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Abstract: Pyrimidines are key components in the genetic code of living organisms and the pyrimidine
scaffold is also found in many bioactive and medicinal compounds. The acidities of these compounds,
as represented by their pKas, are of special interest since they determine the species that will prevail
under different pH conditions. Here, a quantum chemical quantitative structure–activity relationship
(QSAR) approach was employed to estimate these acidities. Density-functional theory calculations at
the B3LYP/6-31+G(d,p) level and the SM8 aqueous solvent model were employed, and the energy
difference ∆EH2O between the parent compound and its dissociation product was used as a variation
parameter. Excellent estimates for both the cation→ neutral (pKa1, R2 = 0.965) and neutral→ anion
(pKa2, R2 = 0.962) dissociations were obtained. A commercial package from Advanced Chemical
Design also yielded excellent results for these acidities.
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1. Introduction

Pyrimidines play a central role in the terrestrial genetic code and the pyrimidine
framework is also found in many bioactive compounds and medicines. As measurements
of molecular properties are frequently difficult or expensive, it is of interest to develop
theoretical means for estimating these properties. Among the most important and inter-
esting properties of the pyrimidines are their acidities, as represented by their pKa values,
which determine the forms of the compounds that will prevail in solution under different
pH conditions. As a result, there has been a long-standing interest in estimating the pKas
of chemical compounds using theoretical approaches [1,2]. This interest continues, as
demonstrated by the broad range of methods employed in recent pKa studies [3–10]. In an
earlier study by our group [11], we presented computational estimates of the pKas of the
biologically related purines and indoles. In the present work we develop estimates for the
acidities of pyrimidines and related compounds.

Three main approaches have been used in studies estimating compound acidities [1,12].
In the first approach, first-principles or absolute pKas are determined in a straight-forward
manner using direct calculations, often relying on a thermodynamic cycle to separate differ-
ent hypothetical stages [13,14]. The advantage of this approach is that it follows standard
procedures and does not depend on prior knowledge of experimental results. Its disadvan-
tage is that it normally requires a high level of computational effort to achieve reasonable
accuracy. A second approach employs the development of an appropriate Quantitative
Structure–Activity Relationship (QSAR) for the acidities of a set of compounds [2,15]. This
approach requires first the collection of measured experimental pKa values for the set and
then the identification of some suitable molecular parameter that is closely related to the
acidity. An advantage of this approach is that it can generally achieve high accuracy while
employing more modest computational efforts, and it accordingly allows the estimation of
the pKas of related, unreported compounds using the same modest computational effort.
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Furthermore, digressions from the derived regression algorithms (i.e., outliers) can alert
practitioners to compounds that may be exhibiting behaviors different from the others
in the sample [16–18]. In a third approach, a number of commercial programs use algo-
rithms derived from large acidity databases and employ empirical parameters such as
Hammett constants to estimate pKas [19,20]. The latter two approaches were employed in
the present study.

As noted, the QSAR approach relies on the discovery of some parameter or property
of the compounds examined that correlates with the activity of interest, in the present
case the pKa. In many cases, partial atomic charges have been employed as variation
parameters for acidities and other properties. However, because the notion of an “atomic
charge” in a molecule is not a proper quantum chemical observable, a variety of different
approximate schemes have been developed to represent these atomic charges. Of these
proposed schemes, our own group [21–24] and others [5,25–27] have found the natural
population analysis (NPA) orbitals and charges developed by Weinhold et al. [28–30] to
be especially useful in this role. More recently, we have also used another parameter, the
energy difference ∆EH2O between the parent compound and its main dissociation product
for this purpose. It is this parameter that was employed in the present study.

A particular difficulty arises in a study of the pyrimidines because these compounds
do not typically appear as a single species in gas phase or solution, but rather are present
as a collection of related tautomers, a situation that also prevailed in our earlier study of
purines [11]. Accordingly, some accommodation must be made for this condition, as will
be described in the following section.

2. Methods

Our aim in a recent series of reports has been to design and evaluate a QSAR protocol
suitable for producing accurate pKa estimates for selected classes of compounds while
employing relatively modest and commonly available computational tools.

The initial step in a pKa QSAR study involves the collection of reported experimental
pKa values from the literature for the class of compounds of interest. In the present
case, values for both the cation-to-neutral dissociation, AH2

+ → AH + H+, which we will
designate pKa1, and the neutral-to-anion dissociation, AH→ A− + H+, which we will call
pKa2, were available for a number of pyrimidines and related compounds. These values
are tabulated in Table 1. Given in Table 1 also are computed pKa values obtained from the
Advanced Chemical Development (ACD) [31] commercial software package.

Table 1. Reported experimental pKa1 and pKa2 values and ACD computed values for the pyrimidines
and related heterocycles studied.

No. Compound Formula pKa1 ACD pKa1 pKa2
ACD
pKa2

1 azauracil C3H3N3O2 - −4.4 ± 0.2 - 7.8 ± 0.2

2 aziridine C2H5N 7.98 [32], 8.05 [33] 8.1 ± 0.2 - -

3 creatinine C4H7N3O 4.8 [34] 4.8 ± 0.1 - -

4 cytosine C4H5N3O 4.32 [30], 4.58 [35],
4.6 [31] 4.4 ± 0.1 13 [33], 12.15 [36] 12.3 ± 0.1

5 flucytosine C4H3FN2O2 3.26 [34] 2.6 ± 0.1 - 10.5 ± 0.1

6 imidazole C3H4N2 7.15 [33], 6.99 [34,35] 7.2 ± 0.6 14.44 [33] 13.9 ± 0.1

7 1-methylimidazole C4H6N2 6.95 [34] 7.0 ± 0.1 N/A -

8 4-methylimidazole C4H6N2 7.55 [35] 7.7 ± 0.6 - 14.3 ± 0.1

9 isocytosine C4H5N3O 4.01 [34] 3.4 ± 0.5 9.42 [36] 9.6 ± 0.4

10 isoxazole C3H6NO −2.0 [34] −2.0 ± 0.5 N/A
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Table 1. Cont.

No. Compound Formula pKa1 ACD pKa1 pKa2
ACD
pKa2

11 maleimide C4H3NO2 - −5.7 ± 0.2 9.46 [37] 8.5 ± 0.2

12 morpholine C4H9NO 8.492 [35] 9.0 ± 0.2 N/A -

13 piperidine C5H11N 11.12 [35] 10.4 ± 0.1 - -

14 piperazine C4H10N2 9.78 [35], 9.73 [34] 9.6 ± 0.1 - -

15 1-methylpiperazine C5H12N2 10.19 [35] 9.3 ± 0.1 - -

16 oxazole C3H6NO 0.8 [34] 1.0 ± 0.1 N/A -

17 pyrazine C4H4N2 0.65 [34] 1.2 ± 0.1 N/A -

18 pyrazole C3H4N2 2.61 [35] 2.8 ± 0.1 14.21 [33] 14.0 ± 0.5

19 pyridazine C4H43N2 2.3 [32] 3.1 ± 0.1 N/A -

20 pyridine C5H5N 5.23 [34] 5.2 ± 0.1 N/A -

21 pyrimidine C4H4N2 1.3 [32] 1.8 ± 0.1 N/A -

22 pyrrole C4H5N −3.8 [34] −0.3 ± 0.5 17.0 [33] 17.0 ± 0.5

23 pyrrolidine C4H9N 12.10 [33], 11.31
[34,35] 10.5 ± 0.1 - -

24 succinimide C4H5NO2 - −4.4 ± 0.2 9.62 [34,35], 9.68 [36] 9.6 ± 0.1

25 thymine C5H6N2O2 - −4.1 ± 0.4 9.9 [33], 9.79 [35],
9.44 [34] 9.2 ± 0.1

26 uracil C4H4N2O2 - −4.2 ± 0.1 9.43 [38], 9.45 [34,36] 8.9 ± 0.1

27 5-bromouracil C4H3BrN2O2 - - 7.91 [38] 6.8 ± 0.1

28 5-chlorouracil C4H3CIN2O2 - - 7.92 [38] 6.8 ± 0.1

29 fluorouracil C4H4FN3O - - 8.04 [30], 8.00 [39],
7.93 [38] 6.7 ± 0.1

30 5-formyluracil C5H4N2O3 - - 6.84 [38] 7.3 ± 0.1

31 5-nitrouracil C4H3N3O4 - - 5.3 [38] 5.2 ± 0.1

Calculations were carried out using the Spartan’10 software package (Wavefunction,
Inc., Irvine, CA). In earlier pKa studies, we found that density-functional computations at
the B3LYP/6-31+G(d,p) level provided accurate accounts of molecular properties while still
requiring only modest computational demands. After testing this assumption (vide infra)
against available gas-phase experimental results for pyrimidines in the NIST database [40],
this level of theory was adopted in the present work. For the studies in aqueous solu-
tion, the SM8 aqueous solvent model of Marenich et al. [41,42] was used. This same
solvent model was also employed in our earlier study of purines and indoles [11] and
other studies [16,17,43], where it was shown to perform well in helping to reproduce the
experimental data.

As noted above, many of the compounds examined here exist in several tautomeric
forms in solution. (For example, uracil has three cationic tautomers, six neutral tautomers,
and two anionic tautomers.) Accordingly, the relative stabilities of the tautomeric forms—
cationic, neutral, and anionic—of each compound were evaluated within the SM8 aqueous
solvent model, and the most stable tautomer for each condition was taken as represen-
tative of that compound for computational purposes [44]. Fortunately, there frequently
exists a substantial energy gap (>25 kJ/mol) between the most stable tautomer and the
remaining tautomers of that species; however, ultimately the validity of this approximation
must await justification from the results of the subsequent analysis. In earlier studies,
we found that for neutral→ anion dissociations (pKa2) the value ∆EH2O = EH2O(A−) −
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EH2O(AH) for the energy difference between the parent compound AH and its dissocia-
tion product A- in aqueous solution provides an excellent regression parameter for QSAR
pKa studies, and after testing several other parameters this descriptor was used in the
present studies. For the cation→ neutral dissociation (pKa1), the analogous expression
∆EH2O = EH2O(AH) − EH2O(AH2

+) was used.
We also provide a note of caution regarding directly comparing numerical results

found here using Spartan’10 with those obtained using the popular Gaussian computational
package (Gaussian, Inc., Wallingford, CT 06492, USA), since these programs use different
basis sets for some atoms [18,45].

3. Results and Discussion

We first wished to assure that the B3LYP/6-31+G(d,p) level of computation was suffi-
cient to provide accurate results for the dissociations in question. For this, we turned to gas-
phase reaction results reported in the NIST chemical database [24]. This database contains
gas-phase thermodynamic data for the Gibbs energy change ∆rG◦ for the
anion + H+ → neutral reaction, for six of the compounds studied here. These experi-
mental data are compared with our computed ∆rG◦ values in Table 2 (note that G◦(H+)
is −26.3 kJ/mol at 298.15 K [1]). As can be seen, there is very close agreement between
the experimental and calculated ∆rG◦ values. With the exception of succinimide, all of the
calculated values fall within the estimated experimental errors given in the NIST database.
This, and the coefficient of determination of R2 = 0.998 between the computed and exper-
imental values, suggest that the level of computation described should provide a good
account of the reactions to be considered.

Table 2. Experimental and calculated gas-phase ∆rG◦ values (kJ/mol) for the reaction A− + H+→ AH.

Compound Exp. ∆rG◦ a Calc. ∆rG◦ b Calc. ∆E b

pyridine 1601 1605 1648

pyrazine 1605 1605 1643

pyrimidine 1577 1579 1614

pyridazine 1565 1562 1601

imidazole 1433 1432 1466

succinimide 1414 1401 1436
a From the NIST database, Ref. [40]; b B3LYP/6-31+G(d,p).

As noted above, in previous studies we have found that the energy difference ∆EH2O
between the parent compound and its dissociation product provides an excellent regression
variable for pKa QSAR estimations. We first examined employment of the gas-phase ∆E val-
ues for this purpose. As expected, the use of ∆Egas values yielded good, but not exceptional,
correlations for both the pKa1 (cation→ neutral, R2 = 0.707) and pKa2 (neutral→ anion,
R2 = 0.874) dissociations.

We next optimized the compounds within the SM8 aqueous solvent model. Using the
solvent-optimized structures and the calculated ∆EH2O values for the appropriate reactions,
we obtained the following QSAR models:

pKa1 (calc.) = −0.131 (± 0.008) · ∆EH2O − 151.54 (± 10) (1)

n = 17, R2 = 0.965, s = 1.25, F = 145

pKa2 (calc.) = −0.141 (± 0.008) · ∆EH2O − 159.42 (± 10) (2)

n = 12, R2 = 0.962, s = 0.612, F = 304

In these equations, n = the number of compounds in the sample, R2 is the coefficient of
determination (the fraction of the variance in the data accounted for by the model), s is the
standard error of the estimate, and F is the Fisher statistic. It is evident that optimization of
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the structures within the solvent model significantly increases the accuracy of the model,
as was also shown in earlier work [1,7–9].

The results for pKa1 and pKa2 are plotted in Figures 1 and 2, and the calculated values
are compared with the experimental values in Tables 3 and 4. We note that several of the
pKas for the cation→ neutral dissociation (pKa1) fall into the difficult-to-measure negative
value range and carry large uncertainties. Accordingly, these values are also not well
characterized for use in this range in forming the regression Equation (1), and we prefer
to recognize this uncertainty by simply indicating modestly negative (<0) or significantly
negative (<<0) for the pKas of these compounds.
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Table 3. Literature pKa1s and estimated pKa1s.

Compound ∆E kJ/mol Exp. pKa1 Calc. pKa1
a Residual

azauracil −1084 - <<0 -
aziridine −1216 8.01 7.76 0.25
creatinine −1188 4.8 4.09 0.71
cytosine −1183 4.5 3.43 1.07

flucytosine −1169 3.26 1.60 1.66
imidazole −1213 7.07 7.36 −0.29

1-methylimidazole −1216 7.95 7.76 0.19
4-methylimidazole −1215 7.55 7.63 −0.08

isocytosine −1183 4.01 3.43 0.58
isoxazole −1115 −2 <0 -

maleimide −1035 - <<0 -
oxazole −872 0.8 <<0 -

piperidine −1239 11.12 10.77 0.35
piperazine −1226 9.76 9.07 0.69

1-methylpiperazine −1231 10.19 9.72 0.47
pyrazine −1166 0.65 1.21 −0.56
pyrazole −1174 2.61 2.25 0.36

pyridazine −1186 2.3 3.83 −1.53
pyridine −1200 5.23 5.66 −0.43

pyrimidine −1172 1.3 1.99 −0.69
pyrrolidine −1239 11.71 10.77 0.94
succinimide −1007 - <<0 -

a pKa1s were estimated using Equation (1).

Table 4. Literature pKa2s and estimated pKa2s.

Compound ∆E kJ/mol Exp. pKa2 Calc. pKa2
a Residuals

azauracil −1179 - 6.82 -
aziridine −1325 - 27.41 -
creatinine −1217 - 12.18 -
cytosine −1216 12.57 12.04 0.53

isocytosine −1196 9.42 9.22 0.20
flucytosine −1254 - 17.39 -
imidazole −1216 14.4 12.04 2.36

4-methylimidazole −1224 - 13.16 -
maleimide −1196 9.5 9.22 0.28
piperazine −1313 - 25.71 -

1-methylpiperazine −1395 - 37.28 -
piperidine −1310 - 25.29 -

pyrrole −1243 17 15.84 1.16
pyrrolidine −1390 - 36.57 -

thymine −1199 9.71 9.64 0.07
uracil −1200 9.44 9.78 −0.34

5-bromouracil −1184 7.91 7.52 0.39
5-chlorouracil −1182 7.92 7.24 0.68
fluorouracil −1193 7.99 8.79 −0.80

5-formyluracil −1180 6.84 6.96 −0.12
5-nitrouracil −1159 5.3 4.00 1.30

a pKa2s were estimated using Equation (2).

We also tested the ability of a commercial software program, Advanced Chemical
Development, Inc.’s ACD/Labs PhysChem Percepta Suite, to estimate these pKas. The
results for pKa1 showed an excellent correlation:

pka1 (exp.) = 1.07 (±0.03) · pka1 (ACD) + 0.34 (±0.2) (3)

where n = 19, R2 = 0.991, s = 0.334, and F = 1583.
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The results for pKa2 were also very good:

pKa2 (exp.) = 0.95 (±0.05) · pKa1 (ACD) + 0.92 (±0.52) (4)

where n = 13, R2 = 0.966, s = 0.612, and F = 316.

These results encourage use of this software for studies of the pKas of these compounds.

4. Conclusions

A primary endeavor of scientific studies is to develop models of physical, chemical,
and biological systems for the purpose of understanding these systems better. All models
are by their very nature approximate. However, as Gauch has noted [46], in some cases—
counterintuitively—a model can be more accurate than the data from which it is constructed
“because it amplifies hidden patterns and discards unwanted noise” inherent in the system
being examined. The QSAR equations used here take advantage of this property by
“averaging through” the noise, or random errors, in the experimental pKa data. It is evident
that both the QSAR Equations (1) and (2) above provide relatively simple means, via
mathematical models, for estimating the pKas of the pyrimidines and related compounds.
For example, in order to estimate the pKas of unmeasured compounds in this class or
to check the reported pKas of measured compounds, using the QSAR equations one
merely needs to determine ∆EH2O for the compound and then evaluate the pKa from
the appropriate regression equation. Therefore, the equations provided should allow
reasonable estimations for the pKas of other pyrimidines and compounds similar to the
pyrimidines. Use of the commercial ACD/Labs program can provide a further independent
and very useful check on the pKa estimates.
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