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Background. ,e 5-year overall survival rate of ovarian cancer (OC) patients is less than 40%. Hypoxia promotes the proliferation
of OC cells and leads to the decline of cell immunity. It is crucial to find potential predictors or risk model related to OC prognosis.
,is study aimed at establishing the hypoxia-associated gene signature to assess tumor immunemicroenvironment and predicting
the prognosis of OC.Methods. ,e gene expression data of 378 OC patients and 370 OC patients were downloaded from datasets.
,e hypoxia risk model was constructed to reflect the immune microenvironment in OC and predict prognosis. Results. 8 genes
(AKAP12, ALDOC, ANGPTL4, CITED2, ISG20, PPP1R15A, PRDX5, and TGFBI) were included in the hypoxic gene signature.
Patients in the high hypoxia risk group showed worse survival. Hypoxia signature significantly related to clinical features and may
serve as an independent prognostic factor for OC patients. 2 types of immune cells, plasmacytoid dendritic cell and regulatory
Tcell, showed a significant infiltration in the tissues of the high hypoxia risk group patients. Most of the immunosuppressive genes
(such as ARG1, CD160, CD244, CXCL12, DNMT1, and HAVCR1) and immune checkpoints (such as CD80, CTLA4, and CD274)
were upregulated in the high hypoxia risk group. Gene sets related to the high hypoxia risk group were associated with signaling
pathways of cell cycle, MAPK, mTOR, PI3K-Akt, VEGF, and AMPK. Conclusion. ,e hypoxia risk model could serve as an
independent prognostic indicator and reflect overall immune response intensity in the OC microenvironment.

1. Introduction

Ovarian cancer (OC) is characterized by relatively high
incidence, high mortality rate, and poor prognosis [1, 2].
Poor differentiation of tumor, higher stage of disease, the
presence of residual disease after cytoreductive surgery,
older age, smoking, excessive weight, and lack of physical
activity are associated with the poor prognosis of OC [3–7].
While the majority of patients initially respond well to
chemotherapy, some patients relapse and become chemo-
resistant [8, 9]. ,erefore, the identification of potential
predictors that improve the prognosis for women diagnosed
with OC may have clinical importance.

Under hypoxic conditions, tumor cells adapt by gen-
erating energy in oxygen-independent ways by inducing the

expression of genes involved in tumor progression [10].
Additionally, hypoxia can increase the resistance to radio-
therapy and chemotherapy and lead to the decline of cell
immunity [11–13]. Moreover, hypoxic environment is sig-
nificantly related to the poor prognosis in patients with OC
[14]. Up to now, the detailed mechanisms by which hypoxia
regulates the status of OC cells resulting in physiological
changes remain unclear. Hence, exploring the effect of
hypoxia on OC may offer opportunities for potential
therapeutic purposes. Nowadays, cancer immunotherapy
can target the cells of the immune system [15]. A detailed
understanding of the interactions between cancer, hypoxia,
and the immune system may be vital for the recognition of
potential new immunotherapeutic strategies and targets for
OC patients. In this study, we tried to use gene expression
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data to develop a hypoxia risk model to predict the immune
microenvironment in OC patients.

2. Materials and Methods

2.1. Dataset Sources and Preprocessing. Firstly, the RNA
sequencing data for gene expression (FPKM value) and
clinical information were downloaded from UCSC Xena in
,e Cancer Genome Atlas (TCGA) dataset as a training
cohort. ,e FPKM value was then converted to a transcript
of millions per kilobase (TPM) value. Secondly, the gene
expression data were downloaded from GSE17260 and
GSE32062 datasets in the Gene Expression Omnibus (GEO)
database as a validation set. Patient characteristics of the
above three cohorts are shown in Table 1. ,e average value
of multiple probes corresponding to the same gene was used
as its expression quantity to obtain the gene expression
matrix file. ,e “SVA” software package in R language was
used for batch normalization of expression data to obtain a
standardized gene expression matrix file. ,e detailed

information of the above datasets is shown in Table 2. A list
of hypoxia-related genes was obtained from Hallmark gene
sets [16] of the Molecular Signatures Database. Totally, 191
genes were included, all of which responded to low oxygen
levels.

2.2. Construction and Verification of Hypoxic Gene Signature.
,e analysis method was referred to the previous literature
[17]. In the training cohort, the prognosis-related hypoxic
genes were identified by univariate Cox regression analysis
and lasso regression analysis. p< 0.01 was considered sta-
tistically significant. ,e hypoxic gene signature for pre-
dicting the prognosis of OC patients was constructed
through Cox and lasso regression analyses by using the
“glmnet” software package in R language. In the analysis, the
lasso penalty was applied. At the same time, shrinkage and
variable selection were taken into account. ,e composition
of the final gene signature was selected to generate the risk
score based on the following formula:

risk score � (coefficient gene1 × expression of gene1) +(coefficient gene2 × expression of gene2) + · · ·

+(coefficient geneN × expression of geneN).
(1)

,e cases were divided into two groups (high risk and
low risk) based on the risk score median. In addition, the
same formula was used to calculate the risk score in the
validation set.

2.3. Survival Analysis. Overall survival (OS) was compared
between the high hypoxia risk group and the low hypoxia
risk group via Kaplan–Meier analysis. ,e multivariate Cox
regression analysis was used to determine risk score as an
independent risk factor for OS in OC.,e receiver operating
characteristic (ROC) curve was generated to validate the
accuracy of the risk model in predicting the patients’ OS via
the “timeROC” software package in R language.

2.4. Gene Set Enrichment Analysis (GSEA). Underlying
mechanisms were studied through gene set enrichment
analysis (GSEA) [18] with the Java program in the TCGA
dataset. ,e adjusted p value was calculated by using the
method of Benjamini–Hochberg false discovery rate (FDR).
,e FDR value of ≤0.05 of the enriched gene set was con-
sidered to be statistically significant.

2.5. Estimation of Tumor ImmuneMicroenvironment (TIME)
Cell Infiltration. ,e single-sample gene set enrichment
analysis (ssGSEA) algorithm was used to quantify the rel-
ative abundance of TIME cell infiltration in each OC sample.
,e gene set for marking each TIME infiltration immune cell
type was obtained from the previous study [19, 20]. ,e
enrichment scores (calculated by ssGSEA) were used to
represent the relative abundance of each TIME infiltrating
cell in each sample. ,e immune score, matrix score, purity

of tumor, and ESTIMATE score were calculated [21]. ,e
violin plot and boxplot were used to compare the levels of
immune cell infiltration and immune score between the high
and low hypoxia risk groups.

2.6. Expression Analysis of Genes �at Negatively Regulated
the Cancer Immune Cycle. Cancer immune cycle describes a
cycle of processes involved in the eradication of cancer by
the immune system [22]. In this study, the gene signature
was downloaded from the Tracking Tumor Immunophe-
notype website [23] to study the gene expression that
negatively regulated the cancer immune cycle between the
high and low hypoxia risk groups.

2.7. Analysis of Immune Checkpoint and Somatic Mutation.
To further clarify the potential association between TIME
hypoxia and clinical immunotherapy, the expression of 6
immune checkpoints including PDCD1 (PD1), CD274
(PDL1), PDCD1LG2 (PDL2), CTLA4, CD80, and CD86
were analyzed in the high hypoxia risk group and low
hypoxia risk group. In addition, somatic mutation analysis
was performed to identify mutation status in the high and
low hypoxia risk groups. ,e somatic mutation data of OC
patients were downloaded from the TCGA dataset. ,e
numbers of variant types and classifications were visualized
with Oncoplot.

2.8. In Vitro Expression Analysis of Hypoxic Gene Signature.
In order to study the expression of hypoxic gene signature at
the mRNA level, the RT-qPCR was performed in tissue
samples. Totally, 5 patients with OC were enrolled. ,e
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inclusion criteria of the enrolled OC patients were as follows:
(1) patients were diagnosed with OC, which was confirmed
by pathological examination; (2) patients received no ra-
diation, chemotherapy, immunotherapy, or molecular tar-
geted therapy prior to diagnosis; (3) patients had no other
malignant tumors and autoimmune diseases; and (4) age of
patients ranging from 18 to 70.,e exclusion criteria were as
follows: (1) patients had other malignant tumors; (2) patients
received preoperative adjuvant chemotherapy, radiotherapy,
or targeted therapy; (3) patients had incomplete clinical data;
and (4) patients had a history of cancer. Tumor tissue
samples and adjacent tissue samples were collected from 5
OC patients. Tissue samples and clinical data were collected
with informed consent of patients. ,is study was approved
by the Ethics Committee of,e Second Affiliated Hospital of
Xi’an Jiaotong University (2021241).

Total RNA of the samples was extracted using the
TRIzol® reagent. ,en, RT-qPCR was performed in an ABI
7300 RT-qPCR system with SuperReal PreMix Plus. Relative
gene expressions were analyzed by the 2-△△ct method and
represented as fold change (compared with healthy control).
Fold change >1 and fold change <1 represented upregulation
and downregulation, respectively. GAPDH and ACTB were
used for internal reference.

2.9. Statistical Analysis. All statistics were performed using
the R software. Wilcoxon test was used to identify differ-
entially expressed genes and infiltrating immune cells. In
addition, the Wilcoxon test was used to screen for differ-
entially expressed infiltrating immune cells and to analyze
statistical differences in the expression of risk scores in
different clinical features. Kaplan–Meier curves were plot-
ted, and a log-rank test was used to check the significant
difference in OS between the high and low hypoxia risk
groups. ,e t-test was used to test the significant difference
in hypoxic gene expression between the high and low
hypoxia risk groups. ,e value of p less than 0.05 was set as
statistically significant.

3. Results

3.1. Construction ofHypoxic Gene Signature PrognosticModel
in OC. ,e prognostic role of 191 hypoxic genes in OC
patients was investigated. Based on the univariate Cox re-
gression analysis, 9 hypoxia-related genes were significantly
related to patients’ OS (Figure 1(a)). In the lasso and Cox
regression analyses, 8 hypoxia-related genes were chosen to
build the predictive model consisting of A-kinase anchoring
protein 12 (AKAP12), aldolase, fructose-bisphosphate C

Table 1: Patient characteristics of three cohorts.

TCGA GSE17260 GSE32062
Number of patients 378 110 260
Age (median, range) 59 (30–87) NA NA
Grade (%)
Grade 1 1 (0.26%) 26 (23.64%) NA
Grade 2 45 (11.90%) 41 (37.27%) 131 (50.38%)
Grade 3 321 (84.92%) 43 (39.09%) 129 (49.62%)
Grade 4 1 (0.26%) NA NA
Unknown 10 (2.65%) NA NA

Stage (%)
I 1 (0.26%) NA NA
II 23 (6.08%) NA NA
III 294 (77.78%) 93 (84.55%) 204 (78.46%)
IV 57 (15.08%) 17 (15.45%) 56 (21.54%)
Unknown 3 (0.79%) NA NA

Lymphatic invasion
Yes 101 (26.72%) NA NA
No 48 (12.70%) NA NA
Unknown 229 (60.58%) NA NA

Venous invasion
Yes 64 (16.93%) NA NA
No 41 (10.85%) NA NA
Unknown 273 (72.22%) NA NA

OS days (median) 1024 915 1245
OS: overall survival; NA: not applicable.

Table 2: Basic information of all datasets.

Accession number Platform Number of patients Survival data
TCGA Illumina RNA-seq OC� 378 OS
GSE17260 Agilent-014850 Whole Human Genome Microarray 4× 44K G4112F OC� 110 OS
GSE32062 Agilent-014850 Whole Human Genome Microarray 4× 44K G4112F OC� 260 OS
OC: ovarian cancer; OS: overall survival.
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(ALDOC), angiopoietin-like 4 (ANGPTL4), Cbp/p300
interacting transactivator with Glu/Asp-rich carboxy-ter-
minal domain 2 (CITED2), interferon-stimulated exonu-
clease gene 20 (ISG20), protein phosphatase 1 regulatory
subunit 15A (PPP1R15A), peroxiredoxin 5 (PRDX5), and
transforming growth factor beta-induced protein (TGFBI)
(Figures 1(b) and 1(c)).

3.2. Prognostic Value of the Hypoxia Risk Signature in OC.
,e risk scores of the training and validation cohorts were
calculated using the coefficients obtained by the lasso al-
gorithm. Patients were divided into high and low hypoxia
risk groups.,e distribution of the risk scores, OS, OS status,
and expression profiles of the 8 hypoxic gene signature in the
training cohort and validation cohort is displayed in
Figures 2(a) and 2(b). Heat map results showed that 6
hypoxic genes, including AKAP12, ALDOC, ANGPTL4,
CITED2, PPP1R15A, and TGFBI, were highly expressed in
the high hypoxia risk group, which indicated that patients in
the group tended to develop hypoxic microenvironments.
,e mortality was significantly higher in the high hypoxia
risk group. ,e OS of the high hypoxia risk group was

shorter in the training and validation cohorts (Figures 2(c)
and 2(d)).

3.3. Strong Power of Hypoxia Risk Signature for Prognosis
Assessment inOC. To evaluate the predictive efficiency of the
hypoxia risk signature in the 1-, 3-, and 5-year survival rates,
the ROC curve was performed. ,e AUC was 0.67 at 1 year,
0.64 at 3 years, and 0.71 at 5 years, respectively, indicating a
high predictive value (Figure 3(a)). ,is was further vali-
dated in the validation cohort (Figure 3(b)). ,is indicated
that patients with high risk score could develop hypoxia
tumor microenvironment. ,e univariate analysis suggested
that high hypoxia risk score was significantly associated with
poor OS (Figure 3(c)). Multivariate analysis showed that
high hypoxia risk score was significantly related to poorer
OS of OC patients (Figure 3(d)). ,ese were validated in the
validation cohort (Figures 3(e) and 3(f)). In addition, the
relationship between the hypoxia signature and clinical
parameters (such as age, grade, stage, therapy outcome,
lymphatic invasion, and venous invasion) is shown in
Figure 4. ,e risk score for grade III/IV was significantly
higher than that for grade I/II. ,e risk score of G3/4 was
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Figure 1: Construction of hypoxic gene signature prognostic model in OC. (a) ,e forest map of univariate Cox regression analysis results
of hypoxia gene. (b) ,e coefficient profile plot. (c) Optimal parameter (lambda) selection in the lasso model used tenfold cross-validation
via minimum criteria.
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Figure 2: Continued.
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significantly higher than that of G1/2. In therapy outcome,
the risk score of PD/SD was significantly higher than that of
CR/PR.

3.4. Identification of Hypoxia-Related Signaling Pathways in
OC. GSEA results showed that processes associated with
stimulating tumor proliferation and antiapoptosis were
significantly enriched in the high hypoxia risk group
(Figure 5), including cell cycle, MAPK signaling path-
way, mTOR signaling pathway, PI3K-Akt signaling
pathway, VEGF signaling pathway, and AMPK signaling
pathway.

3.5. Immunity Analysis between High and Low Hypoxia Risk
Groups in OC. ,e ability to assess hypoxia risk signals in
the immune microenvironment was investigated through
ssGSEA. Patients at high risk of hypoxia had significantly
higher percentages of cells (such as plasmacytoid den-
dritic cell and regulatory T cell) and significantly lower
percentages of activated dendritic cell, type 17 T helper
cell, and natural killer cell (Figures 6(a), 6(b)). ,is
suggested that immunosuppressive cells may drive the
immunosuppressive microenvironment. ,e results of the
ESTIMATE algorithm also confirmed that the immune
score (Figure 6(c)) and matrix score (Figure 6(d)) were
significantly lower in patients with high hypoxia. ,e
tumor purity was significantly higher in patients with low
hypoxia (Figure 6(e)).

3.6. A High Risk Score Indicates the Immunosuppressive
Microenvironment in OC. ,e gene signature that negatively
regulated cancer immune cycle was downloaded from the
website “Tracking Tumor Immunophenotype.” ,e results
showed that most of these genes, such as arginase 1 (ARG1), CD
160molecule (CD160), CD 244molecule (CD244), C-X-Cmotif
chemokine ligand 12 (CXCL12), DNA methyltransferase 1
(DNMT1), and hepatitis A virus cellular receptor 1 (HAVCR1),
were upregulated in the high hypoxia risk group (Figure 7).

3.7. Analysis of Expression Patterns and Mutation Types of
Immune Checkpoints in OC. ,e expression of immune
checkpoints was investigated in the high and low hypoxia
risk groups. ,e results showed that the expression of most
immune checkpoints, such as CD80 molecule (CD80), cy-
totoxic T-lymphocyte-associated protein 4 (CTLA4), and
cd274 molecule (CD274), were significantly higher in the
high hypoxia risk group (Figure 8(a)), which was validated in
the validation cohort (Figure 8(b)). ,ese results suggested
that the immune microenvironment in the high hypoxia risk
group was suppressed by upregulating immunosuppressive
cytokines and immune checkpoints. In addition, the dif-
ference in gene mutation frequency was analyzed between
the high and low hypoxia risk groups (Figure 9). ,e mu-
tation frequency of ALDOC, ANGPTL4, and PPP1R15Awas
slightly higher in the high hypoxia risk group (1%) compared
with that in the low hypoxia risk group (did not show any
mutations). ,is suggested that mutation of these genes may
be associated with hypoxia.
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Figure 2: Construction and validation of prognostic hypoxia risk signature in OC. (a) Distribution of risk score, OS, and OS status and
heatmap of the 8 prognostic hypoxia risk gene signature in the training cohort; (b) distribution of risk score, OS, and OS status and heatmap
of the 8 prognostic hypoxia risk gene signature in the validation cohort; (c) Kaplan–Meier curves of OS for OC patients based on the risk
score in the training cohort; (d) Kaplan–Meier curves of OS for OC patients based on the risk score in the validation cohort.
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Figure 3: Prognostic value of the hypoxia risk signature in OC. (a, b) ROC curves showing the predictive efficiency of the hypoxia risk
signature; (c–f) univariate and multivariate Cox analyses of the hypoxia signature.
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3.8. RT-qPCR. ,e tumor tissues from 5 patients with OC
were used to test the expression of hypoxic gene signature.
,e clinical information of these patients is shown in Table 3.

In addition, the sequence of the primers used for the
RT-qPCR is listed in Table 4. ,e results showed that
ALDOC, CITED2, ISG20, and PRDX5 were significantly
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upregulated, AKAP12, ANGPTL4, and PPP1R15A were
remarkably downregulated, and TGFBI was downregulated
without significant difference (Figure 10). ,is suggested
that the expression level of these genes in tumor tissue was
different from that under the hypoxic tumor environment.

4. Discussion

In the present study, we developed a risk model consisted of
8 hypoxia-associated genes in OC. Among which, AKAP12,
ALDOC, ANGPTL4, CITED2, PPP1R15A, and TGFBI were
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highly expressed, whereas ISG20 and PRDX5 were lowly
expressed in the high hypoxia risk patients.,e upregulation
of AKAP12 is related to poor survival of colorectal cancer
[24]. It is suggested that AKAP12 plays a crucial role in
ovarian granulosa cells and is involved in invasion and

metastasis in OC [25–27]. Elevated AKAP12 transcript
expression is related to poor survival in patients with ovarian
cancer and high-grade serous ovarian carcinomas [28–30].
ALDOC, a glycolytic enzyme, is known to be upregulated by
hypoxia. In OC, increased mRNA expression of ALDOC
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fuels the tricarboxylic acid cycle and promotes sustained
mitochondrial respiration [31]. ANGPTL4, an immune
gene, has important functions in lipid and glucose meta-
bolism [32, 33]. ANGPTL4 is activated by hypoxia-inducible
factor-1α (HIF-1α) and confers protection against hypoxia-
induced apoptosis [34]. It is demonstrated that ANGPTL4 is
overexpressed in OC and related to shorter relapse-free
survival times in serous OC [35–37]. In addition, ANGPTL4
is significantly related to the poor prognosis of patients with
non-small-cell lung cancer, lung adenocarcinoma, and

cervical cancer [38–40]. CITED2 is significantly enriched in
regulatory T cells and granulosa cells [41, 42]. It is reported
that CITED2 is associated with primary ovarian insuffi-
ciency [43]. Upregulation of CITED2 is related to shorter
recurrence times in serous ovarian tumors [44]. It is shown
that TGFBI functions as a tumor promoter in OC [31]. It is
reported that TGFBI is related to an extracellular matrix
signature and is implicated in poor prognosis and drug
resistance in OC [45–48]. Overexpression of TGFBI is re-
lated to poor prognosis in cervical cancer [49]. ISG20, an
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immune-related gene, is downregulated in small atretic
follicles with respect to healthy follicles [50]. ,e expression
level of ISG20 is lower in tumor tissues of OC and is as-
sociated with the prognosis of OC [51, 52]. PRDX5 can be
used to predict poor progression-free survival for OC pa-
tients [53]. Our results suggested that the above 8 hypoxia-

associated gene risk model could be used as an independent
prognostic factor for OC patients, which may represent a
convenient detection in clinic.

In OC, regulatory T cells play roles in reducing survival
[54]. In the TIME, the presence of immature plasmacytoid
dendritic cells is associated with the poor clinical outcome in
patients with breast cancer and epithelial OC [55, 56], which
indicates that plasmacytoid dendritic cells could play roles in
establishing the TIME mediated by forkhead box P3
(Foxp3)+ regulatory T cells. Activated dendritic cells can
boost the patients’ immune system to fight against cancer
[57, 58]. In this study, we found that patients with high
hypoxia risk had significantly higher proportions of regu-
latory T-cell and plasmacytoid dendritic cell phenotypes.
Besides, activated dendritic cells were decreased in the high
hypoxia group. In addition, the immune score and matrix
score were significantly lower in patients with high hypoxia.
Our results showed that the hypoxia risk model could
predict the immune microenvironment in OC.

Identification of immunosuppressive factors produced
within the TIME and the ability to target these factors can
enhance antitumor immune responses. ,e expression of
ARG1 in immune cells is a potent suppressor of antitumor
T cells [59]. CD160 is significantly upregulated in OC [60].
CD244 is an exhaustion marker of T cells in OC [61].
Hypoxia induces the expression of CXCL12 in primary

Table 3: ,e clinical information of enrolled patients in intro validation.

Number Age Height (cm) Weight (kg) Tumor size (cm)
1 58 156 54 1
2 62 157 59 10
3 70 159 50 8
4 73 168 46 20
5 56 165 53 10

Table 4: ,e sequence of the primers used for the RT-qPCR.

Primer name Primer sequences (5′ to 3′) Size (bp)
GAPDH-F (internal reference) CTGGGCTACACTGAGCACC 101
GAPDH-R (internal reference) AAGTGGTCGTTGAGGGCAATG
ACTB-F (internal reference) GATCAAGATCATTGCTCCTCCT 108
ACTB-R (internal reference) TACTCCTGCTTGCTGATCCA
AKAP12-F AGAGGTTGCCTCCGAGAAACT 185
AKAP12-R CAAACACTTCTGTCGCCAACG
ALDOC-F CGCAGCCTCATTTACCAGA 165
ALDOC-R GCTCCTTCCAAGGCTTCAG
ANGPTL4-F GGCTCAGTGGACTTCAACCG 103
ANGPTL4-R CCGTGATGCTATGCACCTTCT
CITED2-F ACAAACCAGCACTTCCGAGAT 212
CITED2-R TCTATGACATTGGGCGGCAG
ISG20-F CGACAAGTTCATCCGGCCT 176
ISG20-R GCCACAACAGCCTGTCAGT
PPP1R15A-F ATGATGGCATGTATGGTGAGC 120
PPP1R15A-R AACCTTGCAGTGTCCTTATCAG
PRDX5-F GCAAGACGGTGCAGTGAAG 98
PRDX5-R ATGGCATCTCCCACCTTGATT
TGFBI-F CTTCGCCCCTAGCAACGAG 155
TGFBI-R TGAGGGTCATGCCGTGTTTC

Figure 10: Expression of detection of hypoxic gene signature by
RT-qPCR. ∗p< 0.05; ∗∗p< 0.01.
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human ovarian tumor cells [62]. It is suggested that CXCL12
is an independent predictor of poor survival in OC [63].
Overexpression of DNMT1 contributes to gene promoter
hypermethylation and is associated with the malignant
potential and poor prognosis of breast cancer [64, 65].
HAVCR1 serves as the marker for ovarian clear cell carci-
noma susceptibility [66]. In the present study, the above
immunosuppressive cytokines were upregulated in the high
hypoxia risk group, which further promoted immunosup-
pression in OC.

,e immune checkpoint inhibitor-based antibody has
improved survival for patients with various cancer types,
such as lung cancer, malignant melanoma, and bladder
cancer [67]. High levels of CD80 contribute to the main-
tenance of tolerance and immunosuppression in epithelial
OC [68]. ,e OC microenvironment can induce migration
of CTLA4+ regulatory T cells via C-C motif chemokine li-
gand 22 (CCL22) and C-C motif chemokine receptor 4
(CCR4) [54, 69]. CTLA4 immunotherapy has shown an
optimistic antitumor effect in OC [70]. PD-L1 interacts with
the corresponding receptor, inhibits the antitumor activity
of immune cells, and allows cancer cells to escape immune
surveillance [71]. Drug-resistant OC cells exhibit repression
of immune-stimulatory molecules, with concomitant aug-
mented expression of CD274 [72]. In this study, we found
that the above immune checkpoints including CD80,
CTLA4, and CD274 were all upregulated in the high hypoxia
risk group, which indicated these immune checkpoints play
an important immunosuppression action in OC.

Based on functional analysis, we found that gene sets
associated with the high hypoxia risk group were involved in
signaling pathways of cell cycle, MAPK, mTOR, PI3K-Akt,
JAK-STAT, VEGF, TGF-beta, and AMPK. Genes involved
in cell cycle play a key role in OC development and prog-
nosis [73]. In in vitro conditions, induction of CD8+ reg-
ulatory T cell is critically mediated by the activation of
p38MAPK in OC immunotherapy [74].,e mTOR pathway
is found to be activated in about half of patients with high-
grade serous OC [75].,e PI3K-Akt signaling pathway plays
crucial roles in the process of mesenchymal stem cells in-
duced by hypoxia [76]. Activation of the PI3K/Akt/mTOR
pathways is found in OC [77]. VEGF, an important an-
giogenic factor in advanced OC, is related to tumor ag-
gression and the poor prognosis of OC [78, 79]. AMPK
protects living cells from hypoxia, which results in elevations
in the cellular AMP/ATP ratio [80–82]. It is found that
AMPK subunits are generally upregulated in OC [83]. Our
results indicated that the above signaling pathways may play
important roles in the low oxygen environment of OC.

CA: carcinoma antigen; HE4: rabbit anti-human HE4
antibody.

5. Conclusions

We developed and validated a risk model based on 8
hypoxia-associated genes, which could serve as an inde-
pendent prognostic factor for OC patients and reflect the
overall intensity of the immune response in the OC mi-
croenvironment. Our study may offer a novel understanding

of how hypoxia status affects prognosis and the TIME in OC
and benefits future hypoxia-targeted therapies. However,
there are limitations to our study. More molecular inves-
tigation in the experimental model is further needed.
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