the variance in my.data.scaled. The eigenvalues represent
the magnitude of the variance captured by each PC vector,
and eigenvalues are largest for PC1 and successively less for
each subsequent PC. An in-depth explanation of PCA and
eigenvectors can be found here (Jolliffe and Cadima, 2016).

Dimension reduction began by identifying how much variance
was captured by each PC, then ranking the PCs from largest
to smallest, and lastly, retaining the set of PCs that captured
a significant amount of the variance (>80%). The scree plot
represents the amount of variance explained by each of the
PC dimensions. The following code (Cat&Human_Markdown
section “Construct scree plot,” lines 283–298) was used to consult
the pca.scaled object to create a scree plot.

fviz_eig(pca.scaled,
addlabels = T,
ylim = c(0, 60),
xlim = c(0.5,7.5),
ncp = 7,
barfill = "gray",
barcolor = "gray",
geom = "bar")+

scale_y_continuous(expand = c(0,0))+
scale_x_discrete(expand = c(0,0))+
theme(axis.line.y = element_line(),

axis.line.x = element_line(),
panel.grid = element_blank())

The scree plot (Figure 2A) showed the decreasing magnitude
of the variance explained by the seven PC vectors. A variety
of methods have been used to identify significant dimensions
(Hoyle, 2008), and here, we used the simple rule to retain
successive dimensions until the cumulative variance explained
was = 80%. In this example, Dim1-3 explained 82% of the
variance and those were used in the next steps to identify
candidate plasticity features.

A custom function cum_var was used to calculate the
number of significant basis vectors for the subsequent analyses
and that function is included in the PlasticityPhenotypes
package (Cat&Human_Markdown section “Calculate how many
components are required to maintain 80% of the total
variance. . .,” lines 299–310).

pca.scaled$eig[,3]
## comp 1 comp 2 comp 3 comp 4 comp
5 comp 6 comp 7

## 53.66586 72.00511 82.27410
89.51460 93.55403 96.92361
100.00000

cum.var <- cum_var(pca.eig.3 =
pca.scaled$eig[,3],

# "pca.scaled$eig[,3]" is
contained within object "pca"
thresh = 80)
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# Custom threshold value

cum.var
## [1] 3

Identifying Candidate Plasticity Features
The three significant PC vectors represent the weighted
contribution from each of the seven proteins to the variance
in the data, and that information was visualized by plotting
the cos2, correlations or individual basis vectors (Figures 2B–
F; Cat&Human_Markdown section “Cat: Identifying candidate
plasticity features,” lines 311–373). Those analyses identified the
proteins that drove the variance in the data, and those data
were stored as XY coordinates in the pca.scaled object.
Candidate plasticity features were identified using the output
from the PCA, starting with the cos2 metric to assess the
quality of the representation for each protein on the dimensions
(Cat&Human_Markdown section “Construct plot of Cos2 data
. . .,” lines 312–329).

corrplot(pca.scaled$var$cos2,is.corr
= FALSE)

For the cat V1 data set, basis vector 1 had strong
cos2 representations for the glutamatergic proteins GluN1,
GluN2A, GluN2B and GluA2, and moderate for GABAAα3, and
basis vector 2 had strong cos2 representation for GABAAα1
(Figure 2B). However, synapsin was weakly represented by all of
the basis vectors (Figure 2B).

Next, the correlations between individual proteins and the
basis vectors were plotted to visualize the strength and direction
of the impact of the proteins on the vectors (Figure 2C;
Cat&Human_Markdown section “Construct plot of coord
(correlation) data. . .,” lines 330–348).

corrplot(pca.scaled$var$coord,
is.corr = F)

Lastly, amplitude plots for the three significant PC dimensions
were plotted to visualize the weight and direction that each
protein contributed to the basis vectors (Figures 2D–F). The
amplitude plots present the same data as the correlation
plot but make it easier to assess the amplitude of each
protein. The custom function amplitude_plots included
in the PlasticityPhenotypes package produces a series of plots
demonstrating the amplitude of the variables (e.g., proteins)
about each basis vector (Cat&Human_Markdown section
“Create PCA amplitude plots. . .,” lines 349–373).

pca.scaled$var$coord

amplitude_plots(cum.var = cum.var,
# Output of "cum_var()" function

pca.var.coord =
pca.scaled$var$coord)

# "pca.scaled $var$coord" is
contained within object "pca"

Heuristics for Identifying Candidate
Plasticity Features
Candidate plasticity features were found by inspecting the basis
vectors and applying three heuristics that combine information
from PCA and a priori knowledge about the functions of the
proteins in regulating plasticity. First, using cos2 and the basis
vectors, we identified combinations of proteins representing the
largest amount of variation. Second, a priori knowledge of V1
development and plasticity was used to find pairs of proteins (e.g.,
GluN2A:GluN2B, GluN2B:GluA2, GABAAα1:GABAAα3 (Chen
et al., 2001; Philpot et al., 2001; Fagiolini et al., 2004; Hall
and Ghosh, 2008; Smith et al., 2009) or classes of proteins
(e.g., glutamatergic or GABAergic) that regulate plasticity by
shifting the excitatory:inhibitory balance (e.g., E:I)(Fagiolini and
Hensch, 2000; Hensch, 2004, 2005). Finally, novel pairs of
proteins with large amplitudes that point in opposite directions
(e.g., GABAAα1:GluN2A) were identified because the opposite
directions suggest a potential functional link where one protein
increases as the other decreases. Features were then made by
summing proteins with high amplitudes or calculating difference
indices for the pairs of proteins.

The supervised approach described here can be adapted to
select appropriate features for new experiments by working
through steps to develop a new set of heuristics. Alternatively, an
unsupervised method, such as minimum Redundancy Maximum
Relevancy (mRMR) (Ding and Peng, 2005), could be developed
to find candidate features. That approach, however, would be
strictly data-driven and may not select features most relevant to
the neurobiological questions being addressed.

The following steps were used to identify candidate plasticity
features for the cat V1 data set. Using the heuristics to identify
proteins or combinations of proteins representing the largest
amount of variance, we noted that on PC1, all of the proteins
had positive weights and the glutamatergic receptor subunits
had the largest amplitudes. Also, on PC2, GABAAα1 had the
strongest representation. Together, that information suggested
three candidate features: the sum of all seven proteins, the sum
of the four glutamatergic proteins, and the sum of the two
GABAergic proteins.

Next, applying the a priori knowledge heuristic, GluN2A and
GluN2B, and GluN2B and GluA2 had opposite directions on PC2
and GABAAα1 and GABAAα3 on PC3. Besides, glutamatergic
proteins were strongest on PC1 and GABAergic on PC2,
suggesting orthogonal contributions to the variance in the
data. Together, that information suggested four more candidate
features: GlutR:GABAAR, GluN2A:GluN2B, GluN2B:GluA2,
GABAAα1:GABAAα3.

Finally, novel pairs of proteins from PC2 and PC3 were
identified. On PC2, GluN2A and GABAAα1 had the largest
amplitudes and pointed in opposite directions. Across PC2 and
PC3, GluN2A and GluA2 had the largest amplitudes pointing in
opposite directions. That information suggested two candidate
features: GABAAα1:GluN2A, GluN2A:GluA2.

Candidate Plasticity Features for Cat V1
Applying the heuristics identified 9 candidate features (3 protein
sums and 6 protein indices) (Cat&Human_Markdown section
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“Cat: Application of the Heuristics to Identify Candidate
Plasticity Features for Cat V1” Lines 374–502). Those features
were calculated and stored as separate columns in the
NewFeatures data frame (Cat&Human_Markdown section
“Calculate plasticity features,” lines 380–433).

The features were validated by determining the correlation
between each of the nine candidate features and the three PC
dimensions (Figure 2G; Cat&Human_Markdown section “Cat:
Validating Candidate Plasticity Features,” lines 440–502). That
was done by calculating the nine candidate features for all of the
samples using the protein expression data (NewFeatures) and
correlating those with the eigenvalues (coordinates) for the three
dimensions (PCA.scores).

Bonferroni corrected Pearson’s correlations between the
candidate features, and PC dimensions were calculated (note:
False Discovery Rate could be used to adjust for multiple
comparisons) (Cat&Human_Markdown section “Perform a
Bonferroni-corrected, pairwise Pearson’s correlation against PCA
scores and plasticity features.”, lines 443–457).

corr.scores.bf <-
corr.test(PCA.scores[,1:cum.var],
NewFeatures,
use = "pairwise",
method = "pearson",
adjust = "bonferroni")

The correlation coefficients (Cat&Human_Markdown section
“Store a matrix of correlation coefficients. . .,” lines 458–
475) and p-values (Cat&Human_Markdown section “Store a
matrix of adjusted p-values.”, lines 476–494) were stored as
separate objects.

corr.scores.rval <- corr.scores.bf$r

corr.scores.bfpval <- corr.scores.bf$p

Finally, the significant correlations were visualized with
a custom 2D matrix created using the custom function
feature_matrix included in the PlasticityPhenotypes
package. The function was used to visualize the
significant correlations between the original PC basis
vectors (PCA.scores) and the matrix of new
features (NewFeatures) in a heatmap (Figure 2G,
Cat&Human_Markdown line 502) (Cat&Human_Markdown
section “Construct plasticity feature matrix.”, lines 495–502).

feature_matrix(
corr.scores.pval = corr.scores.bfpval,

# Matrix of adjusted p-values
corr.scores.rval = corr.scores.rval,
# Matrix of correlation coefficients
thresh = 0.05)
# Significance threshold (acceptable
values range from 0 - 1)

Figure 2G identified the validated features based on having a
significant correlation between a candidate feature and one of the
PC dimensions. Those features will be used in the next section

to construct the plasticity phenotype. In the cat V1 example, all
candidate features were correlated with at least one dimension,
but none were correlated with all three dimensions.

Using Plasticity Features to Visualize and
Analyze the Plasticity Phenotype
The collection of plasticity features was combined to construct
the plasticity phenotype (Cat&Human_Markdown sections “Cat:
Using Plasticity Features to Construct a Plasticity Phenotype –
Data Processing,” Lines 503–557; and “Cat & Human: Using
Plasticity Features to Construct a Plasticity Phenotype – Creating
Phenotypes,” Lines 741–812).

The first section of the R code (Cat&Human_Markdown
sections “Cat: Using Plasticity Features to Construct a Plasticity
Phenotype – Data Processing,” lines 503–557) prepared the data
for normal cat V1 development to be used for constructing the
plasticity phenotype. That included subsetting the normal data
from the complete cat data set (lines 513–518), calculating the
median feature value for each age and storing in a new data frame
cat.dev (lines 523–528), ordering the rows sequentially by
age (lines 529–540) and renaming and assigning the row names
(lines 541–557).

merged.data <- subset(merged.data_all,

merged.data_all$Condition = = 1)

Figure 3 presents data for both cat and human V1
development, and the plasticity phenotypes for both were
visualized using the R code in the Markdown section “Create Cat
& Human Phenotypes” (lines 740–812).

First, the data were put into a list (df_list) that combined
both the cat and human data (Cat&Human_Markdown
section “Combine the plasticity feature columns in the human
and cat data frames into a list. . .,” lines 743–746). Then
the custom function plasticity_phenotype in the
PlasticityPhenotypes package was called to process the data and
make the phenotype visualization (Cat&Human_Markdown
Section “Construct a plasticity phenotype . . .,” lines 747–812).
That code made the sequence of V1 development phenotypes for
both cats and humans (Figure 3).

plasticity_phenotype
(df_list = df_list,
first_index_column = 4,
group_label = c(’\nAge Bins (Years)’,

’\nAge (Weeks)’),
translation = ’absolute’)

In addition to the phenotype visualization, boxplots were
made to show the developmental changes for each feature
(Cat&Human_Markdown section “Create Cat Boxplots,”
lines 817–937) (Figure 4). The data were processed before
creating the boxplots by parsing it to include the age
identifiers (feats_df$Case) and normalizing the three
protein sum features to the median of the youngest age. The
boxplots present the changes relative to the youngest age
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FIGURE 3 | Plasticity phenotypes for cat and human V1 development. (A) The color-code for each of the nine plasticity features. (B) The developmental sequence of
plasticity phenotypes in cat V1 was visualized as a stack of color-coded horizontal bars. The three gray-level bars represent the protein sums, and the six red-green
color-coded bars represent the protein indices identified by the PCA. The plasticity phenotypes were calculated for each stage of cat V1 development and ordered
from youngest to oldest [panels A, B reproduced from Balsor et al. (2019b), used with permission]. (C) The developmental sequence of plasticity phenotypes in
human V1 was visualized as a stack of color-coded horizontal bars. The plasticity phenotypes were calculated for each stage of human V1 development and ordered
from youngest to oldest. The color-coding conventions are the same as Figure 3B.

(Cat&Human_Markdown section “Divide all data points in a
‘feats_df’ sum by the median value.”, lines 854–867).

sum1 <- feats_df[,’Protein Sum’]/
cat.dev[cat.dev$Group.1
= = "2wk", ’Protein Sum’]

sum2 <- feats_df[,’GlutR Sum’]/
cat.dev[cat.dev$Group.1
= = "2wk", ’GlutR Sum’]

sum3 <- feats_df[,’GABA\u1D00R Sum’]/
cat.dev[cat.dev$Group.1 == "2wk",
’GABA\u1D00R Sum’]

The boxplots were created using the custom function
phenotype_boxplots included in the PlasticityPhenotypes
package (Cat&Human_Markdown section “Create individual
boxplots color-coded according to the cat developmental
phenotype.”, lines 886–928). The color-code from the
phenotype visualization was used for the boxplots to
facilitate comparison between the two ways of presenting
the features.

phenotype_boxplots(feature_df =
feats_df2,

# Boxplot data frame
phenotype_cols = cat.cols,

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 245

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00245 August 27, 2020 Time: 12:15 # 11

Balsor et al. Plasticity Phenotypes to Classify V1

FIGURE 4 | Boxplots of features included in the plasticity phenotypes for cat V1 development. The boxplots show the developmental progression for the nine
plasticity features (A–C, protein sums) (D–I, indices) in cat V1. The color of each boxplot was set to match the corresponding feature bar in the cat V1 development
plasticity phenotype (Figure 3B). Adapted from Balsor et al. (2019b), used with permission.

# Phenotype colour-code data frame
first_index_column = 4,

# Index number of first index column
in "feats_df2"(indexes begin at 0)
group_label = "\nAge (Weeks)",

# X-axis label
point_size = 0.6,

# Desired size of geom_jitter points
point_alpha = 1,

# Desired transparency of
geom_jitter points
aspect_ratio = 5/7,

# Desired aspect ratio of each
boxplot
text_size = 8)

# Desired X- & Y-axis text size for
each boxplot

Finally, the boxplots were arranged in a 3 × 3 grid
(Cat&Human_Markdown section “Create a 3 × 3 matrix.”,
lines 929–937).

ggarrange(plotlist = plot_list,
nrow = 3, ncol = 3,
labels = LETTERS[1:9],
font.label = list(size = 10),
vjust = 1)

Translational Research Using Plasticity
Phenotypes
One of the goals for developing the plasticity phenotype was to
provide a common framework for comparing development and
experience-dependent changes in V1 among species. Each of the
features used to construct the plasticity phenotype from the cat
data was derived from measurements of protein expression that
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can be readily measured in animal models as well as human
postmortem tissue. As a result, the features can be standardized
and compared among species. This section extends the analysis
to compare the development of cat and human V1 and illustrates
the application for translational research.

Using human V1 postmortem tissue samples, the nine
plasticity features identified for the cat plasticity phenotype
were applied to describe human V1 development. The
human phenotype analysis used the code presented in the
Cat&Human_Markdown (Supplementary Material). The CSV
file with the Ages, Age bins and the seven proteins from the
human V1 samples were loaded into the data frame object
my.data (Cat&Human_Markdown section “Import the
necessary CSVs from OSF,” lines 128–186).

Those data were used to analyze the same set of nine plasticity
features identified for the cat (Cat&Human_Markdown section
“Human: Analysis,” lines 558–739) and store them in the data
frame NewFeatures.

The median values for each feature and age bin were
determined (Cat&Human_Markdown section “Calculate
the median of each plasticity feature. . .,” lines 708–714)
and stored in hum.dev to be used as the input to the
plasticity_phenotype function.

The plasticity phenotypes for human V1 development
were created using the custom plasticity_phenotype
function (Cat&Human_Markdown section “Create Cat &
Human Phenotypes,” lines 740–812).

Comparisons of the cat and human development was
facilitated by using the same red-yellow-green color map
for both data sets. The numeric range for the color map
was set using the “absolute” method (Markdown line 753)
in the plasticity_phenotype function (see package
documentation), that finds the largest absolute value using the
medians from all of the age groups and assigns that value to
green if positive and red if negative. For example, if the largest
absolute value was +0.5, then the color scale will span from
green = +0.5 to red = −0.5. That step ensured that zero on
the indices was yellow and that the variations in green and red
hues across the cat and human phenotypes represented the same
numeric values on the indices.

Boxplots were made to show the development of the
features for human V1 and each boxplot was color-coded using
the same color map (phenotype_cols = hum.cols) as
the phenotype visualization (Cat&Human_Markdown section
“Create Human Boxplots. . . ,” lines 938–1045).

phenotype_boxplots
(feature_df = feats_df3,

# Boxplot data frame
phenotype_cols = hum.cols,

# Phenotype colour-code data frame
first_index_column = 4,

# Index number of first index
column in "feats_df4"
(indexes begin at 0)
group_label = "\nAge Bins
(Years)",

# X-axis label
point_size = 0.7,

# Desired size of geom_jitter
points point_alpha = 1,

# Desired transparency of
geom_jitter points
aspect_ratio = 5/7)

# Desired aspect ratio of each
boxplot

The nine boxplots were arranged in a grid to create
the multi-paneled Figure 5 (Cat&Human_Markdown section
“Create a 3 × 3 matrix displaying all color-coded boxplots.”,
lines 1037–1045).

ggarrange(plotlist = plot_list,
nrow = 3,
ncol = 3,
labels = LETTERS[1:9],
font.label = list(size = 12),
vjust = 1)

Comparing Plasticity Phenotypes
Between Species
Figure 3 illustrates the postnatal progression of plasticity
phenotypes for cat (Figure 3B) and human V1 (Figure 3C). The
boxplots show additional details about the magnitude of the nine
features during development of cat (Figure 4) and human V1
(Figure 5). The set of gray-level and color-coded bands in the
figures helped to identify sets of plasticity features with similar
or different patterns of developmental change between cats and
humans. Here, we provide a descriptive comparison for some
of the similarities and differences in the pattern of the plasticity
phenotypes because a comprehensive computational analysis is
beyond the scope of this primer.

Differences in the maturity of V1 were apparent by looking
at the plasticity phenotypes and comparing the three protein
sum features represented by the gray-level bands. No doubt, the
light-gray color of those three features in V1 of young kittens
(2–4 weeks) was a reflection of the immaturity of the cortex
at those ages. Neurons are still migrating into layers 2/3 of cat
V1, thalamic afferents are just beginning to invade the cortical
plate, and the layers have not fully differentiated (Luskin and
Shatz, 1985; Shatz and Luskin, 1986). In contrast, those aspects
of V1 development occur prenatally for humans (Flower, 1985;
Kostovic and Rakic, 1990; Bhardwaj et al., 2006; Rakic, 2006;
Clowry et al., 2010) leading to substantially more expression of
synaptic proteins and the dark-gray color of the three protein sum
features in the neonate and infant phenotypes.

The two indices that reflect balances between glutamatergic
and GABAergic proteins (GlutR:GABAAR, GluN2A:GABAAα1)
also suggest different patterns of development in cats and
humans. In the kitten, those indices favor GABAergic proteins
until ∼5 weeks of age when there was a shift to glutamatergic
proteins. In neonates, however, those indices already favored
glutamatergic proteins. The different maturational stages of the
top five features suggest that human V1 is more mature than the
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FIGURE 5 | Boxplots of features included in the plasticity phenotypes for human V1 development. The boxplots show the developmental progression for the nine
plasticity features (A–C, protein sums) (D–I, indices) in human V1. The color of each boxplot was set to match the corresponding feature bar in the human V1
development plasticity phenotype (Figure 3C).

young kitten and more similar to that of cats at the peak of the
critical period (4–6 weeks of age). Examination of the next four
features, however, suggests a different interpretation.

The next set of features appeared similar (orange and
yellow hues) in young kittens and neonates and developed
correspondingly. Those four features represent receptor subunit
balances that are known to be affected by visual experience where
the onset of vision drives the shift from more GluN2B to 2A
(Quinlan et al., 1999a,b; Philpot et al., 2003; Beston et al., 2010;
Jaffer et al., 2012; Balsor et al., 2019b), from more GABAAα3
to α1 (Huntsman et al., 1994; Hornung and Fritschy, 1996;
Chen et al., 2001; Beston et al., 2010; Balsor et al., 2019b) and
from more NMDARs to AMPARs (Rumpel et al., 1998; Beston
et al., 2010; Funahashi et al., 2013; Balsor et al., 2019b). Those

subunit balances also regulate a range of types of experience-
dependent plasticity including cooperative, competitive, spike-
time dependent, homeostatic and metaplasticity (Fagiolini et al.,
2004; Hensch and Fagiolini, 2005; Philpot et al., 2007; Yashiro
and Philpot, 2008; Cho et al., 2009; Gainey et al., 2009; Smith
et al., 2009; Kubota and Kitajima, 2010; Larsen et al., 2010; Levelt
and Hübener, 2012; Lambo and Turrigiano, 2013; Cooke and
Bear, 2014; Guo et al., 2017; Hensch and Quinlan, 2018). The
alignment of the bottom four features between young kittens and
human neonates suggests that the onset of vision may initiate the
maturation of some but not all experience-dependent plasticity
mechanisms in V1. The trajectories, however, differ between the
species with a range of developmental timescales for human V1
from early maturation for some features to much more prolonged
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development of other features stretching out across the lifespan.
In contrast, the features in cat V1 matured at the peak of the
critical period for ocular dominance plasticity.

Clustering of Experience-Dependent
Changes in V1 Using a Plasticity
Phenotype
In this section, we extend the phenotype workflow to clustering
V1 protein expression from the cat data set for animals reared
with different types of visual experience (Figure 6). The approach
is useful when using a data-driven approach to address questions
about experience-dependent changes in V1 because only the
protein or gene expression is used for the clustering. Here, we
illustrate the steps using protein expression data from cat V1
(three regions: central, peripheral, monocular) of animals that
had different types of visual manipulations (reverse occlusion RO,
binocular deprivation BD or binocular vision BV) to promote
recovery from early monocular deprivation (MD) (Balsor et al.,
2019b). We selected this data set because the three different
types of treatments lead to only two visual outcomes. Treatment
with either RO or BD leads to very poor visual acuity in both
eyes (Murphy and Mitchell, 1986, 1987; Duffy et al., 2015). In
contrast, merely opening the deprived eye and allowing binocular
vision can lead to the recovery of good acuity in the deprived
eye with minimal effect on the acuity of the non-deprived eye
(Murphy et al., 2015; Williams et al., 2015). Our goal for using
cluster analysis with these data was to reduce the sample space
and determine which recovery paradigms clustered with or near
normally reared animals.

This application of the plasticity features and phenotypes used
tSNE analysis to partition the data into clusters. tSNE preserves
both the global and local arrangement of the plasticity features
and is a good way to visualize clusters because it artificially scales
the distance between data points with similar patterns of features.
There are, however, many other clustering methods that could
be used for this step, and the selection of the most appropriate
clustering algorithm will depend on the structure of the data.

The Rtsne function from the Rtsne package was used to
do the analysis (Krijthe and van der Maaten, 2018). However,
Rtsne uses a new random seed each time it is run, so the
code in the Markdown Cat_tSNE_plots_Figure 7 reproduces
the plots for the tSNE analysis in Figure 7 by loading the file
cat_subcluster.csv and storing it as tsne.raw.data.
(Cat_tSNE_plots_Figure 7, section “Load relevant packages and
data files,” lines 6–108).

The following section of the R code provides an overview of
the steps for the tSNE dimension reduction and cluster analysis
of the cat recovery data.

First, the nine validated plasticity features were subset
from the data frame (merged.data_all) to remove
all of identifying information such as the cortical region,
rearing condition, or age and the new data frame
(merged.treatment.data) was used as the input to
the tSNE analysis (Figure 7A).

merged.treatment.data <-
subset(merged.data_all,

merged.data_all$Condition == 3)

### Use Rtsne function on
the subsetted data to reduce the
dimensionality of the data

tsne<- Rtsne(merged.treatment.data
[,10:ncol(merged.treatment.data)],dims
= 2, perplexity=25, verbose=TRUE,
max_iter = 5000)

### Save the object tsne$Y as
d_tsne_1 It contains two columns,
an X and a Y, for the unitless
tSNE dimensions that are stored
in a new data frame (d_tsne_1)
to be consulted for plotting.

d_tsne_1 <- as.data.frame(tsne$Y)

### Create the data frame called
d_tsne_2 that has the identifier
information and the new tsne X Y
coordinates ready for making
plots.

d_tsne_2 <- data.frame(merged.treatment.
data[,1:9],d_tsne_1)

The XY coordinates from the tSNE analysis were used as the
input to the next clustering steps. Both K-means and hierarchical
clustering algorithms require the number of clusters (k) as a
parameter. A good method for choosing the number of clusters is
to measure the within-groups sum of squares (WSS) for a range of
k, plot that information and determine the inflection point. There
were nine rearing conditions in the cat V1 recovery data (e.g.,
normal, monocular deprivation, etc.), so a range for k of 2–15
clusters was used to encompass the number of conditions.

# Calculate the WSS from the d_tsne_1
data frame to be used as the input
to the elbow analysis for
selecting the number of clusters.

wss <- (nrow(d_tsne_1)-1)∗

sum(apply(d_tsne_1,2,var))

for (i in 2:15) wss[i] <-
sum(kmeans(d_tsne_1,

centers = i)$withinss)

The optimal number of clusters was selected by fitting an
exponential decay curve to the WSS data then finding the number
of clusters corresponding to the point where the curve plateaued
(4τ) (k = 6). This approach is called the “elbow method,” where
4τ is the point of inflection, or elbow, of the curve (Figure 7B).

Next, K-means clustering for k = 6 was done on the output
(d_tsne_1) from the tSNE analysis.
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FIGURE 6 | Analysis workflow to use plasticity phenotypes in cluster analysis. The analysis workflow is shown for using the plasticity phenotypes to identify clusters
and subclusters [adapted from Balsor et al. (2019b), used with permission]. (A) The color-code for each of the nine plasticity features. The nine plasticity features
were used as the input for the tSNE analysis, and k-means clustering was applied to the transformed data. (B) The tSNE identified clusters are color-coded. (C) The
composition of the clusters was inspected by coding the rearing conditions using different colored symbols. (D) Samples from the same rearing condition and cluster
are divided into subclusters, and the strength of the pairwise correlations among the plasticity phenotypes is shown using a correlation matrix. (E) The plasticity
phenotypes for each subcluster were displayed at the ends of the dendrogram that ordered the subclusters (D).
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FIGURE 7 | Identifying clusters from plasticity phenotypes using t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-means clustering. (A) An XY
representation of tSNE transformed data. (B) The optimal number of clusters was chosen by measuring the within-groups sum of squares, and selecting the
inflection point (k = 6). (C) The six clusters are represented as different colored dots. (D) The content of each cluster was visualized for the three cortical regions
(central, peripheral, monocular) and (E) six rearing conditions (normal, MD, RO, BD, ST-BV, LT-BV). Panels (C–E) reproduced from Balsor et al. (2019b), used with
permission.

# Use kmeans to partition the data
in d_tsne_1 data into 6 clusters.

kmeans.clusters = kmeans(d_tsne_1,6)
Cluster.Number <- as.factor(kmeans.
clusters$cluster)

# Create the data frame called
d_tsne_3 that adds the cluster
identifier to the information
in d_tsne_2 (tsne XY coordinates,
treatment & region).

d_tsne_3 <- data.frame(d_tsne_2,
Cluster.Number)

The clusters were identified in the tSNE plot with different
colors (Cat_tSNE_plots_Figure 7 section “Cluster-Coded: Create
a tSNE scatter plot where points are colored according to their
cluster membership.”, lines 165–191) (Figure 7C). Some clusters
(green and yellow) were spatially separated on the tSNE plot,
while others (e.g., orange and blue) were adjacent.

Other characteristics of the data (e.g., V1 region, treatment
condition) were also used to interrogate the clusters
(Figures 7D,E). First, the samples in the tSNE XY plot
were coded by the V1 region (Cat_tSNE_plots_Figure 7 section
“Region-Coded: Create a tSNE scatter plot.”, lines 192–216)
(Figure 7D). Then the samples were coded by the treatment
condition and V1 region (Cat_tSNE_plots_Figure 7 section
“Condition- & Region-Coded: Create a tSNE scatter plot.”, lines
217–247) (Figure 7E).

Cluster Composition and Subcluster
Identification
The number of samples in each cluster ranged from 5 (magenta)
to 38 samples (orange). Each sample was annotated using
the visual cortical region (central, peripheral, or monocular)
(Figure 7D) and rearing condition (Figure 7E) to analyze cluster
composition and determine if the clustering reflected one of those
parameters. For example, cluster 2 contained samples from only
one rearing condition (reverse occlusion), and cluster 1 contained
almost all of the normally reared cases. Still, it also had samples
from other rearing conditions. Thus, this step identified clusters
and provided some evidence that the rearing condition was
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driving changes in the plasticity phenotypes. However, the tSNE
clustering did not reveal which features from the phenotypes
separated the samples into different clusters or grouped them into
the same cluster.

Cluster composition was done by annotating each sample in
the cluster using the sample ID (e.g., visual cortical region, and
rearing condition). That step identified the rearing conditions
and V1 regions that were partitioned into the six tSNE clusters
and revealed subclusters based on the rearing condition and
cortical regions (Supplementary Table 1).

A final note: In this workflow, dimensionality reduction
and feature selection were performed before tSNE analysis
and clustering. Although this is a common approach for
analyzing high-dimensional data in neuroscience, it is important
to remember that PCA preserves features with variance that
is aligned with the orthogonal dimensions. Thus, features
with more subtle but important variance away from the PCA
dimensions will not be included in subsequent clustering
(Chang, 1983).

Exploring Subclusters Using the
Plasticity Phenotype
In this section, we describe a method for analyzing and
visualizing the subclusters defined by the rearing condition
and V1 region using the features that comprise the
plasticity phenotypes.

The nine plasticity features and tSNE results were combined
in the file cat.correlation.csv that was loaded into the
Markdown Cat_CorrHeatmap_Figure 8 (lines 75–111). Those
data were used to calculate a Pearson’s correlation matrix using
the subclusters (Cat_CorrHeatmap_Figure 8 section “Exploring
Subclusters using Plasticity Phenotypes – Create Heatmap,” lines
131–200) (Figure 8). The order of the subclusters was determined
using a dendrogram found by computing the distances for the
correlation matrix and using that as the input to the hclust
function illustrated in the following example code.

distance.row <- dist(as.matrix(CorMat),
method = "euclidean")

cluster.row <- hclust(distance.row,
method = "complete")

# Transform "cluster.row" into a
dendrogram which is stored in "dd".

dd <- as.dendrogram(cluster.row)

The correlation matrix for the plasticity phenotypes showed
the strength of similarity or dissimilarity among the subclusters
(Figure 8). Here, the surrounding dendrogram ordered some
of the rearing conditions (e.g., LT BV) on the same branch
as the Normal subcluster, while other conditions (e.g., BD)
were far from the Normal branch. This analysis showed which
subclusters had similar plasticity phenotypes but did not clarify
if the similarity was based on the entire pattern of the plasticity
phenotype or a subset of plasticity features.

Constructing and Visualizing the
Plasticity Phenotypes for the Recovery
Treatment Subclusters
In the last step for this workflow, we describe combining
the plasticity phenotypes and hierarchical ordering of the
subclusters to visualize the impact of the different types of visual
recovery treatments (Figure 9). This step allowed for the direct
comparison of the individual features as well as the complete
plasticity phenotype for each subcluster.

Figure 9 shows the visualizations of the plasticity phenotypes
for each subcluster and the identification of all the features that
were over- or under-represented relative to normal. The panels in
Figure 9 were made using code in the Cat&Human_Markdown
section “Cat tSNE Analysis” (lines 1046–1426).

The subcluster labels and V1 regions for each sample were
merged with the tsne.raw.data (Cat&Human_Markdown
section “Cat tSNE Analysis,” lines 1052–1166). Then the median
was calculated for each feature in the subclusters, and those
were stored (cat.subcl) to be used for plotting the plasticity
phenotypes for all of the subclusters (Cat&Human_Markdown
section “Cat tSNE Analysis” lines 1174–1182).

cat.subcl_0.5 <- aggregate(tsne.
processed.4 [,NewFeatCol],list(tsne.
processed.4$Cluster.Name2), median)

### Store "cat.subcl_0.5" in
"cat.subcl". This was done to avoid
potentially overwriting the contents
of "cat.subcl_0.5".

cat.subcl<- cat.subcl_0.5

Next, the plasticity phenotypes were visualized for the
subclusters (Cat&Human_Markdown section “Cat: Constructing
and Visualizing the Plasticity Phenotypes for the Subclusters”
lines 1190–1275) (Figure 9B).

plasticity_phenotype(df_list =
list(cat.subcl[,-1]),

# Median values data frame
first_index_column = 4,

# Index number of first index column
in "cat.subcl" (indexes begin at 0)

group_label = "\nSubclusters",
# X-axis labels

translation = ’local’)
# Desired colour-scale

Finally, an over-representation analysis (ORA) was used
as a way of identifying features that might differ from
the normal cluster. We used the ORA approach because
it is a simple analysis that can be applied when a small-
N design is used to discover features or rearing conditions
of interest for follow-up studies. The adult fluoxetine study
presented in the next section uses a larger-N design, and we
use bootstrapping to estimate the uncertainty of the feature
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FIGURE 8 | Visualizing pairwise correlations between recovery treatment subclusters. The matrix shows the strength of correlation (color) between the pairs of
subclusters identified in the previous step [reproduced from Balsor et al. (2019b), used with permission]. Subclusters were ordered using hierarchical clustering to
position subclusters with stronger correlations nearby in the matrix. This reordering identified five groups based on the height of the dendrogram branches and
marked by different colored lines in the surrounding dendrogram. The solid black lines in the matrix mark the groupings of subclusters.

estimates and identify the ones that are likely to differ
from normal.

A custom function in the PlasticityPhenotypes package
was used to do an ORA and create the visualization
(ORA_phenotype) (Cat&Human_Markdown section “Create
an ORA_phenotype.”, lines 1356–1426) (Figure 9).

The ORA_phenotype function simulated the distributions
of each feature in the normal cluster and identified the 5th

and 95th percentile values. Those values were compared with
the features in the other clusters to determine over- or under-
represented features. Here, we present two examples using the
over-representation analysis. In the first example, a feature
was coded as over-represented (yellow) if the 25th percentile
of the subcluster feature was greater than the 95th percentile
of the normal distribution and under-represented (purple)
if the 75th percentile of the feature was less than the 5th

Frontiers in Cellular Neuroscience | www.frontiersin.org 18 August 2020 | Volume 14 | Article 245

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00245 August 27, 2020 Time: 12:15 # 19

Balsor et al. Plasticity Phenotypes to Classify V1

FIGURE 9 | Analysis of plasticity phenotypes for the recovery treatment subclusters. (A) The color-code for each of the nine plasticity features. (B) The plasticity
phenotypes for the 13 subclusters were ordered using the dendrogram that surrounds the correlation matrix in Figure 8. The rearing conditions (Normal, MD, RO, LT
BV, ST BV) are described in Table 1. (C) Over-representation analysis (ORA) for each of the features in the treatment subclusters. With the first ORA (25–75%) bars
were coded as over-represented (yellow) when the 25th percentile of the subcluster feature was greater than the 95th percentile of the normal distribution and
under-represented (purple) when the 75th percentile of the feature was less than the 5th percentile of the normal distribution. That rule corresponds with the size of
the boxplots in Figure 10. For the second ORA (D), a more conservative rule was applied that used the 10th and 90th percentile to identify over- or
under-represented features in the treatment subclusters. Panel A is adapted from Balsor et al. (2019b), used with permission.
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percentile of the simulated distribution (Figure 9C). That rule
corresponds with the size of the boxplots in Figure 10. Second,
a more conservative rule was applied that used the 10th and
90th percentile of the features in the treatment subclusters
to identify over- or under-represented features (Figure 9D).
The comparison rule (e.g., 25–75% or 10–90%) can be passed
to the function to evaluate different levels of uncertainty for
describing the results.

# Create an ORA_phenotype using the
object, "tsne.processed.4[,2:10]"
with percentile values:
"c(0.10,0.90)".

ORA_phenotype(features_df_row =
tsne.processed.4[,2:10],

# Data frame for bootstrap analysis
condition_list = as.list(
c(’Normal 1\n C,P,M’,
’LT BV 1\n C,P,M’,
’MD 1\n P,M’,
’LT BV \n P,M’,
’LT BV 4\n P,M’,
’RO 2\n C,P,M’,
’ST BV 3\n C,P,M’,
’MD 3\n C,P’,
’ST BV 5\n P’,
’ST BV 1\n C,P,M’,
’LT BV 6\n P’,
’BD 3\n C,P,M’,
’BD 6\n P’)),

# List of subclusters as they appear
in row names of "features_df_row"

reference_group = ’Normal 1\n
C,P,M’,

# Name of reference group as it
appears in the row names of
"features_df_row"

group_label = "\nSubclusters",
# X-axis label

percentiles = c(0.10,0.90))
# Thresholds to use for experimental
subclusters when performing
ORA against

This example highlights the workflow’s application to a small-
N approach where multiple proteins were measured for each
animal and analyzed as part of a discovery process. This design
can be useful when animal welfare is an issue, or the samples
are rare and valuable (e.g., human postmortem tissue) (Editorial.,
2020). The results are descriptive but still provide valuable
information about treatment conditions that warrant further
investigation. High-dimensional analyses are particularly useful
for this type of small-N designs because the clustering algorithms
borrow strength from the multiple variables to partition cases
into clusters. In the current example, that strength supported
partitioning of the rearing conditions into different subclusters,

and the plasticity phenotypes for the subclusters helped to
describe the neurobiological differences among the conditions.

Interpretation of the Plasticity Phenotype
and Cluster Analysis for Classifying
Experience-Dependent Changes in V1
In addition to the plasticity phenotype visualization for the
recovery data set (Figure 9), boxplots were made to facilitate
understanding how each of the nine features varied by
subcluster (Cat&Human_Markdown section “Cat: Constructing
and Visualizing the Plasticity Phenotypes for the Subclusters,”
lines 1288–1347) (Figure 10).

phenotype_boxplots(feature_df =
tsne.processed.5[,-ncol(tsne.
processed.5)],

# Boxplot data frame
phenotype_cols = tsne.cols,

# Phenotype colour-code data frame
first_index_column = 4,

# Index number of first index column
in "tsne.processed.5[,-ncol(tsne.
processed.5)]" (indexes begin at 0)

group_label = "\nSubclusters",
# X-axis label

point_size = 0.7,
# Desired size of geom_jitter points

point_alpha = 0.5,
# Desired transparency of geom_jitter
points

aspect_ratio = 9/10)
# Desired aspect ratio of each boxplot

Together, the visualizations presented in Figures 9, 10 help to
describe the features that contributed to partitioning the rearing
conditions into different subclusters. For example, RO and BD
were partitioned into separate subclusters even though the two
treatments lead to extremely poor acuity in both eyes (Murphy
and Mitchell, 1986, 1987; Duffy et al., 2015). The red bands in
the BD subcluster phenotypes describe the over-representation
of GABAARs compared with GlutRs, and more GABAAα1 in
particular. In contrast, the green bands in the RO phenotype
point to over-representation of GlutRs compared with GABAARs
and more GluN2A and GluA2. A notable finding was that even
though the BV treatments clustered near the normal, none of the
treatments returned all of the plasticity features to normal. Thus,
even subtle differences in a feature contributed to partitioning the
conditions into subclusters.

Studying Fluoxetine-Enhanced Plasticity
in Adult Rat V1 Using a Plasticity
Phenotype
In this example, we tested the workflow for analyzing
experience-dependent changes in V1 using data from our
study examining the effects of fluoxetine administration on
the expression of glutamatergic and GABAergic proteins in
adult rats (Beshara et al., 2015). Fluoxetine has been used

Frontiers in Cellular Neuroscience | www.frontiersin.org 20 August 2020 | Volume 14 | Article 245

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00245 August 27, 2020 Time: 12:15 # 21

Balsor et al. Plasticity Phenotypes to Classify V1

FIGURE 10 | Boxplots showing the expression levels for each feature and recovery treatment subcluster. The boxplots show the nine plasticity features (A–C,
protein sums) (D–I, indices) in cat V1 of the recovery treatment subclusters. The color of each boxplot was set to match the corresponding feature bar in the cat
recovery plasticity phenotypes (Figure 9B). Adapted from Balsor et al. (2019b), used with permission.

to reinstate juvenile-like plasticity to adult rat V1 and
promote visual recovery (Vetencourt et al., 2008). However, the
mechanisms that support fluoxetine-enhanced plasticity remain
poorly understood. In our previous study, we measured the
expression of 12 synaptic proteins and assessed changes in
V1 of adult rats that received either fluoxetine alone, MD
alone or a combination of both treatments (Beshara et al.,
2015). Figure 11 illustrates the application of the current
workflow to those data showing the PCA findings for the
data from the rat fluoxetine study. The analyses shown in
Figure 11 follow the same steps described for Figure 2 in the

previous section, “Constructing Plasticity Phenotypes to Describe
V1 Development.”

The R code for this example is found in the Supplementary
Material (Rat_Markdown and Rat_CorrHeatmap).

The scree plot from the PCA for the rat fluoxetine data showed
that the first four PC dimensions explained >80% of the variance
in the data (Rat_Markdown, section “Rat Analysis,” lines 86–
157) (Figure 11A). Therefore, the basis vectors and cos2 for
those four dimensions (Rat_Markdown, section “Rat Analysis,”
lines 158–239) were interrogated to identify candidate plasticity
features (Figures 11B–F). Here, we applied the three heuristics
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described in the section “Heuristics to Identify Candidate
Plasticity Features.” Those heuristics include using cos2 and the
basis vectors to select collections of proteins that account for the
largest amount of the variance, a priori pairs of proteins known
to regulate experience-dependent plasticity, and novel pairs of
proteins with large weights pointing in opposite directions on
a basis vector. That process identified nine candidate features
that were then validated by determining the correlation between
the basis vectors and the candidate features (Figure 11G). The
significant features were identified by color-coding the cells green
for positive and red for negative correlations (Rat_Markdown,
section “Rat Analysis,” lines 240–355).

The nine plasticity features were used to construct a new
plasticity phenotype for the rat fluoxetine data and compare
among the four rearing conditions (Rat_Markdown, section “Rat
Phenotype,” lines 401–424) (Figure 12A).

plasticity_phenotype(df_list =
list(meds[,-1]),

# Median values data frame
first_index_column = 6,

# Index number of first index
column in "meds" (indexes begin at 0)

group_label = "\nRearing Conditions",
# X-axis label

translation = ’absolute’)
# Desired colour-scale

Figure 12 shows the rat fluoxetine plasticity phenotypes for
the four conditions and captures the findings from a large set
of data that was originally presented using 16 separate graphs
(Beshara et al., 2015). Interpretation of the plasticity phenotype
visualization was facilitated by including boxplots for each feature
(Figure 13) (Rat_Markdown, section “Create Rat Boxplots,”
lines 427–498).

phenotype_boxplots(feature_df
= merged.data2[,c("Condition",
NewFeatsCol2)],

# Boxplot data frame
phenotype_cols = rat.cols,

# Phenotype colour-code data frame
max_sum = c(1.5,
max(merged.data2$’VGLUT\n’),
max(merged.data2$’Receptors Sum\n’),
max(merged.data2$’Scaffolding
Sum\n’),2),

# Maximum Y-axis values for feature
sums’ boxplots

group_label = " ",
# X-axis label

first_index_column = 6,
# Index number of first index column in
"merged.data2[,c("Condition",
NewFeatsCol2)]" (indexes begin at 0)

point_size = 1.5,
# Desired size of geom_jitter points

point_alpha = 1,

# Desired transparency of geom_jitter
points aspect_ratio = 5/7,

# Desired aspect ratio of each boxplot
text_size = 8)

# Desired X- & Y-axis text size for
each boxplot

The Bootstrap Analysis of the features (Rat_Markdown,
section “Rat Plasticity Phenotype Bootstrap Analysis” lines 499–
535) helped to identify that MD caused the most change from
normal adult rats (Figure 12D). Five of the nine features were
different from normal.

bootstrap_phenotype(features_df_row =
NewFeatures[,NewFeatsCol],

# Data frame for bootstrap analysis
condition_list = c(
’ normal ’,
’ 1wk MD ’,
’ flx + 1wk MD ’,
’ flx ’),

# List of experimental conditions
as they appear in row names of
"features_df_row"

reference_group = ’ normal ’,
# Name of reference group as
it appears in the row names of
"features_df_row"

group_label = "\nRearing Conditions")
# X-axis label

For example, the features showed that MD increased VGLUT1
expression (darker gray bar) but reduced the amount of the
receptor scaffolding proteins (PSD-95, Gephyrin) (lighter gray
bar) (Figures 12, 13D). Also, the bottom three features of the
MD condition shift to relatively more GluN2A, receptor subunits,
and VGLUT1 that resulted in greener colors for those features
(Figures 12, 13G–I).

The phenotype and bootstrap analyses helped to identify the
effects of fluoxetine because all of the conditions and features
were visualized in one figure. After fluoxetine +1wk of MD
only one feature, the GluN2A:GluN2B index was different from
normal, and the other four features changed by MD were not
different from normal (Figures 12A,B, 13G). Thus, the addition
of fluoxetine with MD resulted in the normalization of the
majority of the plasticity features.

Finally, fluoxetine alone changed 3 of the 9 features, including
reduced VGLUT1 (Figures 12A,B, 13B), and shifts to relatively
more GluN2A (Figure 13G), and VGAT (Figure 13I) than
normal. This visualization of all nine features in the phenotype
helped to capture the fluoxetine-driven changes in favor of
GABAergic mechanisms that have been described previously
(Vetencourt et al., 2008).

To extend the high dimensional analysis of the rat fluoxetine
data, we used the nine features from all of the animals
(n = 28) as the input to an unsupervised hierarchical clustering
algorithm (Ward.d2) described in a previous section (“Clustering
of Experience-Dependent Changes in V1 Using a Plasticity
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FIGURE 11 | Using principal component analysis to identify candidate plasticity for rat fluoxetine data. (A) The explained variance captured by each principal
component after the singular value decomposition (SVD). The first four principal components captured 50, 19, 13, and 10% of the variance totaling >80% and thus
representing the significant dimensions. (B) The strength (circle size) and direction (blue-positive, red-negative) of the correlation (R2) between each protein and the
PCA dimensions. (C–F) The basis vectors for dimensions 1–4 showing the amplitude of each protein in the vector. (G) Correlations between the plasticity features
(columns) identified using the basis vectors (see section “Results”) and PCA dimensions 1–4. Filled and labeled cells are significant, Bonferroni corrected correlations
(green = positive, red = negative).
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FIGURE 12 | Plasticity phenotypes for rat fluoxetine data. (A) The color-code for each of the nine plasticity features identified for the rat fluoxetine study. (B) The
color-coded plasticity phenotypes for each of the conditions in rat fluoxetine data (normal, 1wk MD, Fluoxetine +1wk MD, Fluoxetine). (C) The legend for the
significance phenotype (D) where features were colored red if it was > normal and blue if it was < normal (p < 0.05). Significant differences were identified by
color-coding the plasticity feature band. (D) The plasticity features for treatment groups that differed from normal (B) visualized as a stack of red/blue horizontal bars.

Phenotype”). The R code for this example is found in the
Supplementary Material (Rat_CorrHeatmap). Briefly, all pairwise
Pearson’s correlations were calculated between the 28 animals
and the order of the animals in the correlation matrix was
determined by the surrounding dendrogram (Rat_CorrHeatmap,
section “Studying Fluoxetine-enhanced Plasticity in Adult Rat
V1. . .,” lines 195–247).

The resulting correlation matrix highlighted four clusters in
the rat fluoxetine data; however, the clusters did not merely
recapitulate the four rearing conditions (Figure 14). The largest
cluster had 12 animals that were from all of the rearing conditions
suggesting that there is some overlap among the four conditions.
Different rearing conditions dominated the other three clusters.
The next clusters had 5 animals, and 4 were reared with 1wk of
MD. The second-largest cluster had 9 animals, and 5 were reared
with fluoxetine alone. Finally, there was a small cluster with just
2 animals that had fluoxetine combined with MD. Thus, using
the plasticity features as the input to a cluster analysis clarified
that 1wk MD and fluoxetine alone were most likely to shift the
pattern away from normal.

DISCUSSION

Many neural proteins underpin the complex set of processes
that support experience-dependent plasticity in V1. In this

paper, we have provided a step-by-step primer using R code to
illustrate a data-driven approach for combining measurements
from multiple plasticity proteins to construct and use a plasticity
phenotype for studying V1. The examples highlight the steps
for rebranding protein measurements into plasticity features and
combining those features into a phenotype. Thus, the plasticity
phenotype can be thought of as a collection of biomarkers. We
illustrated the use of plasticity phenotypes to classify tissue-
level changes in V1 for different ages, rearing conditions, and
species including cat, rat, and human. We also showed that
the phenotype visualization tool helps synthesize large amounts
of data into a single figure for exploring development and
plasticity in V1. For example, the comparison of cat and human
V1 development identified some features that follow similar
postnatal patterns, while others have unique trajectories in
humans. Thus, this application of plasticity phenotyping has the
potential to guide discoveries about the experience-dependent
development of V1 that can facilitate translation from animal
models to humans.

We used the term “phenotype” to study a set of synaptic
proteins that are known to regulate plasticity in V1 based on
visual experience (Fagiolini et al., 2004; Hensch and Fagiolini,
2005; Philpot et al., 2007; Yashiro and Philpot, 2008; Cho et al.,
2009; Gainey et al., 2009; Smith et al., 2009; Kubota and Kitajima,
2010; Larsen et al., 2010; Levelt and Hübener, 2012; Lambo
and Turrigiano, 2013; Cooke and Bear, 2014; Guo et al., 2017;
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FIGURE 13 | Boxplots of features included in the plasticity phenotypes for rat V1 fluoxetine treatment groups (Figures 12B,D). The boxplots show the protein sums
(A–E) and index values (F–I) for each treatment group. The color of each boxplot was the same as the corresponding feature bar in the plasticity phenotype
(Figure 12B).

Hensch and Quinlan, 2018). Thus, the plasticity phenotype can be
used to classify the state of plasticity mechanisms in V1. The
term plasticity phenotype has been used previously to describe
the waxing and waning of plasticity-related gene expression in
V1 (Smith et al., 2019). Here, we applied a quantitative approach
to phenotyping, and the traits observed were plasticity-related
proteins measured by Western blotting that were rebranded into
plasticity features (sums and indices). The collection of features
was used to construct an extended phenotype (Dawkins, 1982) and
infer V1 plasticity based on the measured features. For example,
the GluN2A:GluN2B balance is known to regulate various aspects
of experience-dependent plasticity in V1 (Smith et al., 2009).

Thus, observing that balance describes a characteristic of V1
plasticity that contributes to an overall plasticity phenotype.

The paper’s examples show the application of a phenotyping
approach to different experimental designs for discovery or
hypothesis-testing of experience-dependent plasticity in V1.
Exploratory small-N studies that use rare and valuable tissue
samples, such as the cat and human V1 data sets, can apply the
plasticity phenotyping approach to narrow in on new aspects of
V1 development and generate hypotheses for testing in future
studies. The high dimensional analyses are particularly useful
for small-N discovery studies because the algorithms borrow
strength across the multiple measurements of proteins or genes
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FIGURE 14 | Visualizing pairwise correlations between treatments in the rat. The matrix shows the strength of correlation (color) between individual animals in each
treatment group. Treatment groups were ordered using hierarchical clustering, and the resultant dendrogram positioned similar groups near one another. This
reordering identified four clusters based on the height of the dendrogram branches, and the strength of the Pearson’s R correlations. The solid black lines in the
matrix mark these four groups. The color at the end of each branch in the dendrogram indicates the rearing condition of the case: normal-black, 1wk MD-gray,
fluoxetine + 1wk MD-red, fluoxetine-green.

to increase the sensitivity and help estimate differences. The
phenotyping approach also helps with larger-N designs like the
rat fluoxetine study because the visualization unifies the results
of many comparisons, thereby capturing complex changes in one
figure that can be used to formulate new theories.

The workflows described in the paper were developed to help
with interpreting complex data sets that include the expression of
multiple proteins or genes at different ages, rearing conditions or
species. Aspects of the workflows are similar to other approaches

used to study V1 that applied sequential steps beginning with
dimension reduction (e.g., PCA, tSNE) and then cluster analysis
(e.g., Carlyle et al., 2017; Luo et al., 2017). The new workflows
extend previous studies by presenting the steps to build, visualize,
and compare plasticity phenotypes. Those steps can facilitate
meaningful interpretation of intricate patterns of protein or
gene expression in V1. For example, the analysis of the rat
fluoxetine data set synthesized 16 graphs in the original paper
(Beshara et al., 2015) down to just one figure. Furthermore, the
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visualization of plasticity phenotypes for the 4 rearing conditions
highlighted the substantial change in adult rat V1 caused by MD
and that adding fluoxetine normalized all of the features except
the GluN2A:GluN2B balance.

The Plasticity Phenotype Facilitates
Translation
In addition to helping understand complex data, the plasticity
phenotyping approach can enhance the translation of findings
from model systems to humans. The example used in the
paper compared cat and human V1 development because the
cat is one of the model systems that laid the foundation for
understanding experience-dependent changes in V1 and visual
perception (Wiesel and Hubel, 1965a,b; Hubel and Wiesel, 1970).
Those early studies included showing that NMDA receptors and
GABAergic mechanisms participate in regulating that plasticity
in V1 (Kleinschmidt et al., 1987; Gu et al., 1989; Hensch
et al., 1998). The cat continues to be a helpful model for
translation, especially for studies of development and amblyopia
because it has a prolonged developmental period and good visual
perception (Cnops et al., 2004, 2008; Beston et al., 2010; Duffy and
Mitchell, 2013; Duffy et al., 2015; Laskowska-Macios et al., 2015,
2017; Williams et al., 2015; Balsor et al., 2019b; Mitchell et al.,
2019). Here, we took advantage of that extended development
and combined it with measurements of proteins and features
that have been extensively studied in mouse models showing
how they regulate V1 plasticity. The comparison revealed some
similarities but other significant differences between the species.
For the cat, the development of plasticity features proceeded in
concert so that the whole phenotype reached a maximum at the
height of the critical period for cat V1 (4–6 weeks in the cat). In
contrast, the plasticity phenotypes for human V1 development
encompassed multiple developmental timescales with collections
of features maturing at different ages, from early changes during
the neonatal period to a series of prolonged trajectories that
cover the lifespan.

Next Steps for Extending the Plasticity
Phenotyping Approach
Since the current workflows build on established methods for
high-dimensional data analysis, it is possible to adapt them to use
other algorithms by exchanging a few lines in the R code. As new
plasticity mechanisms are identified, those can be explored to find
novel associations between visual plasticity and V1 neurobiology.
The advent of single-cell transcriptomics using RNA sequencing
to study brain development has added another layer of
complexity. However, those very high-dimensional data studies
have spurred the development of new analytical tools to discover
gene markers for cell phenotypes (Aevermann et al., 2018). There
is little doubt that further development of high-dimensional
analyses will be necessary for decomposing the direct and indirect
effects of changing patterns of plasticity proteins and genes on
visual development. Adding measurements of visual function
to the collection of features is a natural next step for this
approach. However, vision and the neurobiology that underpins
it are dynamic systems and changes at the neurobiological level

may occur days, weeks, or months before vision changes are
manifest. Thus, combining dynamic properties of molecular
features with visual, physiological and anatomical measurements
would capture multiple modalities and timescales to provide a
richer phenotype for describing visual system plasticity.

Feature Selection: Supervised Versus
Unsupervised
The supervised approach to feature selection used in this study
worked well with the example data sets, and it facilitated
classifying patterns of changes in V1 during development and
after abnormal visual experience. The approach took advantage
of prior knowledge about the function of the plasticity proteins
when selecting the features, and that knowledge facilitated
making inferences about the plasticity state of V1. However, this
approach needs to be tested with other data sets, especially in
model systems, where the molecular mechanisms underpinning
the features can be directly manipulated. Additional work is
necessary to develop unsupervised methods for identifying
features and transforming data. These changes will be especially
important when working with very high dimensional data sets
containing hundreds or thousands of proteins or genes and
looking for new suites of plasticity features that may have a
role in V1 plasticity. Other methods for solving the feature
selection problem, such as minimum redundancy maximum
relevance (mRMR) (Ding and Peng, 2005) or random forest
machine learning (Aevermann et al., 2018), may be helpful
for automatic annotation of patterns in the data. Finally, the
public knowledgebase Synaptic Gene Ontologies (SynGO), which
describes the function of synaptic genes, can be used to augment
an unsupervised approach by selecting synaptic genes or proteins
that match a term such as “plasticity” (Koopmans et al., 2019).

Similarly, an exploratory process and manual inspection of
clusters were used in the clustering workflow to select the
k-means parameters for the number of clusters. Estimating the
number of clusters in a data set is challenging; however, methods
such as the gap statistic can be added to the workflow for choosing
the number of clusters (Tibshirani et al., 2001). Additionally,
recent approaches to clustering, such as robust (weighted)
sparse k-mean clustering, have the advantage of simultaneously
identifying clusters and informative features for partitioning the
data that can be used in feature selection (Brodinová et al.,
2019). Finally, growth mixture models for cluster analysis of
longitudinal data may be more suitable for data analysis from
studies that include a series of sequential measurements of
cortical development (Wei et al., 2017).

CONCLUSION

The plasticity phenotypes described in this primer used the
expression of a set of proteins to classify the neurobiological
milieux of V1 during development and experience-dependent
plasticity. In the long-term, the value of a phenotyping approach
will be to show the composition of a set of observable molecular
mechanisms that regulate experience-dependent plasticity. Here,
the plasticity phenotype was used as an exploratory tool, but in
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future studies, it could be used to test which high-dimensional
patterns of protein or gene expression are necessary to support
the recovery of good vision. Those studies will require additional
molecular and imaging tools to manipulate the expression
and follow the dynamics of changes in vivo. Overall, the
development of a phenotyping approach holds the potential of
establishing a standard vocabulary with a formal ontology of
plasticity features and phenotypes that can be used to classify
things like developmental stages, critical periods and disease-
related changes in V1.
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